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Abstract: In recent decades, special attention has been given to the adverse effects of traffic congestion.
Bike-sharing systems, as a part of the broader category of shared transportation systems, are seen as
viable solutions to these problems. Even if the quality of service in bike-sharing service systems were
permanently improved, there would still be some issues that needed new and more efficient solutions.
One of these refers to the rebalancing operations that follow the bike depletion phenomenon that
affects most stations during shorter or longer time periods. Current work develops a two-step method
to perform effective rebalancing operations in bike-sharing. The core elements of the method are a
fuzzy logic-controlled genetic algorithm for bike station prioritization and an inference mechanism
aiming to do the assignment between the stations and trucks. The solution was tested on traffic data
collected from the Citi Bike New York bike-sharing system. The proposed method shows overall
superior performance compared to other algorithms that are specific to capacitated vehicle routing
problems: standard genetic algorithm, ant colony optimization, Tabu search algorithm, and improved
performance compared to Harris Hawks optimization for some scenarios. Since the algorithm is
independent of past traffic measurements, it applies to any other potential bike-sharing system.

Keywords: genetic algorithm; bike-sharing system; fuzzy-logic control; inference mechanism;
capacitated vehicle routing problem

MSC: 90B20

1. Introduction

During the last few decades, cycling has been seen as an environment-friendly mo-
bility solution [1] that can respond to the mobility needs of many categories of users [2].
Consequently, at this moment, there is an impressive number of bike-sharing programs,
implying millions of bicycles [3].

Involving the activity of renting bikes from a determined set, from which the clients
can pick up, ride, and park in different parts of the city, the bike-sharing system (BSS) has to
face many challenges. The most important of these, related to capacity, transfer, reliability,
and integration, are the same as those of other transportation modes [4].

One of the main problems that need to be solved by bike-sharing companies is that
after a small number of usages, many bikes are parked outside of interest areas, where
pickup demand is very high. Due to traffic polarization, bike scarcity hotspots will appear
in some areas simultaneously with dock scarcity in others. In these circumstances, specific
approaches are needed. These can be grouped into three categories: strategic (long-term),
tactical (mid-term), and operational (short-term) management levels [5]. Strategic manage-
ment deals with the capacities and locations of the stations. By processing the measured
data on single trips, the tactical level could ensure the optimal load levels for every station,
which have a periodic variation throughout the day. In contrast, operational planning
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estimates levels based on typical user behavior [6]. Additionally, the system needs another
resource for bikes and docks to rebalance agents [7].

Usually, trucks are used to pick up bikes from an overflowing station and transport
them to a station that is too empty. The problems arising and the need for rebalancing
operations are crucially affected by the non-deterministic nature of the bike depletion phe-
nomenon. When many stations require rebalancing service simultaneously or very close in
time, outnumbering the rebalancing agents, the vehicles routing for large systems becomes
problematic [8–11]. Moreover, an inadequate, longer route means higher transportation
costs. In addition to lowering company profits, inefficient routes increase road traffic,
defeating the environment-friendliness objective of the BSS.

Even if many promising results have already been obtained, numerous published
articles in this area highlight that the rebalancing issue in BSS is still an open research
problem. Motivated by the necessity to find suitable and better-performing solutions, the
paper presents a repositioning strategy for bikes in the BSS stations characterized by a
pronounced dynamic nature. The core elements of this strategy are a fuzzy logic-controlled
genetic algorithm (FLCGA) [11] and an inference mechanism, which are the main parts
of a two-step method. In the first step, the FLCGA algorithm is used to select a cost-
effective order for serving the bike stations that need rebalancing. To minimize the total
transportation cost per transported bike, a method for providing the rebalancing agents for
the bike stations is developed in the second step.

The proposed method was tested on traffic data from Citi Bike New York BSS and
compared with the following algorithms: standard genetic algorithm (SGA), ant colony
optimization (ACO) [12], Harris Hawks optimization (HHO) [13], Tabu search algorithm
(TSA) [14]. The applicability of all methods is shown by performing numerical experiments
using real historical traffic data on 1000 datasets, each corresponding to a cluster of stations
in the system, and 17 scenarios, each corresponding to a unique combination of truck
numbers and stations.

The next sections of the article are laid out as follows: Section 2 provides a literature
review, Section 3 states the problem meant to be solved, Section 4 proposes the solution
to the problem and its parameters, Section 5 presents the results, Section 6 contains the
discussion on the results and methodology, and Section 7 states the conclusions.

2. Literature Review

In a dynamic regime, there are a few practical alternatives for providing the necessary
number of bikes and accessible places on docks in a reasonable time interval. Some current
solutions, defined as user-based repositioning, focus on finding modalities to determine the
user’s willingness to release the shared bikes at other destinations than those they consider
to be more convenient [15,16].

Operator-based repositioning is another approach suitable to ensure available re-
sources in due time, especially in urgent fleet relocation. For these cases, specific balancing
modalities were proposed to minimize the number of situations where customers cannot
find bikes or free places at dock stations [17,18]. There are also proposals to combine the
two schemes [19].

The relocation operation, whether static or dynamic, implies finding solutions for
routing the vehicles that extract or insert the required number of bikes into docks and is
considered the most challenging operation of the BSS service. The difficulty in finding
the best routes in the process of bike relocation is a direct consequence of demand uncer-
tainty. Many strategies were proposed for this purpose, including exact, hybrid, heuristic,
metaheuristic, and hyper-heuristic algorithms [20,21].

Moreover, the rebalancing operations are also influenced to a considerable extent by
other factors, some of which are the number of vehicles used for repositioning operations,
their capacities, and their corresponding allocations. Consequently, the proposed strategies
and the chosen routing algorithms are directly determined by the prerequisites underlying
the rebalancing operations. A multitude of solutions were presented in different contexts.
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Bulhões et al. [22] developed a method based on an IP formulation and an iterated
local search metaheuristic to solve the static bicycle relocation with multiple vehicles and
visits problem.

Integer programming models are also used in [23] for optimal BSS planning from an
integrated and long-term perspective and in [24] for inventory and routing optimization
in BSS.

Another solution for the static rebalancing operations is proposed by Chemla et al. [25],
where the routing activity is performed by a single vehicle.

Past information is analyzed in [26] to extract and use a critical pattern for dynamic
rebalancing operations. Thereby, an advanced, planned rebalancing action is possible to
offset future adverse effects.

The problem of efficient routing is tackled in [27] by developing approximation algo-
rithms and hardness analyses for the BSS routing problem. Multiple simultaneous routing
requests are analyzed, and solutions are proposed for allocating the limited resources and
generating an optimization plan.

Problems encountered in the planning processes characteristic of bike-sharing services
are described in [5], which gives an overview and classification of existing literature.
Additionally, a study performed at [5] identifies research gaps, pointing out the importance
of future research directions.

Other studies focus on solving the rebalancing problem by designing new frameworks.
A consistency index of travel and a spatial-distribution learning method for static rebal-
ancing, increasing the demand satisfaction, and decreasing the number of vehicles visiting
stations, is presented in [28]. In [29], the authors develop a simulation framework that can
be integrated with static and dynamic rebalancing optimization models, aiming to evaluate
different rebalancing strategies.

A particular rebalancing problem in bike-sharing systems is the rebalancing with
consideration for the collection of malfunctioning bikes, for which [30] proposes an integer
linear programming model and [31] presents a greedy heuristic method to solve the prob-
lem. At the same time, tests on results are performed using actual data from Divvy BSS. In
the end, a comprehensive repositioning strategy is used to quantify the benefits.

To find new efficient routing strategies for rebalancing BSS stations, some studies
adapt and develop formulations typical for capacitated vehicle routing problem (CVRP).
This is the basic and best-known variant of the vehicle route problem (VRP), considered the
generalization of the traveling salesman problem (TSP), and has been intensively studied
in the literature, considering deterministic and stochastic variants. Many applications,
including different hypotheses and constraints, were defined in this context, with both de-
terministic and stochastic formulations and their corresponding solutions being proposed.
A comprehensive literature review of the stochastic variants, namely the stochastic (capaci-
tated) vehicle routing problem (SVRP or SCVRP), is presented by Oyola et al. in [10,32].
In [32], representative categories of solutions are analyzed. The first part of the review is
focused on different types of problems and their approaches, starting with the CVRP with
stochastic demand (CVRPSD) and continuing with the CVRP with stochastic travel and
service times in different variants and combinations.

