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Abstract: The monolithic Eulerian formulation has widely been employed for solving numerically
fluid–structure interaction (FSI) problems of finite structural displacement using the same mathemati-
cal variational formulation for fluid and structural dynamics. Recently, different physical features
of fluid flow have been analyzed using this approach to such coupling problems by computing the
classical benchmark solutions in a non-classical framework. Despite producing decent results, the
analysis of micro-structural characteristics of fluid flow by applying the classical benchmark solutions
still needs to be enhanced and extended further for such coupling problems. In this paper, the
classical benchmark solutions have been enhanced and extended further for analyzing the combined

micro-structural effects of linearly increasing Reynolds number Re and mean inflow velocity
¯
U on

flow fields with mesh independence analysis by employing a monolithic Eulerian formulation in a
non-classical framework. To this aim, the Cosserat fluids theory is taken into account for the present
coupling problem by considering three micro-rotational degrees of freedom (dof) of fluid particles.
The model equations of the proposed Cosserat fluid–structure interaction (CFSI) problem are derived
using underlying laws of continuum mechanics. A numerical section presents the implementation of
the benchmark problem with test examples followed by a detailed evaluation of the obtained results.
The results obtained indicate that a uniform linear increase in Reynolds number Re and mean inflow

velocity
¯
U produce the significant combined micro-structural effects on the micro-rotation velocity
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Abstract: The monolithic Eulerian formulation has widely been employed for solving numerically 
fluid–structure interaction (FSI) problems of finite structural displacement using the same mathe-
matical variational formulation for fluid and structural dynamics. Recently, different physical fea-
tures of fluid flow have been analyzed using this approach to such coupling problems by computing 
the classical benchmark solutions in a non-classical framework. Despite producing decent results, 
the analysis of micro-structural characteristics of fluid flow by applying the classical benchmark 
solutions still needs to be enhanced and extended further for such coupling problems. In this paper, 
the classical benchmark solutions have been enhanced and extended further for analyzing the com-
bined micro-structural effects of linearly increasing Reynolds number 

eR  and mean inflow veloc-

ity U  on flow fields with mesh independence analysis by employing a monolithic Eulerian for-
mulation in a non-classical framework. To this aim, the Cosserat fluids theory is taken into account 
for the present coupling problem by considering three micro-rotational degrees of freedom (dof) of 
fluid particles. The model equations of the proposed Cosserat fluid–structure interaction (CFSI) 
problem are derived using underlying laws of continuum mechanics. A numerical section presents 
the implementation of the benchmark problem with test examples followed by a detailed evaluation 
of the obtained results. The results obtained indicate that a uniform linear increase in Reynolds 
number 

eR  and mean inflow velocity U  produce the significant combined micro-structural ef-

fects on the micro-rotation velocity field ω , and this effect is found increasing on the increase of 
both parameters. This combined effect of increasing 

eR  and U  on the velocity field u  is also 

observed to be very significant in a sense that horizontal and vertical flow velocity profiles experi-
ence great variation by maintaining the same pattern on each increasing value of 

eR  and U  at 

any particular location in the computational domain. Further, the mesh independence analysis is 
employed to verify the convergence of obtained results. The study concludes that the linear increase 
in Reynolds number and mean inflow velocity affect micro-rotational velocity field significantly at 
the micro-structural level with mesh independence analysis. Finally, some future recommendations 
to enhance and extend the study with some of its limitations are presented. 
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, and this effect is found increasing on the increase of both parameters. This combined effect

of increasing Re and
¯
U on the velocity field u is also observed to be very significant in a sense that

horizontal and vertical flow velocity profiles experience great variation by maintaining the same

pattern on each increasing value of Re and
¯
U at any particular location in the computational domain.

