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Abstract: This paper deals with a variant of the multifacility location-routing problem in urban areas.
The distribution network is modelled by an undirected graph, in which the nodes are split into a set
of pickup-delivery stations, a depot, and a set of customers. The arcs represent the minimum-cost
connections between nodes. A customer is assigned to a pickup-delivery station if he or she can reach
it at the lowest sustainable cost, i.e., on foot or by bicycle, without exceeding a predefined maximum
distance. The goal is to minimise the goods’ total delivery cost, including pollutant emissions. In
this perspective, both travel distance and means of transport play a key role. We present an exact
novel approach based on partitioning the research space of the solutions of a Mixed Integer Linear
Programming model. In the model, Boolean decisional variables, representing the selection of the
locations for the pickup-delivery stations, are fixed simultaneously with the solution of the classical
Travelling Salesman Problem. A branching constraint allows us to determine the route that serves
the selected pickup-delivery stations and the route, if any, that serves customers who do not go to
any pickup-delivery station. We conduct extensive experimentation to test the proposed approach’s
computational efficiency and analyse the optimal solution’s robustness with respect to the maximum
distance of customers from the stations, their activation cost and the pollutant emissions. The
effectiveness of the proposed approach in terms of solution quality and computation time is certified
by a set of computational tests based on randomly generated instances with up to 150 customers and
30 pickup-delivery stations. The application of the proposed exact method to a case study related
to a district of the city of Genoa (Italy) confirms its validity also for sustainably addressing real-size
urban delivery problems. An evaluation of incentives for customers using pickup-delivery stations,
possibly by implementing discount policies on orders, is also proposed.

Keywords: multi-facility location-routing problem; mixed integer linear programming model;
branching criteria; pickup-delivery; sustainable logistics

MSC: 90C11; 90B06

1. Introduction and Problem Definition

Nowadays, there is a growing concern for climate change, especially in terms of the
reduction of carbon emissions in urban and metropolitan areas. In this scenario, large
retail business-to-consumer companies operating within cities are experiencing a period
of great organisational change due to the need to supply customers in an increasingly
environmentally sustainable manner (Cano et al., 2022 [1]).

As cost minimisation is one of the primary goals of distribution logistics, much
attention in recent literature is focused on suggesting to interested companies how to limit
delivery costs while minimising pollutant emissions (Dekker et al., 2012 [2]; Bektaş et al.,
2019 [3]; Heshmati et al., 2019 [4]). In particular, taking into account also the social need
and the impact that the distribution of goods has on citizens, in the current decade, many
studies have been proposed aimed at sustainable urban mobility, especially from a smart
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city perspective (Nathanail et al., 2016 [5]; Behnke and Kirschstein, 2017 [6]; Carrabs et al.,
2017 [7]; Marakova et al., 2017 [8]; Cerulli et al., 2018 [9]; Strale, 2019 [10]; Cerrone and
Sciomachen, 2022 [11]). This concern is deeply considered in cities not only with high
populational density but also with a lack of parking spaces and pickup-delivery stations,
which will potentially lead to unnecessary vehicular movements and increase carbon
emissions (UNFCCC, 2015 [12]). For this reason, particular attention is devoted to the last-
mile distribution that is from 15% to 75% of the entire supply chain (Wang et al., 2022 [13]).
In fact, city centres represent major destinations for last-mile delivery and pickup activities,
with a very limited supply of commercial and industrial land available and accessible
for operating logistics facilities. Further, the time-sensitive delivery expectations by end-
customers make it even more critical to be able to ensure efficient delivery in the city
centre. Therefore, the problem of defining pickup and delivery stations (pds) plays a
crucial role in the development of today’s e-commerce companies. In fact, determining the
optimal location of the various goods to be delivered to end users allows for a reduction
in transport costs and, thus, in polluting emissions, thanks to the logistical advantages
of transporting, storing, and delivering goods. In addition, the use of pds enables the
company to expand the service covering network and to make deliveries more efficient,
allowing a greater number of users to receive the goods ordered, thanks to the pds, bringing
producer-consumer distances closer together and eliminating duplicate transport trips for
multiple deliveries in close areas (He et al., 2017 [14]; Deutsch and Golany, 2018 [15]).

Even if many similar problems share the same background features, different con-
straints and issues related to particular instances can be found in the literature concerning
distribution problems with pickup and delivery. The general pickup and delivery prob-
lem has been defined in Savelbergh et al. (1995) [16]. The operative scenario where
pickup and delivering are solved simultaneously in location routing problems is faced in
Karaoglan et al., 2011 [17], Zhou et al., 2016 [18]; Yu et al., 2022 [19]. The present work faces
a variant of the classic multi-facility location-routing problem in which pds are connected
to customers and a warehouse in an urban logistic network. Customers must go to a node
p ∈ P to pick up the required items. The number and the subset of the selected nodes of P
are chosen with the goal of minimising the total costs, including travelling and emission
ones. In this perspective, both travelling distance and means of transport (i.e., walking,
bike, car, electric vehicle, etc.) are considered. The fixed cost associated with the nodes
in P is given. A customer c ∈ C is assigned to a given node p ∈ P if it can reach p at its
minimum sustainable cost while not exceeding a predefined maximum distance between
them. As a further innovative aspect of this problem, customers are split into subsets Q
and Q′ such that C = Q ∪ Q′ and the pds are located to serve customers belonging to Q,
while the others are directly served from the warehouse.