Considering classical solutions, exact methods are efficient only for small problem
instances. Even if they do not guarantee optimal solutions, the heuristic and metaheuristic
algorithms deliver feasible solutions for the NP-complete problem, with satisfactory results
being obtained within a reasonable time interval [33].

During the latest decades, strategies belonging to the NP-optimization category of
problems have enjoyed high importance for science and industry [34]. Hundreds of papers
presenting a diversity of solutions based on metaheuristic techniques were proposed. These
metaheuristics used for solving the VRP problem and its variants were analyzed in some
comprehensive studies [35,36], having classification purposes and aiming to find new
directions and topics of interest for future research. Recent contributions in this field are
oriented not only toward the development of new, high-performance algorithms [13,37,38],
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including the hybrid category, which combines different algorithmic concepts [39,40], but
also toward the search for solutions in order to improve the performances of the existing
ones [41].

A diversity of solutions based on metaheuristic techniques were proposed, considering
the character of the searching process (trajectory-based or population-based search), mem-
ory or memoryless usage, and naturally and non-naturally inspired algorithms [42–44].

As a primary class of evolutionary algorithms, genetic algorithms are widely used
to solve NP-complete combinatorial optimization problems [45] and in many logistics
applications [46–49], including the generation of efficient rebalancing routes [50]. There
are many studies aiming to improve the genetic algorithm’s performance and extend its
applicability [51].

Fuzzy-logic controllers are proposed to determine the most appropriate algorithm param-
eter values, having crossover and mutation rates as outputs of the fuzzy system [11,52–56]. A
comprehensive review of research advances and interest directions for genetic algorithms
is presented in [55].

3. Problem Description

In Figure 1, a map reconstruction of the bike stations from Citi Bike New York BSS
is presented:
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Figure 1. Citi Bike New York bike stations map reconstructed.

The data corresponding to this BSS bike station contains the following information:
location, number of bikes, and capacity.

It has been observed that there are time intervals in which some of the bike stations
tend to remain without bikes or available parking, therefore requiring rebalancing.

Due to the ever-increasing demand and inequality between stations, it is impossible to
rebalance them once and for all. Therefore, rebalancing activities are everlasting, and the
goal of using finite resources translates to resolving a scheduling problem.

The balancing activity of two stations is shown in Figure 2.
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Figure 2. Rebalancing activity example.

Rebalancing several stations one after another assumes that the agent, in this case, the
truck, is constantly moving between stations so that the trip’s destination will become the
origin of the journey, corresponding to the next rebalancing operation.

Another level of complexity is added by the fact that a system will contain more than
one truck at a time. It leads to the general CVRP, expressed for our particular use case in
Figure 3:
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Figure 3. General rebalancing routing problem.

The set of essential attributes of the BSS is:

BSS = {S, T, U} (1)

where the variables S, T, and U are described in Table 1.

Table 1. Variables’ descriptions.

Variable Property Definition
S S = {s1, s2, . . . , sM} The set of bike stations
M Number of bike stations
si si = (Lsi, Bsi, Csi) Bike station (index i)

Lsi Geographical location
Bsi Number of available bikes
Csi Total capacity (bikes)
T T = {t1, t2, . . . , tN} The set of trucks
N N < M Number of trucks
ti ti = (Lti, Bti, Cti, Ji) Truck (index i)

Lti Geographical location
Bti Number of available bikes
Cti Total Capacity
Ji Ji = (sk, Jpi, Jbi) Job assigned
sk Bike station destination
Jpi Jpi ∈ {“Insert”, “Extract”} Job type
Jbi The number of bikes requested
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Table 1. Cont.

Variable Property Definition
U U = {U1, U2, . . . , UP} The set of depots
P P < N Number of depots
Ui Ui =

(
Si, Ti, Cui,
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i

)
Depot

Si Si ⊂ S Partition of bike stations set
Ti Ti ⊂ T Partition of trucks set

Cui Capacity
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This leads to the property: 

τ
i

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 32 
 

 

𝐵𝑡௜  Number of available bikes 𝐶𝑡௜  Total Capacity 𝐽𝑖 𝐽௜ = (𝑠௞, 𝐽𝑝௜, 𝐽𝑏௜) Job assigned 𝑠௞  Bike station destination 𝐽𝑝௜ 𝐽𝑝௜ ∈ {“𝐼𝑛𝑠𝑒𝑟𝑡”, “𝐸𝑥𝑡𝑟𝑎𝑐𝑡”} Job type 𝐽𝑏௜  The number of bikes requested 𝑈 𝑈 =  {𝑈ଵ, 𝑈ଶ, . . . , 𝑈௉} The set of depots 𝑃 𝑃 < 𝑁 Number of depots 𝑈௜  𝑈௜ =  (𝑆௜, 𝑇௜, 𝐶𝑢௜, ʎ௜ఛ) Depot 𝑆௜ 𝑆௜ ⊂ 𝑆 Partition of bike stations set 𝑇௜ 𝑇௜ ⊂ 𝑇 Partition of trucks set 𝐶𝑢௜  Capacity ʎ௜ఛ ʎ௜ఛ: 𝑇௜ → 𝑆௜ Assignment function at the moment 𝜏 𝑆 =  {𝑆1, 𝑆2, . . . , 𝑆𝑀}  corresponds to the set of 𝑀  bike stations, with each station 𝑆𝑖 =  (𝑆𝑁𝑖, 𝑆𝐶𝑖) having several available bikes, SN, and a capacity for a maximum num-
ber of bikes to be parked, 𝑆𝐶. The number of available bikes inside a station is zero (as a 
minimum) or its total capacity (as a maximum): 0 ≤ 𝐵𝑠௜ ≤  𝐶𝑠௜. (2) 

We define station load as the ratio of present bikes over total capacity: 𝐿𝑠௜ =  𝐵𝑠௜𝐶𝑠௜, (3) 

This leads to the property: 0% ≤ 𝐿𝑠௜ ≤ 100%. (4)

Using this property, we can define both states of a bike station that are avoided by 
rebalancing operations: 𝐵𝑖𝑘𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑠௜ 𝑖𝑠 ൜𝑒𝑚𝑝𝑡𝑦, 𝑤ℎ𝑒𝑛 𝐿𝑠௜ < 10%𝑓𝑢𝑙𝑙,              𝑤ℎ𝑒𝑛 𝐿𝑠௜ > 90%  . (5) 

If a bike station receives rebalancing, the evolution of the number of available bikes 
is as follows: ∆𝐵𝑠௜ = 𝐵𝑠௜(𝜏) − 𝐵𝑠௜(𝜏 − 1), (6) 

where ∆𝐵𝑠௜ is the variation in the number of bikes and 𝜏 is the moment when the re-
balancing operation occurs. 

Based on the above relation, the following property is derived: |∆𝐵𝑠௜| ≤ 𝐶𝑠௜. (7) 𝑇 =  {𝑇1, 𝑇2, . . . , 𝑇𝑁}  corresponds to a set of 𝑁  trucks, 𝑁 <  𝑀 . Each truck 𝑇𝑖 = (𝑇𝑁𝑖, 𝑇𝐶𝑖, 𝐽𝑖) has a number of stored bikes (𝑇𝑁), a capacity (𝑇𝐶), and a job assigned to it: 𝐽𝑖 =  (𝑆𝑖, 𝐽𝑇𝑖 , 𝐽𝑁𝑖). This specifies what station to rebalance (𝑆𝑖), what rebalancing type to 
apply (𝐽𝑇𝑖 ∈  {“𝐼𝑛𝑠𝑒𝑟𝑡”, “𝐸𝑥𝑡𝑟𝑎𝑐𝑡”}), and the number of bikes involved in the rebalancing 
job. The number of available bikes inside a station is zero (as a minimum) or its total capacity 
(as a maximum): 0 ≤ 𝐵𝑡௜ ≤  𝐶𝑡௜. (8) 

We define a truck load as the ratio of the number of bikes over total capacity: 𝐿𝑡௜ =  𝐵𝑡௜𝐶𝑡௜ , (9) 

This leads to the property: 

τ
i : Ti → Si Assignment function at the moment τ

S = {S1, S2, . . . , SM} corresponds to the set of M bike stations, with each station
Si = (SNi, SCi) having several available bikes, SN, and a capacity for a maximum number
of bikes to be parked, SC. The number of available bikes inside a station is zero (as a
minimum) or its total capacity (as a maximum):

0 ≤ Bsi ≤ Csi. (2)

We define station load as the ratio of present bikes over total capacity:

Lsi =
Bsi
Csi

, (3)

This leads to the property:

0% ≤ Lsi ≤ 100%. (4)

Using this property, we can define both states of a bike station that are avoided by
rebalancing operations:

Bike station si is

{
empty, when Lsi < 10%
f ull, when Lsi > 90%

. (5)

If a bike station receives rebalancing, the evolution of the number of available bikes is
as follows:

∆Bsi = Bsi(τ)− Bsi(τ − 1), (6)

where ∆Bsi is the variation in the number of bikes and τ is the moment when the rebalancing
operation occurs.