Further, the mesh independence analysis is employed to verify the convergence of obtained results.
The study concludes that the linear increase in Reynolds number and mean inflow velocity affect
micro-rotational velocity field significantly at the micro-structural level with mesh independence
analysis. Finally, some future recommendations to enhance and extend the study with some of its
limitations are presented.
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1. Introduction

Numerous interesting real-life problems related to fluid dynamics involve the mutual
interaction of fluid and solid structure, where fluid flow depends on the displacement of
solid structure, which is in turn influenced by fluid dynamics. In computational modeling,
such a setup is commonly known as a fluid–structure interaction (FSI) problem. Examples
of FSI problems are of great importance in many real-life applications, such as engineering,
bio-mechanics, cardiovascular system modeling [1–8], etc., and numerical simulations of
such coupling problems play an important role in the understanding and prediction of
FSI phenomena in all these fields of studies. In such problems, the effects of FSI become
more significant and noticeable, particularly in the case when the dependence between
the influence and response becomes stronger. These effects sometimes can be catastrophic,
especially in a solid structure made up of materials susceptible to fatigue. In engineering
studies, the first Tacoma Narrows Bridge (1940) is considered one of the most infamous
examples of large-scale failure due to the heavy interaction of fluid (wind) and solid
structure (bridge), as represented pictorially in Figure 1.
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face. To date, many numerical approaches have been developed to solve such FSI prob-
lems, and the consideration taken into account for the most effective and related approach 
strongly depends on the different characteristics of the proposed problem to be studied. 
The major classification of numerical approaches is based on the way coupling between 
fluid and solid structure takes place, the way the mesh is generated, and the way in which 
discretization is performed to obtain the final algebraic equations to be solved. 

There is a wealth of literature available on the numerous numerical approaches for 
solving FSI problems inside a traditional classical framework. Some numerical ap-
proaches are known as monolithic [9–12], where fluid dynamics and structural dynamics 
are treated inside the same mathematical variational formulation. In recent years, from 
the modeling point of view, monolithic approaches have been adopted extensively for 
solving FSI problems in many different fields of engineering and applied sciences. Mean-
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Figure 1. Collapse of Tacoma Narrows Bridge (1940) (Source: Wikipedia).

A typical FSI model includes equations governing the fluid dynamics and the motion of
the elastic solid structure together with coupling conditions at the fluid–structure interface.
To date, many numerical approaches have been developed to solve such FSI problems, and
the consideration taken into account for the most effective and related approach strongly
depends on the different characteristics of the proposed problem to be studied. The major
classification of numerical approaches is based on the way coupling between fluid and solid
structure takes place, the way the mesh is generated, and the way in which discretization is
performed to obtain the final algebraic equations to be solved.

There is a wealth of literature available on the numerous numerical approaches for
solving FSI problems inside a traditional classical framework. Some numerical approaches
are known as monolithic [9–12], where fluid dynamics and structural dynamics are treated
inside the same mathematical variational formulation. In recent years, from the model-
ing point of view, monolithic approaches have been adopted extensively for solving FSI
problems in many different fields of engineering and applied sciences. Meanwhile, the
development of monolithic solvers in the solution procedure for solving such coupled prob-
lems all at once is considered, in general, a very hard task and has received a lot of attention.
The main advantage of using this approach is that the implicit interfacial conditions are
inherently present in the solution procedure of the formulated mathematical framework,
and a single discretization scheme can be applied to the proposed problem [13,14]. The
monolithic approach has also the advantage of stability since the mutual influence of fluid
and solid structure can be taken into account directly. This approach can potentially achieve
the desired accuracy for a multidisciplinary problem under consideration by requiring
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substantially more resources and expertise in developing and maintaining such specialized
code [11]. A more recent work devoted to monolithic approaches can be seen in [15–28],
and a comprehensive review of the recent developments of robust monolithic FSI solvers
can be found in [29]. Among them, a monolithic approach in an Eulerian frame [23,27]
works like the fully Eulerian formulation [13,30]. This monolithic Eulerian approach is
well adapted to FSI problems of finite structural displacement in physically deformed
configurations. Further, this numerical approach works with velocities everywhere in
the proposed problem domain, while the fully Eulerian formulation [13,30–34] prefers to
work with velocities in fluid and displacement in solid domains, respectively. Finally for
obtaining energy stability, it is suggested to update the solid structure with its own velocity
and remesh the fluid domain at every time step [23,27].