A similar work is proposed in Bonomi et al., (2022) [20] where contrary to this present
work of ours, the authors deal with a Vehicle Routing Problem (VRP) in a direct graph
with unlimited lockers capacity; also, the objective function has different cost components.
We propose a Mixed Integer Linear Programming (MILP) model that clusters customers
in set Q according to their proximity to nodes in set P, with the twofold aim of minimis-
ing the number of pds needed and reducing total travel and emission costs in the urban
network. Clustering techniques have been widely used to solve location and routing
problems (Wu et al., 2022 [21]). To obtain exact solutions in a computationally efficient
way, we embed the MILP model in a branching scheme in which the space of solutions
is partitioned according to how the sets Q and Q′ are determined. Other branching al-
gorithms have been recently proposed in the literature to face location-routing problems
in different contests. Among others, Yıldız (2016) [22] proposed a branch and price ap-
proach for a location-routing problem involving refuelling stations, while Bao and Xie
(2021) [23] proposed two solution methods, both of which are of the partitioning type
but in the exact and approximate manners, respectively, for finding optimal locations for
charging stations of electric vehicles. Farzadnia and Lysgaard (2021) [24] addressed a
location–allocation–routing problem related to a school bus routing problem and used
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exact and heuristic algorithms which are developed based on a layered graph derived by
the partition of the node set into different clusters.

It is worth mentioning that the present research work comes from the strategic plan-
ning perspective of a company that operates in the e-commerce channel and is particularly
aware of the need to ensure sustainable urban distribution. Nowadays, there are many po-
tential customers who order various items on the Internet, and this phenomenon has been
increasing in recent years [25,26]. The aim is to minimise the mobility of polluting vehicles
dedicated to home delivery in urban areas, which are already affected by several polluting
factors. Therefore, the focus is precisely where the company can locate and activate the
pds to maximise the number of customers who are able to reach the pds closest to them to
pick up their goods, either on foot or by nonpolluting vehicles such as bicycles or electric
scooters. Of course, there may be customers located far from pds or who cannot reach them
sustainably and who therefore need to request a home service. In order to estimate the
cost of serving all these latter customers who are not assigned to pds, we determine the
lowest cost delivery circle, thus solving a Travelling Salesman Problem (TSP) that originates
and returns to the warehouse. It will be up to the company to determine, based on the
number and distance of customers to be served at home, which will be the best strategy to
adopt between making a single route for delivery, or multiple routes, thus solving a VRP
based on the fleet available. Figure 1 summarises a generic solution to the location-routing
problem we are dealing with. It can be seen that two different circuits depart from the
warehouse; one, the most external, which directly supplies customers at home; the other,
more internal, which supplies the pds, to which customers pick up the required goods on
foot or with environmentally sustainable vehicles. Isolated pds (represented by squares)
are those not selected.

Figure 1. An example of solution of the present location-routing problem.

It is worth emphasizing here the validity of the solution method, which highlights
how strategic it is to determine where and how many pds to locate with the objective of
maximizing sustainable mobility, showing in the two circuits shown in Figure 1, how the
customers to be served directly and those who will use the pds are distributed. Once the
company determines by which means of transport it will deliver goods to customers and
pds, the same approach proposed here can determine the optimal VRP instead of the two
circuits presently calculated. Moreover, by determining simultaneously the pds to activate
and the optimal tours to serve the selected pds and the customers who do not go to any pds
it is also possible to evaluate incentive policies or discounts for customers using pds, as it
will be explained later.

The organization of the paper is as follows. In Section 2, we introduce the proposed
exact approach together with the MILP model and the required notation. Section 3 reports
the results of different computational experiments. Most of them are performed based
on random instances representing an urban distribution network, assuming a higher
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concentration of users in the centre than in the periphery. The instances generated for our
tests differ in the number of customers and pds and their distance from each other, and
pollutant emissions, dependent on the vehicles used. In the last test, a real-size urban
delivery problem in the city of Genoa is presented. Finally, in Section 4, we give some
conclusions and outline future work.

2. The Proposed Exact Approach

To find the solution to the present pds location-delivering problem that minimizes
the total cost, given by the travelling and emission cost components, we propose an exact
approach consisting of a MILP model presented in Section 2.1, and successive partitioning
criteria described in Section 2.2. First, the required notation is here below reported.

• w is a node representing the warehouse from which all delivering routes depart.
• C is a finite set of customers.
• Q ⊆ C is the subset of customers served by pds.
• Q′ = C \Q is the subset of customers that will not be served by pds.
• Q̂ = C ∪ {w} is a finite set of customer plus the warehouse.
• P is a finite set of pds.
• P′ ⊆ P is the subset of activated pds.
• P̂ = P ∪ {w} is a finite set of pds plus the warehouse.
• rj ≥ 0 is the capacity of pj, ∀j ∈ P defined as the maximum number of customers it

can serve.
• aj ≥ 0 is the activation cost of pj, ∀j ∈ P.
• D is the maximum distance that a user is willing to travel by nonpolluting means (e.g.,

on foot or bikes).
• f is the fuel cost.
• e is the air pollution emission per km.
• dij is the distance to customer i from pds j.
• dil is the distance to customer i from customer l.
• djk is the distance to pds j from pds k.
• cij = e · 2dij is the air pollution cost of qi from pj, ∀i ∈ C, ∀j ∈ P.
• cil = dil · f · e is the service cost of qi from ql , ∀i, l ∈ Q.
• cjk = djk · f · e is the service cost of pj from pk, ∀j, k ∈ P̂.
• ui ∈ R+ is an arbitrary real numbers for the subtour elimination ∀i ∈ Q̂.
• uj ∈ R+ is an arbitrary real numbers for the subtour elimination ∀j ∈ P̂.