Based on the above relation, the following property is derived:

|∆Bsi| ≤ Csi. (7)

T = {T1, T2, . . . , TN} corresponds to a set of N trucks, N < M. Each truck Ti =
(TNi, TCi, Ji) has a number of stored bikes ( TN), a capacity (TC), and a job assigned to it:
Ji = (Si, JTi, JNi). This specifies what station to rebalance (Si), what rebalancing type to
apply (JTi ∈ {“Insert”, “Extract”}), and the number of bikes involved in the rebalancing
job. The number of available bikes inside a station is zero (as a minimum) or its total
capacity (as a maximum):

0 ≤ Bti ≤ Cti. (8)

We define a truck load as the ratio of the number of bikes over total capacity:

Lti =
Bti
Cti

, (9)
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This leads to the property:

0% ≤ Lti ≤ 100%. (10)

If, at a moment in time τ, a truck tj performs rebalancing at a station si, the evolution
of the number of bikes is as follows:

∆Btj = Btj(τ)− Btj(τ − 1) = Bsi(τ − 1)− Bsi(τ) = −∆Bsi. (11)

The interaction between rebalancing type and internal variation of the number of
bikes is:

∆Bti

{
> 0, i f JTi = “Extract”
< 0, i f JTi = “Insert”

. (12)

U = {U1, U2, . . . , UP} corresponds to a set of P depots, P < N, which provide the
following amenities for trucks: parking and bike loading or unloading. Each depot
Ui =

(
Si, Ti, Cui,
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This leads to the property: 

τ
i
)
, has a capacity Cui of stored bikes. The depot is assigned to a truck

belonging to the partition Ti ⊂ T and to a bike station to rebalance. This bike station
belongs to the partition Si ⊂ S, according to the assignment function
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This leads to the property: 

τ
i : Ti → Si , at a

given time τ.
The capacity of a depot is set using the following formula:

Cui = ∑
j

Csj·σSi (j)·σR(j), (13)

where Csj was already defined as the capacity of the station sj.
σSi (j) and σR(j) are functions defined as follows:

σSi (j) =

{
1, sj ∈ Si

0, else
, (14)

and respectively,

σR(j) =

{
1, Lsj < 10% OR Lsj > 90%
0, else

, (15)

So, σSi is used to select only stations that are part of the partition, including the
assigned depot. In contrast σR(j) are used to select only stations that needed rebalancing.

Since the depot size is not adjusted each time, a new rebalancing operation happens,
eventually modifying the result of the formula for capacity. A worst-case size was deter-
mined based on the collected data. In this way, we eliminate the non-deterministic σR,
by oversizing the depot. The worst-case size was defined as the maximum percentage
of stations needing rebalancing, weighted by capacity. By applying the depot capacity
formula to the worst-case scenario, we obtain:

Cui = 30%∑
j

Csj·σSi (j). (16)

In other words, the depot size is 30% of the cluster’s total capacity of all bike stations.
The depot’s capacity was computed such that at the start it is half full, containing an equal
number of bikes and parking lots.

The general assignment function,
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, represents a mapping between trucks and stations
that varies in time. The mapping can always be formulated as follows:
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=

a1
1 · · · a1

N
...

. . .
...

aK
1 · · · aK

N

, (17)
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where aτ
x represents the station index which is assigned to a truck index x at the moment τ.

N is the total number of trucks in the system, and K is the total amount of time samples
collected. Each assignment function
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τ
i over time corresponds to the τ-th row of a partition

(represented by the set of columns), defined as a cluster of
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Figure 5. General representation of the routing scheme around a depot. 

If multiple trucks are considered, a minimum duration is required for each individual 
route (duration objective), while at the same time achieving a uniform allocation of tasks 
among trucks (uniformity objective). 

Figure 4. Truck to station assignment: general (
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We assume we have a fixed number of trucks that ensure the rebalancing, as described
by the subset T. A rebalancing activity has two steps:

− transport to a station.
− extract or insert bikes into the station.

Similarly, each truck has a variable number of bikes and a fixed capacity. Furthermore,
like the bike stations, a truck can be empty/full, in which case it loses the flexibility to
balance stations for both types of demand; a full truck can only insert bikes at empty
stations, and an empty truck can only extract bikes from full stations. This loss of flexibility
translates to two possible adverse outcomes: some stations will experience long periods
of being full/empty, threatening the promising prospects of the system being used; truck
travel distance is increased because initial rebalancing opportunities are restricted.

To restore the truck flexibility, we have a fixed number of local depots, described by
the subset U, each of which is always able to provide or extract bikes from trucks. Therefore,
in this situation, a truck will go to the bike station through a depot. If this number of depots
is high enough and they are correctly spatially distributed, it is more economically feasible
for a truck to go through the depot instead of rejecting the order and requesting a new
order for a different bike station.

The bike stations and trucks are clustered around the depots, as shown in Figure 5.
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The bike stations are spatially clustered around the depots. Two steps of decision-
making are associated with each cluster: first, a sorting operation is performed, resulting
in a list of all bike stations that need rebalancing; then, each element of the sorted list is
assigned to a truck.
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The result of the decision process consist of a set of routes allocated to trucks:
If multiple trucks are considered, a minimum duration is required for each individual

route (duration objective), while at the same time achieving a uniform allocation of tasks
among trucks (uniformity objective).

The result of the decision process is summarized in the table presented below, in
Table 2:

Table 2. The table for truck order assignment.

Truck Index Station Origin Index Station Destination Index Number of Carried Units Service Type

1 585 731 21 Extract
2 115 841 26 Extract
3 613 572 15 Insert
2 841 433 20 Insert
3 572 948 21 Extract
3 948 359 10 Extract
1 731 204 19 Insert

Therefore, the presented rebalancing strategy has the required characteristics that
enable the method to be applied to BSS having dozens or hundreds of bike stations and is
characterized by dynamic behavior.

4. Materials and Methods
4.1. The Proposed Solution

A genetic algorithm, which provides the ordered list, was developed to solve the bike
station prioritization problem.

To obtain a better convergence to the final solution, a fuzzy logic control strategy,
derived from the work presented in [11], was employed to adaptively modify the mutation
and crossover probabilities during the optimization process.

Based on a list of rules, a truck-to-bike station assignment algorithm was conceived to
solve the assignment component of the problem.

The bike station parameters were extracted from the Citi Bike New York BSS, and all
the evaluations were performed in a real-world context. Moreover, due to the fact that
the algorithm has all the selected parameters independent of BSS parameters, it has the
potential to be applied to any other BSS.

More detailed aspects of the proposed solution are presented below.

4.2. The FLCGA Algorithm

This chapter presents the key components of the proposed method for bike rebalancing
activities that has been developed to obtain the ordered list (described in Section 3).

Figure 6 is a schematic representation of the method in which a static rules list spec-
ifying rebalancing constraints, along with dynamic traffic data, constitute the input of a
decision algorithm; the genetic algorithm is used to determine the order of the services.
Truck assignment rules are then applied to obtain the Truck Scheduling List.
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4.2.1. Rules List

The rules list gives all the details needed for the assignment of trucks to the subsequent
stations, as follows in Figure 7:
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4.2.2. Traffic Data

The traffic data is composed of information regarding three types of elements:

1. bike-sharing stations,
2. trucks (the rebalancing agents),
3. depots.