In contrast, partitioned approaches solve fluid and solid structure sub-problems sepa-
rately according to the numerical solver and mesh discretization using an iterative process
so that the computation of the fluid flow solution does not affect the solid structure solution
at the same computing time. It is not only used in the FSI but the idea can be applied
to different problems and situations. Partitioned approaches are traditionally adopted in
engineering applications since it is easy to combine available solvers for fluid and solid
mechanical problems. The development of partitioned numerical approaches has been
extensively studied in the literature [35–47], which contains fixed-point iterations [35–37],
Newton-like methods [38–40], or optimization techniques [41–43]. In this approach, the
interfacial conditions of fluid and solid structure are usually considered explicit, and the in-
formation is exchanged at the interface according to the coupling technique [48]. However,
the challenge of this approach is to coordinate the disciplinary algorithms for achieving ac-
curate and efficient FSI solutions with minimal code modification. Partitioned approaches
are divided into one-way and two-way coupling approaches, while two-way coupling is
further classified into weakly and strongly coupled approaches. An overview of monolithic
and partitioned approaches of the FSI is given in Figure 2.
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The arbitrary Lagrangian–Eulerian (ALE) is another well-known numerical approach
for solving FSI problems by incorporating the material, spatial, and referential descriptions
of fluid and solid structure domains, respectively. The ALE formulation is also known
as the interface-tracking approach, which is a finite-element formulation in which the
proposed computational system is not a priori fixed in space (Eulerian formulation) or
attached to material (Lagrangian formulation). The ALE formulation is used to capture the
interaction between fluid and solid in the FSI problems by combining the advantages of
the Lagrangian and the Eulerian formulations, respectively. In the ALE, the fluid equations
of the FSI problems are generally written over a moving mesh by following the solid
structural displacement [49,50], usually used for thin solid structures, and considered
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the most efficient in the case of small displacement [8,51,52]. Further, the velocities and
stresses are incorporated at the interface of fluid and solid structure, followed by the
mapping of fluid equations back into the structural domain at every time march during
simulations [10,53]. However, in the case of finite structural deformation, the ALE fails,
which leads to heavy distortion of the fluid mesh [54,55]. On the other hand, the immersed
boundary method (IBM) [56,57] is used to approximate fluid flow on a fixed non-moving
computational mesh, while the presence of the solid structure is usually implemented in
different ways [58]. This method is effective for shells in the fluid for which mathematical
analysis is more advanced [59], but the numerical implementations for thick structures
lag behind [60]. Further, the immersed boundary-lattice Boltzmann method (LBM) is
another Eulerian–Lagrangian approach used for FSI simulations even in flexible boundary
problems [61].

Recently, extensive literature has been attributed to the significant analysis of the micro-
structural characteristics of fluid flow by employing a monolithic Eulerian formulation
to FSI problems of finite structural deformation by computing the classical benchmark
test in a non-classical classical framework [62]. Nevertheless, the study of the micro-
structural characteristics of fluid flow using these classical benchmark test solutions still
needs to be enhanced and extended further to analyze the combined effect of linearly

increasing Reynolds number Re and mean inflow velocity
¯
U on flow velocity fields with

mesh independence analysis at the micro-structural level in a non-classical framework.
The mathematical formulation of such non-classical FSI models is based on the consid-

eration of a continuum as an oriented rigid particle having three additional micro-rotational
degrees of freedom (dof). In such non-classical coupling models, the response of the solid
structure to its displacement and micro-rotation are commonly characterized by a non-
symmetric Cauchy stress tensor and couple stress tensor, respectively. To this aim, the
Cosserat fluids theory [63] is considered to model FSI problems in a non-classical frame-
work. This theory was then further applied to describe fluids with micro-structures [64–66]
and recently for FSI applications in [67–69]. A detail of the mathematical modeling can be
seen in [70].