All parameters are given by the benchmark problem instances. The mathematical
programming formulation of the problem requires the following 4 decision variables,
defined as:

xij =

{
1 if customer qi ∈ C is served by pj ∈ P
0 otherwise;

yj =

{
1 if pj ∈ P is activated
0 otherwise;

til =

{
1 if the path from qi ∈ Q̂ to ql ∈ Q̂ is selected
0 otherwise;

sjk =

{
1 if the path from pj ∈ P̂ to pk ∈ P̂ is selected
0 otherwise;

2.1. The Proposed Milp Model

The objective function of the model aims to minimize the overall distribution costs
within an urban distribution network. In particular, it consists of the following 4 cost
components (Equation (1)):
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a. pollutant emission from customers to pds,
b. activation cost of the selected pds,
c. cost of the distance traveled to serve customers not served by pds,
d. and total distance traveled to refill the activated pds.

It is worth noting that in the computational tests that we will present in Section 3,
component (a) of the objective function (1) will have a zero contribution, setting the
pollutant emission produced by customers walking or cycling to their reference pds at 0. In
one experiment, however, this component will be taken into account by including the same
pollutant coefficient as the vehicles used by the distribution company to refuell pds and
non-pds users. In the latter case, the relative cost can be seen as a “saving” value on the
total refuelling cost, which can then be taken into account as an incentive for customers
to go directly to pds instead of opting for home delivery. This possible saving and its
computation will be analysed in Section 3. Then, the proposed model for solving the
problem under consideration is as follows:

MIN z = ∑
qi∈C

∑
pj∈P

cijxij + ∑
pj∈P

ajyj + ∑
qi∈Q̂

∑
ql∈Q̂

ciltil + ∑
pj∈P̂

∑
pk∈P̂

cjksjk (1)

Subject to the constraints:

∑
pj∈P̂

xij = 1 ∀qi ∈ C (2)

∑
qi∈C

xij ≤ rjyj ∀pj ∈ P (3)

dijxij ≤ D ∀qi ∈ C, ∀pj ∈ P (4)

∑
i∈C

tiw ≤ 1 (5)

∑
l∈C

twl ≤ 1 (6)

∑
ql∈Q̂|l 6=i

til = xiw ∀qi ∈ C (7)

∑
qi∈Q̂|l 6=i

tli = xlw ∀ql ∈ C (8)

ui + (|Q̂| − 1)til − (|Q̂| − 2) ≤ ul ∀i, l ∈ Q̂ (9)

∑
j∈P̂

sjw ≤ 1 (10)

∑
k∈P̂

swk ≤ 1 (11)

∑
pk∈P̂|j 6=k

sjk = yj ∀pj ∈ P̂ (12)

∑
pj∈P̂|j 6=k

skj = yk ∀pk ∈ P̂ (13)

uj + (|P̂| − 1)sjk − (|P̂| − 2) ≤ uk ∀j, k ∈ P̂ (14)

xij ∈ {0, 1} ∀i ∈ C, ∀j ∈ P (15)

yj ∈ {0, 1} ∀j ∈ P (16)

til ∈ {0, 1} ∀i, l ∈ Q̂ (17)

sjk ∈ {0, 1} ∀j, k ∈ P̂ (18)

Constraints (2) ensure that each customer qi ∈ C is either served directly by exactly
one pds pj ∈ P̂, to which it goes to pick up the goods it has ordered or is served in the home
delivery route that starts from the warehouse w.
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Constraints (3) ensure that each pds pj ∈ P cannot serve more customers than its
capacity rj. Constraints (4) impose that the distance between each customer and each pds
should not exceed the given maximum distance D. Constraints (5), (6), (10) and (11) ensures
that from node w must leave at most one outgoing and ingoing edge, for each customer
∈ C and pds ∈ P̂. The two different delivery tours of the goods are defined in the following
constraints. Indeed, constraints (7) and (8) are the classical TSP formulation involving each
customer ∈ C served by the warehouse and defining the partitioning between the set Q
and Q′. Constraints (12) and (13) are the classical TSP formulation involving each pds ∈ P̂.
More precisely, these constraints guarantee that each node must have only one outgoing
edge and only one ingoing edge, that is each node must have a predecessor node and a
successor node in the circuit. Constraints (9) and (14) are the Miller Tucker Zemlin (MTZ)
formulation for the subtour elimination constraints [27]. Finally, constraints (15)–(18) define
the decision variables.

2.2. The Partitioning Criteria

To obtain exact solutions of the proposed MILP model in a computationally efficient
way we embed it in a branching scheme in which its solution space is partitioned ac-
cording to how the sets Q and Q′ are determined. More precisely, we partition the set C
of customers by dividing it into two disjoint (nonoverlapping) subsets according to the
following conditions:

e. at least one customer does not go to a pickup station and is served directly by w;
f. no customers are served by w, that is each customer has a reference pickup station

close enough to pick up the ordered goods independently.