Figure 8 provides a visual interpretation of an example of the input data configura-
tion. The black numbers represent the station index, and the blue numbers represent the
station capacity.
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4.2.3. Decision Algorithm

The decision algorithm for the truck assignment, which complies with the rules list, is
expressed in Algorithm 1:
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Algorithm 1. The decision algorithm for truck assignment.

for station in S do
truck_assigned← FALSE
truck← get_first_element(T)
repeat

journey← get_journey_history(truck)
if MINIMUM = length(journey) then

pair(truck, station)
if able_to_fulfil_demand(truck)

route← distance(truck, station)
else

route← distance(truck, terminal) + distance(terminal, station)
end
journey← journey + route
update_journey_history(truck, journey)
truck_assigned← TRUE

else
truck← get_next_element(T)

end
until truck_assigned = TRUE

end

The algorithm considers it a special event when the truck misses its capacity to directly
serve the next bike station. The additional visits to the depot will lead to an increase in the
total cost of the trip.

4.2.4. Genetic Algorithm

The block diagram of the FLGCA proposed for the bike-sharing rebalancing problem
is given in Figure 9:
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The diagram contains two main parts, corresponding to the genetic algorithm (GA)
and the fuzzy-logic controller (FLC).

The controller dynamically adjusts the crossover and mutation probabilities for the
next generation based on the statistics of the current candidate solution.

The result of the FLCGA is a cost-effective way to serve bike stations that need rebalancing.
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Additional details about the components and their roles will be presented in the
following chapters.

4.2.5. Crew Scheduling List

The assignment information attached to the execution order is obtained as a final result
of the method. In these conditions, it must be mentioned that, at the output of FLCGA, it is
not specified how the scheduling list will be partitioned to be distributed to the trucks.

Figure 10 presents a simplified interpretation of the output of the proposed solution.
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The crew scheduling list is a numerical mapping of commands, where an individual
element represents a rebalancing activity at a specific bike station.

4.3. GA Parametrization

This section presents details regarding the internal functionality of the genetic algorithm.

4.3.1. Population Initializer

The chromosome of the GA stores sequences of indexes and represent the order in
which the stations need rebalancing. Therefore, each chromosome stores a sequence of
instructions given to a set of trucks, decided which truck will visit which bike station, as
exemplified in Figure 11.
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Further increasing the population size above 50 chromosomes did not improve the
fittest candidate solution, so it has been decided to keep the population size at 50 individuals.

Initialization was performed by randomly generating permutations of station indexes.

4.3.2. Fitness Function

The fitness function model evolved from the initial idea to its final form as follows.
When the instruction chain is completed by a single truck, the efficiency score is

increased at each instruction by the number of bicycles served and decreased by the
distance traveled:

f (T, S) =
N

∑
i=1

ri
di,i−1

, (18)

where f is the function that describes the efficiency score; parameters T and S correspond
to the vector of available trucks T1, . . . , Ti, . . . , TM, respectively, the vector of rebalanced
stations S1, . . . , Si, . . . , SN ; N is the number of trips; i is the index of the current trip; ri
corresponds to the number of bikes transported; di,i−1 is the distance travelled between
the previous station served and the current station served; d1,0 is the distance travelled
between the depot and the first station.
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When more than one truck executes the chain of instructions, there is a difference
between the previous instruction received by the truck (k(i)) and the last instruction of the
general chain (i− 1):

f (T, S) =
N

∑
i=1

ri
di,k(i)

. (19)

To calculate this efficiency score, all rebalancing instructions are ordered chronologi-
cally, regardless of which truck executed them. For each direct trip, the distance (di,k(i)) is
between the bike station for which the previous instruction was given and the bike station
corresponding to the current instruction (index i). The distance is stored at the same time
as the number of bikes served (ri).

In the case in which a truck is considered to have a reduced capacity, it will go through
the depot to adjust its load. This is expressed as follows:

d(i, j) =

{
di,j, truck has enough capacity
di,0 + d0,j, otherwise

. (20)

Thus, the relation can be rewritten to take this into account:

f (T, S) =
N

∑
i=1

ri
d(i, k(i))

. (21)

However, if the time constraint is introduced, the expression of the fitness function
will be accordingly modified:

f (T, S) = min
x

N

∑
i=1

ri·σ(x, i)
d(i, k(i))

, (22)

where σ is the assignment function for instructions to trucks:

σ(x, i) =

{
1, truck x executed instruction i
0, else

. (23)

The efficiency score has been calculated based on the concentration of services over a
minimum distance.

To avoid the situation in which stations with low profitability will be prone to being
ignored, a scaling factor is added based on the percentage of bikes whose orders have
been fulfilled.

f (T, S) =
∑N

i=1 ri

R
·min

x

N

∑
i=1

ri·σ(x, i)
d(i, k(i))

, (24)

where R is the total system demand, expressed as the number of bicycles to be relocated by
all trucks.

In order to obtain immunity to noise or sudden variations in bike numbers, the fitness
function becomes:

f (T, S) =
∑N

i=1 ri

∑N
i=1 di,i−1

. (25)

For several trucks, the formula will be accordingly modified:

f (T, S) =
∑N

i=1 ri

∑N
i=1 d(i, k(i))

. (26)
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The objective of a uniform distribution of tasks for each truck is reflected as follows:

f (T, S) =
∑N

i=1 ri

max
x

(
∑N

i=1 d(i, k(i))·σ(x, i))
. (27)

To reflect the situation where there is unsatisfied rebalancing demand, the model is
adapted accordingly:

f (T, S) =

(
∑N

i=1 ri

)2

R·max
x

(
∑N

i=1 d(i, k(i))·σ(x, i))
. (28)

The final version of the fitness function is formulated as follows:

f (T, S) =
∑N

i=1 ri·σ(i)
max

i
Di

. (29)

where T and S correspond to the vector of available trucks T1, . . . , Ti, . . . , TM, respectively,
and the vector of stations to be rebalanced S1, . . . , Si, . . . , SN . ri denotes the number of bikes
added or subtracted for Si rebalancing. In contrast, Di is the total sum of travelled distances
of Ti.

Before setting this fitness function as final, other candidates were considered, most
notably being:

f (T, S) = min
i

∑N
i=1 ri·σ(i)

Di
. (30)

4.3.3. Selection

The binary tournament was the chosen selection method. It is less biased for individu-
als with higher fitness functions. Runtime and memory allocation efficiency are ensured by
the avoidance of sorting the individuals. Furthermore, this method is usually preferred in
many genetic algorithms for crew scheduling [11]. This selection method has the following
steps: randomly select two individuals from the population and choose the fittest one
between the two, who will represent the first parent; to obtain the second parent, the
process is repeated.

4.3.4. Crossover and Mutation

Since a one- or two-point crossover is not guaranteed to avoid bike station index
duplicates in the offspring, which translates to an invalid route, the Order Crossover (OX)
method is used instead. The method can be described as follows. The alleles from a swath
of parent 1 are reordered in the order they appear in parent 2. The alleles from parent 2,
used for this ordering, are also reordered in the order they originally appeared in parent
1. Randomly selected chromosomes are paired for a crossover with an initial probability
of 80%. This probability will later change according to the fuzzy logic controller’s (FLC)
output.

An interchange of two random genes represents a mutation. Randomly selected
genes have an initial probability of being 30% mutated. This probability will later change
according to the FLC output.

4.3.5. Termination Condition

The genetic algorithm has two alternative stopping conditions: a maximum number
of iterations (100) is reached or the performance improvement hits a plateau. The plateau is
reached when the number of iterations for which the fitness function of the best individual
was not improved represents 35% or more of the total number of iterations. We call this
ratio the stagnation ratio (SR), and it is expressed as a percentage.
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Special attention has been given to the fact that the mutation and crossover probability
values are controlled when the SR is set. If SR is set to a low level, the opportunity for FLC
to react upon reaching a local solution is lost.

This kind of termination criteria, comprised of two conditions, one of a maximum
number of iterations and another of a plateau, is typical for applications in routing prob-
lems [57].

4.4. The Fuzzy Logic Controller-Based Approach

Similar to the algorithm devised in [11], both the crossover and mutation rates are
manipulated. Further fine-tuning was performed experimentally. Hence, a substantial
level of diversity can be achieved. The applied technique is based on a modification of the
algorithm proposed by [11] and is presented in more detail below.

Wang et al. [58] were among the pioneers who introduced FLC into GA to improve
performances. The crossover and mutation operations handle solution space exploitation
and exploration, respectively. A poor selection of parameters will reduce the diversity in
the population, leading to either premature convergence or no convergence at all. Mutation
rates that are too high will impede convergence, while those that are too low will lead to
no convergence.