In this paper, the classical benchmark solutions have been enhanced and extended
further to analyze the combined effect of linearly increasing Reynolds number Re and mean

inflow velocity
¯
U on flow velocity fields with mesh independence analysis at the micro-

structural level by employing a monolithic Eulerian formulation to CFSI problems of finite
deformation in a non-classical framework. The results of the present study are obtained
by computing the prominent classical FSI test FLUSTRUK-FSI-3* using the most popular
publicly available software FreeFEM++ [71], which is very famous among the research
community of engineering studies for FEM simulations. More recent work in [72–74] is
devoted to the requirement and implementation of this software for simulating a variety of
multi-physics problems. The results of the present study indicate the significant effect of
linearly increasing Reynolds number and mean inflow velocity at the micro-structural level
in a non-classical framework.

Contribution of the Study

The problems involving the interaction of fluid and solid structure have always been
very important and challenging in the literature. In such problems, different character-
istics of fluid flow depending on structural displacement have been analyzed. There is
a wealth of literature available on the analysis of these characteristics of fluid flow in a
traditional classical framework, but the non-classical framework still requires the attention
of researchers for this analysis.



Mathematics 2023, 11, 2074 5 of 21

The main contributions of the present study are briefly described as follows:

â Analysis of different micro-structural characteristics of fluid flow for FSI problem in a
non-classical framework.

â Use of the Cosserat theory of fluids.
â Employing a monolithic Eulerian formulation for solving the coupling problem of

finite deformation in a non-classical framework.
â Computation and validation of the results using the prominent classical benchmark

FSI test FLUSTRUK-FSI-3*‘flow around a cylinder.
â Implementation of algorithmic description with FreeFEM ++.
â Verification of the convergence of the results using mesh independence analysis in a

non-classical framework.

This paper is organized as follows:

â Section 2 presents the mathematical modeling of the CFSI problem to be studied. This
section includes an overview of the fundamental notations for continuum description,
and then the complete derivation of the governing equations for fluid and solid
structure from conservation laws using constitutive relations in a monolithic Eulerian
frame is presented.

â Section 3 presents a monolithic variational formulation of the governing CFSI model
in the Eulerian frame.

â Section 4 presents the discretization schemes, where the semi-implicit and the finite-
element method are used for discretizing time and space domains, respectively.

â Section 5 describes the description, configuration, boundary conditions, and initial
conditions of the benchmark test problem.

â Section 6 discusses the results of the study obtained from computer simulations.
â Section 7 concludes the present study with some of its future developments.

2. Cosserat Fluid–Structure Interaction Modeling

This section details the mathematical modeling of the present Cosserat fluid–structure
interaction (CFSI) problem, which includes an overview of the fundamental notations for
continuum description and the complete derivation of the governing equations for fluid
and solid structure from conservation laws in a monolithic Eulerian frame.

2.1. Fluid–Structure Interaction Problem Description

In the present CFSI problem, Ωt is the time-dependent computational domain, which
comprises fluid region Ωt

f and solid region Ωt
s, respectively, such that Ωt

= Ωt
f ∪ Ωt

s,
Ωt

f ∩ Ωt
s = ∅, ∀t. The boundary of the computational domain and fluid–structure interface

is denoted by ∂Ωt and Σt, respectively, where Σt = Ωt
f ∩Ωt

s. The time-independent Γ is
taken as the part of the boundary of the computational domain ∂Ωt on which either the
solid structure clamps or it satisfies the ‘no-slip condition’ on the fluid. At t = 0, the
configuration is called the reference or undeformed configuration, and we assume that the
system is at rest, i.e., u f ,s =ω f ,s = 0. The fluid is driven by an inflow boundary data on Γ,
and the fluid’s stresses on the solid structure cause a deformation after some time ∀t > 0 in
the deformed or the present configuration. Further, fluid and solid domains are prescribed
initially as Ω0

f and Ω0
s , respectively, in this modeling. A schematic of this CFSI description

can be seen in Figure 3.
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2.2. Coupling Conditions