In the case (e) constraints (5) and (6) of the above model are modified as follows:

∑
i∈C

tiw = 1 (19)

∑
l∈C

twl = 1 (20)

where constraints (19) and (20) ensure that there is at least one customer served by the warehouse.
In the case ( f ), instead, we eliminate from the objective function the costs relating to

the customers served by w. Thus, we will have three cost components:

MIN z = ∑
qi∈C

∑
pj∈P

cijxij + ∑
pj∈P

ajyj + ∑
pj∈P̂

∑
pk∈P̂

cjksjk (21)

From the model described in the Section 2.1 we use the constraints: (3), (4) and (10)–(18)
and we modify the constraint (2) as follows:

∑
pj∈P

xij = 1 ∀qi ∈ C (22)

Constraint (22) is defined ∀j ∈ P; in fact, having no customers to serve from w it
guarantees that all customers go to a pds to pick up the ordered goods.

Then, the optimal solution of the problem is the best between the solution of the model
associated with the case (e), that is (1)–(4), (7)–(20) and the one associated with the case ( f ),
that is (3), (4), (10)–(16), (18), (21) and (22).

3. Computational Experimentations and Discussion of the Results

In this section, we present the results of the computational experimentation performed.
Tests were carried out with the aim of supporting the decision makers of companies op-
erating in the e-commerce to verify how the activation costs of pds, the distance between
customers and their nearest pds and the vehicle pollutant emission impact on the choice
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of pds number and location and consequently on the total cost of the pickup and deliv-
ery process. In the computational experiments reported in the first four subsections the
instances have been generated using a tournament method to obtain a greater density of
customers in the center than in the peripheral zones and considering the Euclidean distance
on a 3 × 3 km city area. In Section 3.5 a case study with data derived from a delivery
problem involving customers in a district of the city of Genoa (Italy) is presented. All test
have been run on a Windows Server 2019 Intel(R) Core(TM) i9-9820X CPU 10 cores, 20
thread, 3.30 GHz 3.31 GHz, 16 GB RAM (based in Italy). IBM ILOG CPLEX Optimization
Studio 20.1.0 has been used as mixed integer linear programming solver. A time limit
of 1 h have been set for solving each instance. We first performed tests by varying the
number of customers from 10 to 150 and the number of pds from 5 to 30. For each type of
these instances we generated the activation cost of the pds from 5 to 10 and their capacity
from 10 to 30. More specifically, information about the customers and pds of the instances
considered is shown in Table 1. Column headings of Table 1 are as follows. Type refers to
the type of instance considered; C is the number of customers; P the number of pds; Act is
the activation cost for each pds and Cap is the capacity of each pds.

Table 1. Definition of the instances of the problem for the first set of computational experiments.

Type C P Act Cap

1 10 5 5–10 10–30
2 20 5 5–10 10–30
3 50 5 5–10 10–30
4 50 10 5–10 10–30
5 100 10 5–10 10–30
6 50 20 5–10 10–30
7 80 20 5–10 10–30
8 100 20 5–10 10–30
9 120 30 5–10 10–30
10 150 30 5–10 10–30

In the first tests we estimated the cost of air pollution to be 2.27 e/vehicle per km,
as the average air pollution for land freight transport. Of course, this value may vary
depending on the type of vehicle, the load/weight of the vehicle, the fuel used and also
the type of city, whether urban or suburban [28]. In this paper, we assume that deliveries
are made by a light commercial vehicle (LCV), according to the standards used by the
European Union to denote a commercial transport vehicle with an authorized gross weight
not exceeding 3 tons. Due to the smaller size and lower carrying capacity of LCVs, their
fuel consumption averages about 8–10 L/100 km. We initially assumed the cost of fuel
consumption of the vehicle used by the company to be 0.1 e/L. Instead, as anticipated
in the previous section, we assume equal to zero the emission cost of moving customers
to/from pds, and thus null the component (a) of the objective function (1). Finally, the
maximum acceptable distance for customers to go directly to pickup the ordered goods at
a pds is set to 850 m. Table 2 reports the results obtained by solving the model reported in
Section 2.2 with different instances of the problem using the above settings. In particular,
Table 2 in each row shows the average results obtained by running 10 instances for each
type defined above. Among the 10 instances the data that change are the activation cost of
pds (5–10), the pds capacity (10–30), and the distance between customers and pds. Column
headings of Table 2 are as follows. Total Act Cost is the average of the activation cost of
the selected pds; Q̂ Cost is the average total cost to serve customers not served by pds;
P̂ Cost is the average total cost to refill all the activated pds; Obj is the average value of the
objective function (1) of the problem and CPU is the average computational time required
to find the optimal solution, expressed in seconds.
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Table 2. First computational test. Results of cost component values.

Type Total Act Cost Q̂ Cost P̂ Cost Obj CPU

1 6.28 29.01 9.22 44.52 0.16
2 12.74 32.27 14.98 60 0.19
3 19.51 80.76 19.22 119.5 33.93
4 23.71 46.02 22.38 92.12 0.9
5 40.04 53.54 33.17 126.76 15.86
6 27.31 29.79 26.48 83.59 7.61
7 36.98 31.28 33.2 101.47 60.7
8 45.22 26.57 37.34 109.13 538.22
9 51.22 15.44 43.60 110.28 1744.06

10 52.89 19.86 45.58 118.33 2004.56

Looking at the results in Table 2, in all types of instances we obtained an optimal
solution within the assumed maximum time of one hour. We can immediately see that
850 m is an ideal distance because a fair amount of pds are activated. More precisely, on
average 4.42 pds are activated, which manage to serve approximately 85% of the customers,
as can be seen from Table 3, where the average number of selected pds and the percentage
of served and not served customers by the pds (see columns Selected pds , PDS and W,
respectively), are reported. Moreover, having the remaining 15% of customers to be served
directly at home, we are therefore able to maintain an excellent balance of activation costs
and transportation ones and above all contain the costs in terms of sustainability that we
have included in the delivering cost.