Due to the fact that current work is aimed at NP-optimization on large BSS featuring
a high level of dynamicity, it is hard to extract crisp rules by observing the uncontrolled
GA behavior. Due to the ever-changing nature of customer demands, any set of crisp rules
would apply only to a limited number of stations or a limited time frame. Therefore, in
our case, it is needed to manipulate the GA parameters during runtime and to do it in a
manner that handles the uncertainty and imprecision, for which FLC is suited.

Running time and scalability of the algorithm are important due to real-time con-
straints and the size of the system, which can also grow in the future. Plerou et al. [59]
mention the FLCGA as the most efficient in solving problems of scheduling compared to
the standard GA. For multiple types of problems, the superiority of FLCGA over many
other algorithms in running time and scalability is highlighted in [60].

Below we will define each statistic measure computed to provide input/output for
the FLC.

4.4.1. FLC Inputs and Outputs

Related to the above description of the FLCGA, the inputs of FLC are obtained from
the GA attributes. These attributes are derived from the fitness function results.

The FLC inputs are as follows: CF is the increase in the fitness function from one
iteration to the next, and VF is the variance of the fitness function inside the population
from the current iteration. At the same time, UF represents the number of iterations for
which the fitness function was not improved.

CF and VF have the following formulas:

CF =

(
Costbest(t−1)

Costbest(t)
− 1

)
·100%, (31)

VF =
Cost(t)− Costbest(t)

Costbest(t)
. (32)

where Costbest(t) represents the inverse of the fitness function of the best candidate of
generation t. A candidate can be called the best when it has the highest fitness value
compared to the rest of the same generation.

The FLC outputs, ∆pm and ∆pc, represent the amount of change in the mutation and
crossover rates, respectively.
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4.4.2. Membership Functions

The fuzzy rules applied are derived from those presented in [11]. Three linguistic
variables {Low, Medium, and High} are used. The corresponding membership functions
for the fuzzification of the input and output variables of the controller can be visualized in
Figure 12. After computing the parameters and performing centroid defuzzification, the
controller sends to the genetic algorithm the new mutation and crossover rates. These are
applied to generate the latest iteration of the algorithm.
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The values of control parameters ∆pm and ∆pc are obtained by applying if-then
fuzzy [11] rules, for example:

If CF = High and UF = Low→ ∆pm = Low and ∆pc = High.
If UF = High and VF = Medium→ ∆pm = High and ∆pc = Low.

5. Results
5.1. Quick Overview

An example of routes assigned to trucks resulting from running the application for a
subsystem comprised of five trucks and twenty stations is given below, in Table 3:
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Table 3. Routes and load factors.

Truck ID Route Route Length
[km]

Load Factor
[%]

1 0→ 7→ 16→ 4→ 20→ 0 14.34 72

2 0→ 17→ 23→ 12→ 0→ 15→ 9→ 14→ 0→ 3→ 2→ 0 13.80 86

3 0→ 6→ 10→ 8→ 0 16.96 53

4 0→ 11→ 19→ 13→ 18→ 0 15.35 35

5 0→ 1→ 0→ 5→ 0 12.55 64

Figure 13 shows the performance of the applied method by simulating 1000 possible
subsystems; the red line corresponds to the median value of the histogram. A subsystem
(cluster) is comprised of randomly chosen stations from the Citi Bike system.
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Each value added to the histogram corresponds to the final fitness value obtained for
each subsystem.

The convergence to the final solution for the median performance obtained can be
observed in Figure 14.
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Figure 14. Best fitness score evolution throughout multiple generations.

Each subsystem was generated by employing a window search through the data of
the geographical location (latitude and longitude) of bike stations. In this context, the
window search represents the random positioning of a fixed-size window on the map of
bike stations from the BSS. The window size has been chosen to capture a constant number
of stations. If a window covers more stations than desired, a random selection of residual
stations to be removed from the sample is performed. The procedure is exemplified in
Figure 15.
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5.2. Comparative Experimentation and Analysis of FLC

The experiments were repeated for different versions of the membership functions of
the FLC, considered FLC instances. The repetition is aimed at discovering the optimal FLC
instance, i.e., the one with the highest median fitness score.

Table 4 summarizes the results for the FLC instances.

Table 4. Results for the FLC instances.

Instance Median Fitness Score 10th Percentile 90th Percentile Standard Deviation

Inst0 88.32 10.36 107.22 17.09
Inst1 79.12 65.40 100.31 10.51
Inst2 12.44 2.33 20.14 5.11
Inst3 56.12 11.53 78.32 10.72
Inst4 90.32 30.78 189.64 52.18
Inst5 94.10 37.69 155.14 38.42
Inst6 92.13 37.65 155.27 35.60
Inst7 92.17 32.71 149.71 38.28
Inst8 93.29 33.14 169.31 55.16
Inst9 94.74 26.32 142.62 45.13
Inst10 94.85 21.16 158.34 46.45
Inst11 95.07 39.55 142.45 44.14
Inst12 95.22 44.08 168.97 47.31

By analyzing the results from Table 4, it can be observed that the fine-tuning of the
parameters of the membership functions led to a trend of an overall increase in performance.
There are two exceptions: instance Inst2 shows a massive drop in performance due to a
too-high threshold for large UF parameter selection. Instance Inst6 also features a slight
decrease in performance.

Since instance Inst4, a stable performance was reached (the median fitness score being
95% of the best median captured at instance Inst12).

Since instance Inst8, the choice of the parameters contributes to the reduction of the
standard deviation.

5.3. Scalability Analysis

In order to analyze the scalability for different numbers of stations that need to be
rebalanced, the average number of iterations of the genetic algorithm needed to reach
stability was stored. Stability is defined as the state related to the moment when the
performance score of the best individual remains greater than or equal to 97% of the final
value. The number of trucks has no influence over the speed of the genetic algorithm
because, under the presented method, the assignment of trucks is a subsequent operation
based on the already obtained results of the genetic algorithm.

As it can be seen in Table 5, the increase in convergence time, measured by the number
of generations, needs to scale up with the number of bike stations involved. For each
additional five stations, two extra iterations are required on average, i.e., an additional
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2.85% from the initial cluster size. Given that the FLCGA implementation consumes most
of the runtime, we can conclude that a constant 2.85% runtime offset for each consecutive
five stations provides good system scalability from this point of view. For example, if the
cluster size is increased 90-fold, from 10 stations to 900 stations (roughly the size of Citi
Bike New York), the runtime consumption will increase only 5-fold.

Table 5. The average speed of the genetic algorithm for different cluster sizes.

Number of Bike Stations The Average Speed of the Genetic Algorithm
[Number of Iterations]

10 70
15 72
20 77
25 78
30 82
35 81
40 83
45 85
50 86

5.4. Comparative Experiment and Analysis with Ant Colony Optimization

One of the classical approaches for this category of applications is Ant Colony Op-
timization (ACO) [61], which was chosen as the method to compare with. The same
experiments performed before were reproduced using ACO.

The relevant advantages of ACO, which make it suited as a reference for our applica-
tion, are its useability in dynamic applications, the fast discovery of a proper solution, its
inherent parallelism, and its efficiency when dealing with routing problems [62].

ACO was preferred over other traditional routing methods, like Open Shortest Path
First (OSPF) or Routing Information Protocol (RIP), because it uses less information storage,
causes less overhead, and reacts faster to system changes [63]. Information storage and
overhead are essential to be addressed because of the high number of stations involved.
A quick reaction to changes in the system state is also required given that the stations’
loads are ever-changing, potentially shifting the priority of rebalancing from one station
to another.

Moreover, ACO has higher sensitivity and specificity, i.e., better performance, com-
pared to other methods [64] for selection tasks.

ACO is a multi-agent probabilistic technique for obtaining a good path through graphs
inspired by real ants’ behavior [12]. Each agent, called an “ant”, will generate multiple
possible ways through several iterations. The best path obtained is selected at the end of
all iterations.

At each step of path construction, the ant will decide where to go next based on
previous decisions of the whole colony and a priori knowledge about the desirability of
each possible next move. This desirability score increases along with the size of the bike set
to be served and decreases for a longer distance to be covered:

ηij =
rj

dij
, (33)

where ηij is the desirability score of traveling from the current station (i ) to the candidate
station ( j); dij is the distance in between them and rj is the number of bikes to be served at
the station j.
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This a prior knowledge, combined with previous experience, gives the probability
information that the ant k, currently at station i, will travel to station j; it is expressed in the
following equation:

pk
ij(t) =

(
τα

ij

)(
η

β
ij

)
∑l∈S

(
τα

il
)(

η
β
il

) , (34)

where α and β specify the importance of the pheromone trail τij against the heuristic
information ηij; S is the set of all station indexes. The critical parameters were set as follows,
α = β = 1.