The coupling of fluid and solid problem is achieved by boundary conditions on the
common interface Σt, which all stem from simple physical principles:

2.2.1. Kinematic Condition

The kinematic condition states that the velocity of fluid and the velocity of solid struc-
ture are continuous on the interface. This coupling condition stems from the observation
that a viscous fluid sticks at the boundary. In Figure 3, the ‘no-slip condition’ defines that
velocity of fluid at the interface must be the same as the velocity of solid (velocity due
to its displacement). The ‘no-slip condition’ is generally termed the kinematic boundary
condition. Mathematically,

u f (x, t) = us(x, t) on Σt, (1)

The kinematic coupling condition has the type of the Dirichlet boundary condition,
usually implied to the fluid problem when the boundary of the fluid domain is in motion.

2.2.2. Dynamic Condition

The dynamic coupling condition or stress continuity constraint relates to Newton’s
third law of action and reaction: the stress exerted by fluid at the interface should be the
same as the external force that acts on the solid.

n · σf = n · σs on Σt, (2)

The dynamic coupling condition is known as a Neumann boundary condition and
usually implied to the solid problem.

2.2.3. Geometric Condition

The geometric coupling condition prevents the two sub-domains from separating or
overlapping. This condition usually describes the domain motion along the interface. In
this coupling condition, the path of a particle and its inverse are both continuous functions
together with the condition that the normal velocities of fluid n · u f and solid n · us are
continuous along the common interface.

These three coupling conditions describe the interaction between fluid and solid
structure in the multi-physics problems. All of these conditions can be described as
boundary conditions for the sub-problems.
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2.3. Field Variables and Tensors

In this study, the bold characters represent vectors and tensors, with some exceptions,
such as x, x0 ∈ Rd, d = 2 or 3. The standard notations used in the entire text are detailed
in [10,37,62,75–79]. The following field variables in the present study are used:

â X : Ω0 × (0, T) 7→ Ωt : X
(
x0, t

)
is the material location at time t of x0 (i.e., a material

point at x0 at t = 0 is transported to X at time t by the motion).
â d = X

(
x0, t

)
− x0 is the displacement field.

â u is the velocity field.
â ω is the micro-rotation velocity field.
â Fji = ∂xi

0Xj is the transposed deformation gradient tensor.
â J = detF is the Jacobian of deformation gradient tensor.
â ρ(x, t) = ρ f 1Ωt

f
(x, t) + ρs1Ωt

s
(x, t) is the density.

â σ(x, t) = σf 1Ωt
f
(x, t) + σs1Ωt

s
(x, t) is the stress tensor.

In the above, ρ f and σf are the density and the stress tensor in the fluid, while ρs and
σs are the density and the stress tensor in the solid structure, respectively. The set function
indicators 1Ωt

f
and 1Ωt

s
are used in numerical simulation [62].

Unless specified, all spatial derivatives in this mathematical modeling of the CFSI are
taken with respect to x ∈ Ωt and not w.r.t x0 ∈ Ω0. If φ is a function of x = X

(
x0, t

)
where

x0 ∈ Ω0, then
∇x0 φ =

[
∂xi

0 φ
]
=
[
∂xi

0Xj∂xj φ
]
= FT∇φ. (3)

In Equation (3) above, when X is one-to-one and invertible, the relation between F and
d can be seen as a function of (x, t) instead of

(
x0, t

)
, mathematically related as

FT = ∇x0X = ∇x0

(
d + x0

)
= ∇x0d + I = FT∇d + I ⇒F = (I−∇d)−T . (4)

Further, the time derivatives of φ are given by

Dtφ :=
∂

∂t
φ
(

X
(

x0, t
)

, t
)
= ∂tφ(x, t) + u · ∇φ(x, t), (5)

where Dt represents the material time derivative usually called total time derivative.
Finally, the deformation tensor and the micro-rotation strain tensor are, respectively,

introduced as
Du =

(
L + LT

)
, (6)

κ = ∇ω, (7)

where L = ∇u is known as the velocity gradient tensor.