Table 3. First computational test. Results of the selected pds and served customers.

Type Selected pds PDS W

1 0.9 55% 45%
2 1.8 74.5% 25.5%
3 2.6 70.6% 29.4%
4 3.2 84.4% 15.6%
5 5.3 90.7% 9.3%
6 4 90.8% 9.2%
7 5.3 93.75% 6.25%
8 6.1 95.9% 4.1%
9 7.3 98% 2%
10 7.7 98% 2%

After pointing out that the exact method described in Section 2 was able to find
the optimal solution for all the instances considered, it is important to emphasise how
the branching technique proposed in Section 2.2 resulted in a particularly significant
reduction in computational time compared to using only model (1)–(18). Figure 2 shows
the comparison of the computational time (second) required to find the optimal solution
of the instances in Table 2 to the model alone (dashed line) and to the entire partitioning
method (solid line), thus highlighting the efficiency of the proposed solution method. From
Figure 2, it can also be seen that for instances of type 1 and 6, the computational time
is lower than for the others, relative to the increase in their size. This is due to the very
favorable ratio of these instances between the number of customers and the number of
available pds.
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Figure 2. Comparison of the CPU time required by the model and the whole exact approach.

3.1. Tests with and without the Cost Component of Pollutant Emissions from Customer Mobility

As a next computational test, we select the first instance of each type used in Table 2
by including the component (a) in the objective function, respectively (1) and (21), of the
model related to the cost of pollutant emission of the customers personally going to collect
the ordered goods. In this analysis, we have assumed that customers use the same type
of vehicle of the company to directly supply customers from the warehouse. This allows
us to evaluate the saving between the cost of activating a pds and the delivery cost more
significantly. Table 4 shows the optimal value of the solution of the considered instances
when cost component (a) is not taken into account, and thus setting the emission cost to
zero. The same results are shown in Table 5 where, to the same columns of Table 4, column
Served C Cost reporting the objective function component (a) is added.

Table 4. Results of the first instance of each type considered in Table 2 without the cost component
(a) of the objective function.

Instance Total Act Cost Q̂ Cost P̂ Cost Obj

1 5.49 16.18 11.16 32.83
2 5.01 26.56 10.92 42.49
3 21.31 36.97 21.29 79.56
4 18.42 36.97 21.36 76.75
5 50.14 62.00 37.07 149.22
6 25.91 21.76 26.64 74.30
7 43.07 26.76 36.89 106.72
8 47.34 15.90 37.08 100.32
9 40.85 37.45 36.64 114.94
10 56.93 0.00 41.97 98.90

It can easily be seen that up to instance 6, there is no difference between the values
reported in Tables 4 and 5. In fact, if we do not consider the Served C Cost column of
Table 5, the values in the Obj columns of both tables are the same, and are related to the
same activation choice of the pds, as it is reported in Table 6. The column headings of
Table 6 are the same as those of Table 3.

Instead, in instances 7–10, we can see different values for not adding or adding,
respectively, in the objective function, the cost paid by customers going to pick up their
goods. More precisely, we can see that the model makes different choices in terms of
activating pickup-delivery stations in the two cases based on the number of customers
served. In fact, the model does not activate a pds if it serves a limited number of customers
compared to its capacity (Table 5), as this would be disadvantageous. Readers can observe
the opposite behaviour in Tables 4 and 6, where the model activates a pickup-delivery
station even if it only serves a limited number of customers compared to its capacity.
Significant, however, is the solution obtained in the case of instances 7 and 8, where the
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optimal solution corresponds to different choices between that made without the customer
transfer costs (Table 4) and that including them (Table 5). In particular, in the first case
one pickup-delivery station more than in the last case is activated. In fact, it is more cost-
effective to activate an additional pds (see Table 6), even if it serves only a few customers,
since the total cost is more sustainable anyway. An example of this case related to instance
7 is shown in Figure 3, where a pickup-delivery station is activated despite serving only
two customers.

Table 5. Results of the instances of Table 4 with all the cost components of the objective function.

Instance Served C Cost Total Act Cost Q̂ Cost P̂ Cost Obj

1 2.25 5.49 16.18 11.16 35.08
2 3.52 5.01 26.56 10.92 46.02
3 9.63 21.31 36.97 21.29 89.20
4 10.95 18.42 36.97 21.36 87.70
5 18.34 50.14 62.00 37.07 167.56
6 11.24 25.91 21.76 26.64 85.54
7 15.10 38.00 37.06 31.76 121.92
8 21.16 39.86 31.77 32.00 124.79
9 21.81 44.74 32.26 41.94 140.74
10 29.39 59.32 0.00 42.05 130.75

Table 6. Results of the selected pds and served customers.