Once all the ants have found their solution, the pheromone trail is reinforced according
to the following formula:

τij ← (1− ρ)τij +
m

∑
k

∆τk
ij, (35)

where ρ is the pheromone evaporation coefficient, m is the number of ants, and ∆τk
ij is the

pheromone amount deposited by the kth ant:

∆τk
ij =


1

dij
∑

l∈S
rl ant k travelled from i to j

0 otherwise
, (36)

With rl and dij defined for Equations (3) and (4). The number of ants was set to m = 5,
the number of iterations was set to 100, and the evaporation coefficient was set to ρ = 0.5.

The method of validation of the proposed algorithm against the reference algorithm is
as follows:

1. For the same input data, a classical ACO algorithm is used to obtain the output in the
form of a sorted list of stations to be served in the same format;

2. The same fitness function presented in the previous chapters is used;
3. The performances are compared.

The obtained results prove that the FLCGA-based approach provides equal or superior
results, as shown in Figure 16.
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It can be concluded that the average performance increase is 57%. At the same time,
independently, ACO demonstrated a good performance.

The relative increase in performance was computed by using the following formula:

∆Per f (i) =
Per fFLCGA(i)− Per fACO(i)

Per fACO(i)
. (37)

where i represents the index of the random subset of the BSS; PerfFLCGA and PerfACO describe
the performance of the FLCGA and the ACO implementation, respectively.
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The detailed results for the whole set of experiments are summarized in Table 6a–d.

Table 6. (a) Performance of the FLCGA for different numbers of bike stations to rebalance.
(b) Performance of the ACO for different numbers of bike stations to rebalance. (c) Performance of
the FLCGA for different numbers of rebalancing trucks. (d) Performance of the ACO for different
numbers of rebalancing trucks.

Number of
Trucks

Number of
Bike Stations

Median
Fitness Score
[Bikes/km]

Standard
Deviation
[Bikes/km]

10th Percentile
Fitness Score
[Bikes/km]

90th Percentile
Fitness Score
[Bikes/km]

Cumulative
Distance of
Rebalancing
Routes [km]

(a)

2 10 9.52 2.33 4.4 16.89 39.72
2 15 11.9 3.01 4.74 20.49 50.94
2 20 13.85 4.28 5.16 23.63 60.64
2 25 15.52 5.82 5.43 28.07 69.83
2 30 17.347 6.77 5.21 30.12 77.53
2 35 18.15 8.41 5.84 33.02 87.28
2 40 19.03 7.22 6.19 34.14 95.01
2 45 19.78 8.95 6.71 32.45 101.36
2 50 20.41 8.36 6.55 37.05 105.43

(b)

2 10 5.91 1.06 4.18 10.17 52.27
2 15 7.38 1.59 4.21 12.36 78.21
2 20 9.79 1.67 4.71 12.78 78.39
2 25 10.29 3.99 3.78 15.74 104.47
2 30 12.58 3.35 4.57 16.91 109.5
2 35 13.07 3.69 4.58 17 134.73
2 40 12.69 3.22 5.24 17.83 114.38
2 45 11.96 2.83 5.2 18.66 139.9
2 50 14.34 4.09 5.82 18.91 134.86

(c)

2 50 20.41 8.36 6.55 37.05 105.43
3 50 33.79 15.97 10.29 62.75 114.75
4 50 33.85 17.94 9.42 67.19 135.73
5 50 35.72 18.36 9.13 69.37 147.51
6 50 40.21 17.53 12.9 71.59 166.84
7 50 42.47 19.61 11.53 73.71 185.97
8 50 45.93 20.03 13.87 78.26 203.48
9 50 43.3 20.84 12.58 75.28 213.39
10 50 44.63 22.56 14.39 78.04 231.62

(d)

2 50 14.34 4.09 5.82 18.91 134.86
3 50 25.3 14.86 8.26 49.98 144.22
4 50 28.74 16.11 7.93 51.52 163.18
5 50 31.3 15.52 7.49 63.74 177.76
6 50 34.34 13.7 11.19 53.98 213.99
7 50 38.08 18.38 8.96 58.22 251.56
8 50 35.21 20.71 13.03 65.58 253.67
9 50 39.8 19.75 10.1 63.77 251.59
10 50 38.68 18.29 12.9 66.23 292.42

By analyzing the presented results, it can be concluded that the performances of
FLCGA remain consistently higher than those of ANT for each experiment. The standard
deviation of ANT results is slightly better, but the median version of FLCGA is even more
significant, compensating for the expected deviation loss.
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By increasing the number of bike stations, we observe that the standard deviation
of both FLCGA and ANT results is growing faster than the median performance, but
not significantly.

An increase in median performance exists when increasing either the number of trucks
or bike stations. By keeping the cluster area fixed, the density of resources is increased,
i.e., the routes for rebalancing become shorter. Moreover, as expected, cumulative route
distance and the median fitness score are growing.

5.5. Comparative Experiment and Analysis with Harris Hawks Optimization

HHO [13] was implemented and evaluated against the same dataset and scenarios as
for the other algorithms included in this paper.

HHO was included in the proposed set of algorithms considered in our work because it
has proven superiority over other large-scale applied metaheuristic algorithms considering
accuracy and speed in the case of real-world optimization problems [65]. Moreover, HHO
shows promising results for problems that feature a large number of dimensions [13], this
algorithm being suited for applications where scalability is demanded.

Both phases of HHO, the exploration phase and the exploitation phase, are inspired
by the real-world behavior of hawks hunting. The exploration phase corresponds to
randomly searching for prey, while the exploitation phase corresponds to capturing the
prey by exhaustion.

During the exploration phase, the model of the strategy of how hawks detect the prey
by perching on a random tree (Xrand) is:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5

(X prey(t)− Xm(t)
)
− r3(LB + r4(UB− LB)) q < 0.5

, (38)

where X(t) and X(t + 1) are the positions of the hawks in the current and, respectively,
next iteration; Xrand(t) is the position of a randomly selected hawk; Xprey(t) is the position
of the prey; Xm(t) is the average position of the hawks in the current iteration; r1, r2, r3, r4
and q are random numbers inside (0, 1); LB and UB are the lower and upper bounds of
the variables.

The algorithm will transition from the exploration phase to the exploitation phase
based on the escaping energy of the prey, modelled as:

E = 2E0

(
1− t

T

)
(39)

where E represents the escaping energy of the prey; E0 corresponds to an initial state of
energy randomly changing its value inside the interval (−1, 1); t is the current iteration,
and T is the maximum number of iterations.

Once the exploitation phase begins, different encircling strategies, so called besieges,
are employed from the following set: soft besiege, hard besiege, soft besiege with progres-
sive rapid dives, and hard besiege with progressive rapid dives. The selection of the type of
besiege is conditioned by escaping energy, E, and the change of prey escaping, r, randomly
changing values in the interval (0, 1).

In the context of HHO, two parameters of the method—the number of search agents
(hawks) and the maximum number of iterations—were decided according to the needs of
our application. Several deviations from the classical setting of parameters (30 hawks, 500
maximum number of iterations) were employed for the experiments before it was decided
that for our application, 32 hawks and 562 maximum number of iterations lead to the best
observed performance.

To compare the performances of FLCGA and HHO algorithms, an already defined set
of experiments was performed. The obtained results are summarized in Table 7.
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Table 7. (a) Performance of the FLCGA for different numbers of bike stations to rebalance.
(b) Performance of the HHO for different numbers of bike stations to rebalance. (c) Performance of
the FLCGA for different numbers of rebalancing trucks. (d) Performance of the HHO for different
numbers of rebalancing trucks.