2.4. Conservation Laws

In the present study, conservation laws for fluid and solid structural material in a
monolithic Eulerian formulation are given as

Dt(Jρ) = Dtρ + ρ∇ · u = 0. Conservation of mass (8)

ρDtu = ∇ · σs, f + f. Conservation of momentum (9)

ρIDtω = ∇ ·C f + ε : σf + g. Conservation of angular momentum (10)

where f and g are volume forces and volume couples, respectively, and I is the coefficient
of the micro-inertia. Further, incompressibility is employed as J = 1, which leads to ρ = ρ0.
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The mathematical modeling of the CFSI system will be derived from these conservation
laws by substituting the constitutive relation of materials into conservation laws, which are
detailed in the remaining part of this section.

2.5. Constitutive Relations

In this work, the constitutive relations for fluid and solid structure are described
as follow:

â For incompressible viscous Cosserat fluids:

σ f = −p f I + µ
(

L + LT
)
+ µr

(
L− LT

)
− 2µrε ·ω, (11)

C f = α(trκ)I + β
(

κ + κT
)
+ γ

(
κ− κT

)
, (12)

where σ f , C f , and I are the non-symmetric stress tensor, the couple stress tensor,
and the identity tensor, respectively. The pressure field and coefficient of dynamic
viscosity are denoted by p and µ, respectively. The micro-viscosity coefficients and
the Levi–Civita tensor are represented by µr, α, β,γ, and ε.

â For an hyper-elastic incompressible solid structural material:

σs = −psI + ρs∂FΨFT , (13)

where Ψ is the Helmholtz potential, which, in the case of two-dimensional Mooney–
Rivlin material [79], is defined as

Ψ(F) = c1tr
(

FTF
)
+ c2

{
tr
(

FTF
)2
− tr2

(
FTF

)}
. (14)

2.6. Derivation of the Mooney–Rivlin Stress Tensor

For the derivation of the Mooney–Rivlin stress tensor ∂FΨFT , we use the fact that
∂Ftr

(
FTF

)
= 2F and ∂Ftr

(
FTF

)2
= 4FFTF. Hence Equation (14) becomes

∂FΨ = 2c1F + c2

{
4FFTF− 4tr

(
FTF

)
F
}

. (15)

Let B = FFT =
(
(I−∇d)(I−∇d)T

)−1
, b = detB and c = trB. Then Equation (15)

leads to
∂FΨFT = (2c1 − 4c2c)B + 4c2B2. (16)

Now apply Cayley–Hamilton theorem in Equation (16) above as

B2 = cB− bI. (17)

Substituting Equation (17) into Equation (16), we get

∂FΨFT = 2c1B− 4c2bI = 2c1FFT − 4c2det (FFT)I. (18)

Again using the Cayley–Hamilton theorem in Equation (18) as

B = cI− bB−1 = cI− b
(

I−∇d−∇dT +∇d∇dT
)

. (19)

Now substituting Equation (19) into Equation (18), which leads to

∂FΨFT = {2c1(c− b)− 4c2b}I + 2c1b
(

Dd−∇d∇dT
)

. (20)
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After simplifying and rearranging the terms in Equation (20) above, one arrives at

∂FΨFT = 2c1det
(

FFT
)(

Dd−∇d∇dT
)
+
{

2c1tr
(

FFT
)
− (2c1 + 4c2)det

(
FFT

)}
I. (21)

Hence an incompressible two-dimensional Mooney–Rivlin material will have form for
some α′

∂FΨFT = 2c1

(
Dd−∇d∇dT

)
+ α′I, (22)

where α′ =
{

2c1tr
(
FFT)− (2c1 + 4c2)det

(
FFT)} is some scalar function of structural mate-

rial parameters c1 and c2.