Instance
Results Table 4 Results Table 5

Selected pds PDS W Selected pds PDS W

1 1 80% 20% 1 80% 20%
2 1 80% 20% 1 80% 20%
3 3 88% 12% 3 88% 12%
4 3 88% 12% 3 88% 12%
5 6 89% 11% 6 89% 11%
6 4 94% 6% 4 94% 6%
7 6 95% 5% 5 92.50% 7.50%
8 6 98% 2% 5 95% 5%
9 6 95% 5% 7 95.83% 4.17%
10 7 100% 0 7 100% 0

The opposite case occurs in the same instance shown in Table 5, where having added
the transport cost of customers to/from the pds, it is not convenient to activate an additional
pds when only two customers are served. In this case, in fact, it is preferable to serve
customers directly from the warehouse in the route shown in Figure 4. Thus, we can say
that the proposed exact approach tries to serve as many customers as possible from the pds,
within the maximum distance and capacity constraints. In particular, it evaluates whether
it is worthwhile to activate a pickup-delivery station even if the number of customers it
could serve is significantly lower than its capacity, thus preferring to serve them directly
within the route from the warehouse. That is why in instance 9, one more pds is activated
when the cost component (a) is considered (see Table 6).

For a more in-depth analysis of the company’s costs, we focus on instance 8, which
has a significant number of customers (100) and potential pds to be activated (20). For this
instance, we also considered the extreme case in which the company does not activate any
pds thus serving directly all customers at home in the delivery cycle departing from the
warehouse. According to Formula (23), in this case the optimal solution has a total cost of
z = 509.50 e, corresponding to the service cost of the customers from the warehouse given
by the third component (c) of the objective function (1).
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MIN z = ∑
qi∈Q̂

∑
ql∈Q̂

ciltil (23)

Note that in (23) Q̂ = C ∪ {w}, that is Q̂ includes all customers. However, note that
the activation of pickup-delivery stations for customers enables the company to achieve
considerable savings on the total cost. From the objective function (1) readers can note
that this saving is more than 300% when considering transport costs between pds and
customers (i.e., 124.79 e, from Table 5) and more than 400% (i.e., 100.32 e, from Table 4)
when considering them as zero, as they are carried out in a sustainable manner and with
zero polluting emissions. As a final discussion about the strategic location-routing decision
of the company, on the basis of the above considerations, in order to incentivise customers
to use pds to personally go to pick up the ordered goods by nonpolluting means, i.e., on
foot, by bicycle or with electric vehicles, the company could offer customers a discount on
the purchase price that could be in total at most equal to the percentage value of the savings
on the company’s cost, that is up to 100% of the total cost in the case of instance 8. In fact,
in this case, the company would still make a saving and above all guarantee a sustainable
urban distribution plan.

Figure 3. Example derived from Instance 7 from Table 4 without service cost of the customers.

Figure 4. Example derived from Instance 7 from Table 5 with service cost of the customers.

After analysing the costs and evaluating the hypothesis of the convenience of activating
pds to favour sustainable mobility and at the same time reduce total transport costs, we
conducted a computational experimentation to analyse the robustness of the optimal
solutions with respect to the maximum distance of customers from the pds, their activation
cost and the choice of vehicle used, in terms of fuel costs and polluting emissions. Based
on the results shown in Tables 4 and 5, for the next experiments we decided to use the
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instances of type 8 that gave us better indications for solving the problem while keeping
computation times affordable. More precisely, we kept the number of customers (100)
and pds (20) constant, while we considered variable values for the other parameters, as
shown in Table 1. The fuel cost per km is 0.1 e/L and the maximum distance allowed for
customers is 850 m as for the instances shown in Table 2. In particular, we performed new
tests varying the following characteristics:

1. the maximum allowed distance between customers and pds is arbitrary assigned
while pds activation costs and capacity are randomly assigned in a given range. Fuel
and emission cost is constant (as for Table 2);

2. the emission cost is assigned depending on the type of vehicle, the fuel type and the
emission class, while activation costs and capacity of the pds are randomly assigned
in a given range. The maximum distance is constant (as for Table 2);

3. the pds activation cost is arbitrary assigned, the capacity is randomly assigned in a
given range and the fuel cost, emission cost and maximum distance are constant (as
for Table 2).

Each value is generated randomly within the set range using the standard RNG
function of the Java language random(). The results and the related analysis of these
experiments are reported in Sections 3.2–3.4, respectively.

3.2. Max Distance Test

This test considers the variation of the maximum distance between customers and pds.
We refer to 5 different cases in which we assign the following values (Max Dist in column
heading of Table 7): 333, 500, 600, 750 and 1000 m, respectively. The purpose of the test is to
investigate the number of activated pds as a function of the distance. Table 7 in each row
shows the average values obtained by running 10 instances for each distance defined above,
showing the relevant data and results that are relative to such tests. As we may notice, the
distance increase corresponds to a reduction of the number of activated pickup-delivery
stations, as shown in Table 8. Consequently, the overall cost for the refueling of pds (P̂)
decreases. Note also that the total cost of directly supplying customers who exceed the
maximum distance decreases.

Table 7. Maximum distance variation costs.