Number of
Trucks

Number of
Bike Stations

Median
Fitness Score
[Bikes/km]

Standard
Deviation
[Bikes/km]

10th Percentile
Fitness Score
[Bikes/km]

90th Percentile
Fitness Score
[Bikes/km]

Cumulative
Distance of
Rebalancing
Routes [km]

(a)

2 10 9.52 2.33 4.40 16.89 39.72
2 15 11.90 3.01 4.74 20.49 50.94
2 20 13.85 4.28 5.16 23.63 60.64
2 25 15.52 5.82 5.43 28.07 69.83
2 30 17.347 6.77 5.21 30.12 77.53
2 35 18.15 8.41 5.84 33.02 87.28
2 40 19.03 7.22 6.19 34.14 95.01
2 45 19.78 8.95 6.71 32.45 101.36
2 50 20.41 8.36 6.55 37.05 105.43

(b)

2 10 7.36 2.01 3.52 12.40 45.14
2 15 10.30 5.37 4.11 18.66 55.28
2 20 14.52 5.21 4.95 26.84 56.06
2 25 14.98 5.53 5.89 27.38 74.72
2 30 15.31 5.77 5.72 26.29 82.61
2 35 17.20 8.37 6.49 31.44 90.93
2 40 18.57 8.88 6.06 33.26 96.90
2 45 20.58 9.31 6.29 33.56 98.34
2 50 22.82 9.96 8.17 39.81 100.38

(c)

2 50 20.41 8.36 6.55 37.05 105.43
3 50 33.79 15.97 10.29 62.75 114.75
4 50 33.85 17.94 9.42 67.19 135.73
5 50 35.72 18.36 9.13 69.37 147.51
6 50 40.21 17.53 12.90 71.59 166.84
7 50 42.47 19.61 11.53 73.71 185.97
8 50 45.93 20.03 13.87 78.26 203.48
9 50 43.30 20.84 12.58 75.28 213.39
10 50 44.63 22.56 14.39 78.04 231.62

(d)

2 50 22.82 9.96 8.17 39.81 100.38
3 50 32.35 14.22 10.43 60.72 119.68
4 50 35.61 18.90 10.05 69.47 132.09
5 50 38.17 17.50 11.86 68.38 143.28
6 50 40.93 18.00 13.36 70.99 165.97
7 50 44.32 20.26 12.94 73.55 180.54
8 50 46.83 21.42 14.79 80.21 200.69
9 50 47.05 23.23 17.41 78.71 205.80
10 50 48.89 23.17 16.48 80.30 220.66

HHO shows better scalability compared to FLCGA, considering the growth rate of
the median fitness score when the number of bike stations increases. The data spread,
described by the ratio of standard deviation over median score, is similar for HHO and
FLCGA. HHO was always stable, while FLCGA showed only one instance of instability in
the scenario of nine trucks and fifty bike stations; stability is defined here as the compliance
to a consistent increase in the median fitness score when the number of trucks is increased.
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Overall, FLCGA is performing better for scenarios featuring a low number of bike
stations, while HHO demonstrated superior performances for scenarios with a high number
of bike stations.

5.6. Comparative Experiment and Analysis with Tabu Search Algorithm

The same dataset, scenarios, and evaluation strategy as for the other algorithms
included in this paper were used for the comparative evaluation of performance when
TSA [14] was included in this study.

The demonstrated ability to provide good-quality solutions to CVRP in a feasible
calculation time [66] is the reason for including TSA in the set of alternative algorithms
considered. Other relevant advantages of TSA are adaptability, simplicity, robustness, and
accuracy [42].

Moreover, by selecting TSA, we have included a deterministic algorithm in the set of
algorithms selected for comparison purposes.

The TSA methodology and selected parameters can be briefly described as follows in
Figures 17 and 18:
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Table 8a–d contains relevant results considering the usage of FLCGA and TSA under
different scenarios.

Based on the above results, the data spread, as reflected by the ratio of standard
deviation over median score, is higher for TSA than FLCGA, showing that TSA is less
robust in this respect. According to the expectation that the median score increases when
the resource number increases, the behavior of FLCGA and TSA is similar. Even though
TSA proved to provide acceptable results, in almost all scenarios, FLCGA shows greater
median performance values than TSA.
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Table 8. (a) Performance of the FLCGA for different numbers of bike stations to rebalance.
(b) Performance of the TSA for different numbers of bike stations to rebalance. (c) Performance
of the FLCGA for different numbers of rebalancing trucks. (d) Performance of the TSA for different
numbers of rebalancing trucks.

Number of
Trucks

Number of
Bike Stations

Median
Fitness Score
[Bikes/km]

Standard
Deviation
[Bikes/km]

10th Percentile
Fitness Score
[Bikes/km]

90th Percentile
Fitness Score
[Bikes/km]

Cumulative
Distance of
Rebalancing
Routes [km]

(a)

2 10 9.52 2.33 4.40 16.89 39.72
2 15 11.90 3.01 4.74 20.49 50.94
2 20 13.85 4.28 5.16 23.63 60.64
2 25 15.52 5.82 5.43 28.07 69.83
2 30 17.347 6.77 5.21 30.12 77.53
2 35 18.15 8.41 5.84 33.02 87.28
2 40 19.03 7.22 6.19 34.14 95.01
2 45 19.78 8.95 6.71 32.45 101.36
2 50 20.41 8.36 6.55 37.05 105.43

(b)

2 10 6.05 2.07 2.88 10.32 50.14
2 15 7.90 5.12 3.57 13.42 74.41
2 20 10.22 6.11 3.83 18.99 76.06
2 25 10.08 6.35 2.57 16.38 108.44
2 30 11.43 5.93 4.20 18.30 112.47
2 35 14.14 6.91 5.66 20.41 130.81
2 40 15.19 7.88 4.56 23.62 140.64
2 45 17.21 8.77 6.03 27.54 149.51
2 50 18.94 9.85 7.00 29.16 156.28

(c)

2 50 20.41 8.36 6.55 37.05 105.43
3 50 33.79 15.97 10.29 62.75 114.75
4 50 33.85 17.94 9.42 67.19 135.73
5 50 35.72 18.36 9.13 69.37 147.51
6 50 40.21 17.53 12.90 71.59 166.84
7 50 42.47 19.61 11.53 73.71 185.97
8 50 45.93 20.03 13.87 78.26 203.48
9 50 43.30 20.84 12.58 75.28 213.39
10 50 44.63 22.56 14.39 78.04 231.62

(d)

2 50 18.94 9.85 7.00 29.16 156.28
3 50 27.31 13.22 8.42 38.25 142.51
4 50 29.46 16.13 9.46 54.60 160.56
5 50 32.81 16.45 10.86 64.46 175.78
6 50 36.52 17.04 11.43 68.33 208.22
7 50 40.40 19.11 10.44 72.28 243.59
8 50 42.82 19.41 12.83 74.47 262.45
9 50 43.25 21.31 14.41 73.56 253.42
10 50 45.89 24.18 16.08 72.32 290.88

5.7. Comparative Experiment and Analysis of Lost Customers and Unworking Time

For validation purposes, the system performances were compared considering three
scenarios: a system without rebalancing, ACO-based scheduled rebalancing, and FLCGA-
based scheduled rebalancing. As a performance indicator, the proportion of lost customers
was considered. The performance criteria were computed, based on analyzed traffic data,
for 25 stations in the system.
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The proportion of lost customers was chosen based on a literature review for a standard
metric for performance evaluation in the context of BSS rebalancing simulations with traffic
prediction based on historical data [18,67–70]. Below we present the definition of the
proportion of lost customers for a bike station:

αlost =
nlost

nlost + nutil
, (40)

where αlost is the proportion of lost customers, nlost is the number of bikes that could not be
rented because the station was empty or returned because the station was full, nutil is the
number of bikes that were either rented or returned from the station.

In Figure 19, the system performances for the 3 scenarios are plotted.
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While it is visible that FLCGA performs consistently better than ACO, both perfor-
mances are within acceptable limits. The proportion of lost customers is reduced tenfold
for the worst-performing station.

The unworking time, which has a greater dependency on system configuration, is also
helpful in evaluating the rebalancing performance [18]. The unworking time can be defined
as the total number of time intervals in which a station is either full or empty during a
rebalancing chain of orders. Figure 20 shows the unworking time for the same dataset
under the considered scenarios.



Mathematics 2023, 11, 1816 27 of 32

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 32 
 

 

 
Figure 19. Performance comparison: the proportion of lost customers (%). 

While it is visible that FLCGA performs consistently better than ACO, both perfor-
mances are within acceptable limits. The proportion of lost customers is reduced tenfold 
for the worst-performing station. 