2.7. Mathematical Formulation of Cosserat Fluids Theory

The governing model equations for Cosserat fluids as described in [70] can be derived
by substituting the constitutive relations as given in Equations (11) and (12) into the equa-
tions of conservation laws (8)–(10) and by applying the prescribed boundary conditions,
which leads to:

∇ · u = 0, (23)

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + (µ + µr)∆u + 2µr(∇×ω) + f, (24)

ρ

(
I

∂ω

∂t
+ Iu · ∇ω

)
= λ∆ω+ λ0∇(∇ ·ω)− 4µrω+ 2µr(∇× u) + g, (25)

where λ = β + γ and λ0 = α + β− γ are positive material parameters.
Based on the above mathematical modeling of the present CFSI problem, the varia-

tional formulation and discretization schemes of the proposed model are described in the
next sections.

3. Variational Formulation

Considering only homogeneous boundary conditions on Γ ⊂ ∂Ωt, i.e., clamped or
‘no-slip’, and homogeneous Neumann conditions on ∂Ωt\Γ for the proposed CFSI model,
the final two-dimensional monolithic variational formulation in the Eulerian frame is:

Find
(

u,ω, p, d, Ωt
f , Ωt

s

)
with u|Γ = 0 andω|Γ = 0, given Ω0

f , Ω0
s and d, u andω at

t = 0, such that∫
Ω f∪Ωs

{
ρDtu ·

~
u− p∇ · ~

u− p̃∇ · u + (µ + µr)Du : D
~
u−2µr(∇×ω) · ~

u
}

dΩ

+
∫

Ωs

c3(Dd−∇d∇dT) : D
~
udΩs =

∫
Ω f∪Ωs

f · ~
udΩ, (26)

∫
Ω f ∪ Ωs

{ρDt(Iω) · ω̃+ λ(∇ω : ∇ω̃)− λ0∇(∇ ·ω) · ω̃+ 4µrω · ω̃ −2µr(∇× u) · ω̃}dΩ

=
∫

Ω f∪ Ωs

g · ω̃dΩ,
(27)

for all (
~
u, ω̃, p̃) with

~
u
∣∣∣Γ = 0 and ω̃|Γ = 0 .

In the above variational formulation, Ωt
f and Ωt

s are defined incrementally by

dX
dτ

= u(X(τ), τ), (28)

where
X(t) ∈ Ωt

r ⇒ X(τ) ∈ Ωτ
r ∀τ ∈ (0, T), r = s, f . (29)
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Finally, the notations B : C = tr(BTC) and c3 = ρsc1 are also used in the derivation of
the proposed variational formulation.

4. Discretization

This section is devoted to discretization schemes of variational Formulations (26) and (27)
to approximate the CFSI problem in a non-classical framework. To this aim, a semi-implicit
scheme for time and finite-element method for space domains are employed, respectively.

4.1. Monolithic Semi-Implicit Time Discretization

During the numerical simulations of this study, we consider the time t ∈ [0, T] as
simulation time, where T denotes the total time. To run the simulation, the interval [0, T]
δt = T

N such that t = nδt where n = 0, 1, · · · , N. It is naturally used the fact that∫
Ωt

(
Dd−∇d∇dT

)
: D

~
u ≈

∫
Ωn

(
Ddn+1 −∇dn+1∇dn+1T

)
: D

~
u. (30)

with dn+1 = dn + δtun+1. Hence

Dd−∇d∇dT ≈ Ddn−∇dndnT
+ δt

(
Dun+1 −∇un+1dnT −∇dn∇un+1T

)
+ o(δt). (31)

We now consider the fact that, if Xn is a first-order approximation of X
(
tn+1 − δt

)
de-

fined by
.