Max Dist Act Q̂ Cost P̂ Cost Obj Gap CPU

333 60.59 240.53 45.57 346.69 1% 2574.04
500 64.68 104.17 48.21 217.06 1% 2859.83
600 59.92 67.39 46.33 173.64 1% 2400.13
750 48.55 39.51 39.37 127.43 0% 312.41

1000 34.63 23.01 30.17 87.82 0% 19.57

From a computational time point of view, readers can see that for the first 3 instance
types we have an average optimality gap of 1%, since we were not always able to find the
optimal solution within the time limit of 1 h. Note that we assume as an optimality gap
the difference between the best solution found within 1 h by our proposed model and the
incumbent solution, that is the current feasible best solution found during the algorithmic
search procedure in the branching tree. Since 10 test instances are performed for each
distance, the average optimality gap is then obtained by averaging the optimality gap of
the 10 instances performed.

Finally, we can observe that as the maximum distance increases, the CPU time required
to find the optimal solution significantly decreases.
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Table 8. Selected pds and percentage of served customers depending on the distance.

Selected pds PDS W

7.8 53.6% 46.4%
8.3 80.7% 19.3%
7.9 88% 12%
6.5 93.5% 6.5%
4.7 96.6% 3.4%

3.3. Emission Cost Test

This new set of computational tests is designed to see how, if it ever is, the company’s
total delivering costs change as the type of fuel used, the size of the vehicle (light or
heavy vehicle), the pollutant emission class of the vehicle used, and the type of urban area
considered. Table 9 shows the different values considered in our instances, that summarise
the cost factors for air pollution used for calculating the health and other effects. Table 9
includes the cost factors for pollutants emitted in road transport, specifically in metropolitan
area, for different emission classes (see [28]).

Table 9. Pollutant emission cost (e-cent per vkm).

Vehicle Fuel Type Size Emission Class Metropolitan Area

LCV

Petrol

Euro 3 0.33
Euro 4 0.22
Euro 5 0.16
Euro 6 0.16

Diesel
Euro 4 3.13
Euro 5 2.69
Euro 6 2.19

Electric n.a 0.08

HGV Diesel Rigid ≤ 7.5 t
Euro 4 6.28
Euro 5 7.85
Euro 6 1.55

As can be seen from Table 10, the average pds (column Act) activation cost changes
little. In fact, from Table 11 we note that the average number of selected pickup-delivery
stations is 6 and the number of customers reaching the pds is 95.6%, while those served
directly are only 4.4%. Obviously, the costs of the Q̂ and P̂ paths change, as they depend on
the type of emission cost that is considered in the instances. In particular, the best solution,
both in terms of environmental quality and costs, corresponds to the scenario in which
the company uses electric vehicles to serve those customers who are unable to reach the
pickup-delivery stations. Instead, the worst situation occurs when a HGV (Heavy Goods
Vehicle) of Euro 5 diesel emission class is used. From a computational time point of view,
note that in all instances we were able to get the optimal solution in less than 13 min. In
fact, it can be seen from Table 10 that the test requiring the most computational time is the
one shown in the sixth row, for which 838.70 s, equivalent to 13 min, were needed to obtain
the optimal solution.
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Table 10. Emission cost variation per vehicle.

Emission Cost Act Q̂ Cost P̂ Cost Obj CPU

0.33 43.21 28.23 34.76 106.21 773.61
0.22 43.21 28.16 34.68 106.04 512.61
0.16 43.21 28.11 34.63 105.95 507.77
3.13 45.22 27.17 38.04 110.43 597.89
2.69 45.22 26.86 37.68 109.77 603.84
2.19 45.22 26.51 37.28 109.01 838.70
0.08 43.21 28.06 34.56 105.83 536.67
6.28 45.25 29.28 40.63 115.16 292.71
7.85 45.25 30.35 41.92 117.51 161.18
1.55 43.21 29.09 35.74 108.05 532.89

Table 11. Results of the selected pds and served customers depending on the vehicle type.

Selected pds PDS W

5.9 95.3% 4.7%
5.9 95.3% 4.7%
5.9 95.3% 4.7%
6.1 95.9% 4.1%
6.1 95.9% 4.1%
6.1 95.9% 4.1%
5.9 95.3% 4.7%
6.1 95.9% 4.1%
6.1 95.9% 4.1%
5.9 95.3% 4.7%

3.4. Pds Activation Test

As for the last test, concerning the sensitivity of the solutions with respect to the
variation of the activation cost of pds, we consider 9 different cases in which we assign the
following values to the activation cost of each pick-up station: 2.25, 5, 7.5, 10, 20, 30, 40, 50
and 100 e, respectively. Table 12 shows the data and results for these tests. Note that in all
instances we were able to get the optimal solution in less than 35 min.

Table 12. Cost components of the objective function as the cost of activating pds changes.

ActCost Act Q̂ Cost P̂ Cost Obj CPU

2.25 16.65 14.04 44.00 74.69 2134.40
5 33.00 20.82 39.89 93.71 1332.28

7.5 45.75 26.04 37.33 109.12 709.74
10 54.00 36.61 33.71 124.32 772.11
20 84.00 57.21 27.50 168.70 464.81
30 102.00 81.41 23.30 206.71 469.07
40 124.00 93.00 21.74 238.73 450.31
50 145.00 102.05 20.70 267.75 456.26

100 200.00 165.56 16.04 381.60 1287.31

It can be seen that an increase in the cost of pds corresponds, as expected, to a lower
number of activated pds (Table 13). In fact, with higher activation costs, it is cheaper to
serve customers directly from the warehouse. Particular attention should be paid to the
values obtained with the last type of instances, where the cost of activating pds is set at
100. In this case, in fact, only two pds are activated, being very expensive, even if they
allow only less than 70% of the customers to be served, due to the constraint on their
maximum capacity. Consequently, more than 30% of customers are served directly from
the warehouse. As a result, the routing cost for serving the customers (Q̂ Cost) increases,
while the routing cost to supply pds decreases.
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Table 13. Selection of pds activated and number of customers served as pds activation cost changes.