The unworking time, which has a greater dependency on system configuration, is 
also helpful in evaluating the rebalancing performance [18]. The unworking time can be 
defined as the total number of time intervals in which a station is either full or empty 
during a rebalancing chain of orders. Figure 20 shows the unworking time for the same 
dataset under the considered scenarios. 

 
Figure 20. Performance comparison: unworking time (seconds). Figure 20. Performance comparison: unworking time (seconds).

According to customers’ interpretation mentioned in published studies [18], the in-
crease in performance is effective while the deviation is within acceptable terms.

5.8. Comparative Experiment and Analysis with a Standard Genetic Algorithm

To highlight the contribution of the inclusion of FLC in the presented method, SGA
was also evaluated for the same dataset as presented. The values of SGA parameters were
the same as for the FLCGA, except for the mutation and crossover probabilities and the
termination condition. While FLCGA features adaptive mutation and crossover rates, SGA
uses fixed rates. After several experiments, it was observed that the values of 90% for
crossover rate and 3% for mutation rate yielded the best overall results for our application.
This value pair is common in literature as a base for comparing modified GAs [71].

Due to the observed slower convergence, the maximum number of iterations was
extended from 100 to 400 for the termination condition of SGA.

A side-by-side performance overview of FLCGA and SGA is presented in Table 9.

Table 9. Performance comparison of FLCGA and SGA.

Number of
Trucks

Number of
Bike Stations

Median Fitness Score
[Bikes/km]

Standard Deviation
[Bikes/km]

The Average Speed of the
Genetic Algorithm
[Number of Iterations]

FLCGA SGA FLCGA SGA FLCGA SGA

2 10 9.52 3.28 2.33 1.36 70 192
2 15 11.90 4.10 3.01 1.54 72 210
2 20 13.85 3.14 4.28 1.32 77 232
2 25 15.52 6.83 5.82 2.78 78 259
2 30 17.347 9.27 6.77 3.93 82 288
2 35 18.15 8.52 8.41 2.59 81 316
2 40 19.03 9.04 7.22 4.14 83 305
2 45 19.78 8.30 8.95 3.95 85 360
2 50 20.41 9.63 8.36 3.66 86 347
3 50 33.79 9.41 15.97 3.44 86 331
4 50 33.85 11.37 17.94 3.70 86 376
5 50 35.72 16.42 18.36 5.11 86 365
6 50 40.21 17.51 17.53 5.54 86 381
7 50 42.47 16.02 19.61 4.86 86 351
8 50 45.93 18.88 20.03 6.30 86 357
9 50 43.30 19.59 20.84 6.17 86 382
10 50 44.63 22.83 22.56 6.94 86 349
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FLCGA shows better scalability compared to SGA, considering the observed growth
rate of average speed in given scenarios. A scenario refers to an individual pair of trucks
and bike stations. FLCGA is converging significantly faster than SGA and consistently
gives larger median fitness scores. The ratio of standard deviation over median score,
which defines the data spread, is also lowered for SGA. Moreover, SGA shows an unstable
growth in performance over the considered scenarios.

Overall, FLCGA provides superior results compared to SGA in any scenario.

6. Discussion

The strategy proposed was evaluated using real data collected from Citi Bike New
York. The data corresponds to the following system properties about each bike station:
location (latitude and longitude), capacity, and number of available bikes. The refinement
of the algorithm parameters was performed via fine-tuning of the FLC.

Due to the large geographical area covered by the BSS and specific traffic limitations, it
is impractical to employ a centralized strategy for rebalancing. Accordingly, a cluster-based
approach was considered to evaluate the performances of the presented method, with
a cluster being defined as a group of bike stations belonging to a delimited area. This
also includes a depot, and it is served by a number of trucks. In order to have a robust
evaluation, two aspects have been considered: cluster location and cluster dimension.

The cluster location is relevant because we have observed that the dynamic nature
of the bike station load over time is heterogeneous, i.e., different neighborhoods have
different degrees of traffic polarization. Moreover, the critical hotspots that need rebalancing
do not have stability regarding their geographical distribution over time. Considering
that the distribution is non-deterministic, in order to avoid bias in evaluation, a large
number of experiments have been conducted by randomly selecting 1000 locations for
evaluation purposes.

Regarding the cluster dimension, two characteristic values have been considered
during the evaluation: the number of bike stations that need rebalancing and the number
of trucks performing the rebalancing operation. Choosing a fixed dimension of the cluster
is not a realistic solution because insight into the actual performance of the algorithm under
different constraints could be lost. In order to prove the robustness of the proposed method,
a diverse palette of resources was considered. Thus, the number of bike stations in a cluster
ranged from 10 to 50, and the number of trucks ranged from 2 to 10.

Related to the above-discussed aspects, a large number of experiments were employed,
and a histogram analysis of aggregated results was used for deriving performance indi-
cators. Due to the already mentioned heterogeneity of rebalancing demands, median
performance, i.e., the 50th percentile of the histogram of results, was used as a performance
indicator. At the same time, a performance score as consistent as possible is desired; this is
reflected in the low deviation values of the overall performance compared to the median.
To capture performance consistency, different histogram properties were derived: standard
deviation, 10th percentile score, and 90th percentile score.

Several comparative experiments and analyses were performed in order to prove that
the results of the proposed method yield good results compared to already established
algorithms for solving CVRP. During analysis, algorithm behavior was highlighted by
discussing traits like convergence speed, data spread, score growth rate, and stable growth,
showing that our proposed method is robust in this analysis framework.

The method’s ability to maintain the expected performance regardless of how much the
controlled BSS clusters increase in size, or in other words, its scalability in our case, is one of
the most important performance indicators related to management and economic aspects.
In this respect, FLCGA outperforms ACO, TSA, and SGA but underperforms HHO.

Our method shows high-performance results in terms of the total distance traveled by
the trucks, given the median performance score and standard deviation observed during
comparative experiments and analyses with other traditional methods. In most of the
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scenarios, FLCGA was able to provide a shorter path of rebalancing than ACO, TSA, and
SGA. When compared to HHO, FLCGA specializes in smaller clusters.

In terms of real-time constraints, the implemented application copes with the genera-
tion of solutions in a manner that does not introduce latency in the process of rebalancing,
considering the trucks operating speed.

Following the conducted experiments, rebalancing with our method reduced the
unworking time by more than 85%, and the average rate of lost customers was reduced
from 21% to 2.5%, which translates to improved customer satisfaction.

The portability, i.e., that the method can be applied with success to any other BSS,
is theoretically ensured because the algorithm refinement was based on tuning the FLC
parameters instead of involving past real-world data collected for strategy refinement. The
practical experimentation needed to verify the portability of our method is a topic that can
be addressed by future research.

7. Conclusions

The work presents a method that has as its main purpose the rebalancing of the loads
of the BSS stations under the conditions of an accentuated dynamic behavior. The imposed
performances have tracked the essential aspects regarding the proper functioning of the
system as follows.

Compliance with the imposed time constraints was ensured. The application of the
method led to the minimization of the time of operation under the critical state of the
bicycle stations and the minimization of the rate of lost clients. Another consequence was
the achievement of a uniform allocation of tasks for each truck.

The effectiveness of the method has been tested in several case studies, using as a
starting point real data extracted from the Citi Bike New York BSS database. The ge-
netically modified algorithm presented in this method is one of the key elements that,
together with the inference rules, determined the shortening of the travel routes for the
rebalancing purpose.

The verification of the method involved the performance of some comparative studies.
Several scenarios, which included a variable size of the clusters and their location in differ-
ent areas, were considered for verification purposes and demonstrated the scalability of the
method. In this regard, under similar conditions, the behavior of the system for the same
case studies was evaluated, with the FLCGA-presented algorithm being replaced under the
method with the algorithms SGA, ACO, TSA, and HHO. The study of comparative aspects
was focused on two main directions: from the point of view of general algorithm perfor-
mance indicators, FLCGA registers a higher convergence speed than SGA, and FCLGA
provides the highest value of fitness function among the algorithms involved in the study
for small clusters but is outperformed by HHO for large clusters. If the performances are
evaluated from the point of view of an efficient logistic application, from the group of
algorithms used for comparison, only HHO proved to have better performances for clusters
with higher dimensions.

The overall results of comparative studies and the evaluation of performances recom-
mend that the method be considered for other similar applications.

In future work, other logistic applications could be developed, integrating the FLCGA
algorithm in their specific contexts.
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