Selected pds PDS W

7.4 98.1% 1.9%
6.6 97% 3%
6.1 96% 4%
5.4 93.9% 6.1%
4.2 90% 10%
3.4 85.2% 14.8%
3.1 82.9% 17.1%
2.9 81.1% 18.9%
2 68.5% 31.5%

3.5. A Real-Size Case Study

We now present a case study that was approached using the exact method proposed
in Section 2, after the computational tests performed in the previous subsections. To test
a realistic instance, we considered a company operating in the business of distributing
products ordered through electronic channels. Due to the increasing volume of parcels
to be handled, the company decided to evaluate the use of pickup-delivery stations to
improve service and reduce total delivery costs. The customers associated with the service
are 49 offices, located in the city district of Genoa, Italy, shown in Figure 5. We extracted
customer location data from OpenStreetMap [29] along with data on the delivery points
currently active in this district, i.e., post offices, to identify 19 potential pickup-delivery
stations. In Figure 5, the customers are represented by blue dots, the warehouse by a yellow
diamond, and the black diamonds represent the possible delivery points.

Figure 5. Urban area of the case study with the location of customers and pds.

We derived the cost of service of these active delivery points based on their annual
rental cost and set the activation cost of each pds ate1.000. Transportation costs are the same
as those used in previous tests. The distances between nodes were calculated on the urban
transportation network for road vehicles and were extracted from OpenStreetMap through
QGIS software [30], which allows access and download of various types of geospatial data.
As before, we set the maximum allowed distance between clients and pds to 850 m.

First, we calculated the total delivery cost of the company in the scenario in which it
does not activate any pds, thus directly serving all customers from the warehouse. In this
case, we used the objective function (23) and the resulting cost was e128,670.42. Table 14,
on the other hand, reports the optimal solution obtained using the proposed exact method,
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in which 8 pickup-delivery stations are activated, in yellow depicted in Figure 6. These
activated pds serve 48.97% of the customers, while the remaining 51.02% are served by
the warehouse.

Table 14. Cost components of the objective function.

Act Q̂ Cost P̂ Cost Obj

8.000 67,839.59 34,604.48 110,444.08

Figure 6. Activated pickup-delivery stations in the optimal solution.

As an additional information, the computational time to find the optimal solution was
about 28 min. Although the costs used in this test were not the company’s actual costs, but
only an estimate based on online information, the analysis allowed us to suggest activating
some pds at strategic points in the considered district of the city. As a result, customers
experience shorter wait times, faster delivery, greater sustainability, and lower costs.

4. Conclusions

In this paper, we addressed a variant of the multifacility location-routing problem
from the perspective of a business-to-consumer company operating in an urban area. The
goal was to minimize the cost of the overall pickup and delivery process with the need
to determine environmentally sustainable distribution plans, thus minimizing pollutant
emissions. Therefore, we must find the right balance between the number of pickup-
delivery stations for goods collected directly from customers and the number of customers
served at home. From a strategic point of view, we wanted to verify how the location
choices of the pickup-delivery stations vary according to the maximum distance a customer
is willing to walk and/or the length and cost of the route to deliver the ordered goods.
The activation cost of the pickup-delivery stations also influenced the optimal solution
as well as the type of vehicle used by the company. To solve this problem, we presented
a novel exact approach based on the partitioning of the research space of the solutions
of a MILP model. In particular, a branching constraint allowed us to split the set of
customers into two subsets and consequently define the route that served the selected
pickup-delivery stations and the route, if any, that served customers who do not go to
any pickup-delivery station. The computational tests performed, based on randomly
generated instances of up to 150 customers and 30 pickup-delivery stations, demonstrated
the effectiveness of the proposed exact method in terms of both quality of the solution and
calculation time. In fact, Tables 2, 4, 10 and 12 show that in all tests performed, the optimal
solution was obtained within 35 min. Only in the test to check the impact of the variation
of the maximum distance accepted by customers to personally collect the ordered goods,
in 3 types of instances a solution was obtained with a deviation of 1% from the optimal
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value of the objective function of the model within the maximum calculation limit of 1 h.
In the same tests, we were able to establish that there is a threshold value for both the
aforementioned distance and the cost associated with pickup-delivery stations, beyond
which home delivery is more cost-effective for the company than setting up additional
pickup-delivery stations. Moreover, the application of the proposed exact method to a case
study related to a distribution problem in a district of the city of Genoa confirms its validity
to be used for addressing real-size urban delivery problems with the goal of minimizing
pollutant emissions. Finally, we were able to evaluate incentives for customers to use
the pickup-delivery stations to serve themselves while ensuring savings for the company,
especially in terms of environmental sustainability.

It is our intention to develop the research in two directions. First, the present problem
will be applied to urban and metropolitan realities with high population density. This
step will require the extrapolation of georeferenced data using appropriate software envi-
ronments, such as QGIS, and interfacing the information with the model proposed here.
Second, we will develop mat-heuristics to be integrated with the exact branching approach.
In this case, it will be necessary to perform numerous computational tests and be able to
find similar heuristics proposed in the literature applied to similar problems to validate
and compare the performance of the proposed solution methods.
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