X = u(X(τ), τ), X
(
tn+1) = x, where X

(
tn+1) = x such that Xn(x) = x− δtun(x),

then a first-order in time approximation for the CFSI system based on its variational
Formulation (26) and (27), leads to:

Find
(
un+1,ωn+1, pn+1), Ωn+1

f and Ωn+1
s such that with un+1

∣∣Γ = 0, ωn+1
∣∣Γ = 0

and Ωn+1 = Ωn+1
f ∪Ωn+1

s , ∀
(~

u, ω̃, p̃
)

with
~
u
∣∣∣Γ = 0 and ω̃|Γ = 0, the following holds:∫

Ωn
f∪Ωn

s

{(
ρn un+1−unoXn

δt

)
· ~
u− pn+1∇ · ~

u− p̃∇ · un+1 + (µ + µr)Dun+1 : D
~
u−2µr

(
∇×ωn+1) · ~

u
}

dΩn

+
∫

Ωn
s

c3

[{
Ddn −∇dnT∇dn + δt

(
Dun+1 −∇un+1∇dnT −∇dn∇un+1T

)}
: D

~
u
]
dΩn

s =
∫

Ωn
f∪Ωn

s

f · ~
udΩn,

(32)

∫
Ωn

f∪Ωn
s

{
ρn In

(
ωn+1−ωnoXn

δt

)
· ω̃+ λ

(
∇ωn+1 : ∇ω̃

)
− λ0∇

(
∇ ·ωn+1) · ω̃+4µrω

n+1 · ω̃− 2µr
(
∇× un+1) · ω̃}dΩn

=
∫

Ωn
f∪Ωn

s

g · ω̃dΩn.
(33)

Then, update d by
dn+1 = dnoXn + δtun+1, (34)

and Ωn
r by

Ωn+1
r =

{
x + δtun+1(x) : x ∈ Ωn

r

}
, (35)

where r = s, f .

4.2. Monolithic Finite Elements Space-Discretization

In this discretization scheme, the finite-element functional spaces for the displacement
field, velocity field, micro-rotation field, and pressure field are represented as Vh, Wh and Qh,
respectively. In this consideration, the triangulation =0

h lies in the initial domain Ω0, where
quadratic elements are used for displacements, translational, micro-rotational velocity
fields, and linear elements for pressure field, respectively. Further different preesures are
taken into consideration in fluid and solid structural domains, respectively, because of the
discontinuity of pressure at the fluid–structure interface, which results in Qh, a piecewise
linear function on the triangulation and continuous in Ωn+1

r , r = s, f . A small penalization
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parameter ζ � 1 is taken into account for imposing uniqueness of the pressure when a
linear solver is required for the solution. So, at each time step, the space-discretization with
FEM, leads to:

Find
(

un+1
h ,ωn+1

h , pn+1
h

)
: ∀

(~
uh, ω̃h, p̃h

)
∈ (V0h, W0h, Qh) with V0h|Γ = 0 and

W0h|Γ = 0 are sub-spaces of Vh and Wh, such that∫
Ωn

f ∪Ωn
s

{(
ρn uh

n+1−uh
noXn

δt

)
· ~
uh − ph

n+1∇ · ~
uh − p̃h∇ · un+1

h +(µ + µr)Dun+1
h : D

~
uh − 2µr

(
∇×ωh

n+1) · ~
uh

}
Ωn

+
∫

Ωn
s

c3

[{
Ddn

h −∇dnT

h ∇dn
h + δt

(
Dun+1

h −∇un+1
h ∇dnT

h −∇dn
h∇un+1T

h

)}
: D

~
uh

]
dΩn

s +
∫

Ωn
f ∪Ωn

s

ζ ph p̃hdΩn =
∫

Ωn
f ∪Ωn

s

f · ~
uhdΩn, (36)

∫
Ωn

f ∪Ωn
s

{
ρn In

(
ωn+1

h −ωn
h oXn

δt

)
· ω̃h + λ

(
∇ωn+1

h : ∇ω̃h

)
− λ0∇

(
∇ ·ωn+1

h

)
· ω̃h +4µrω

n+1
h · ω̃h − 2µr

(
∇× un+1

h

)
· ω̃h

}
dΩn

=
∫

Ωn
f ∪Ωn

s

g · ω̃hdΩn.
(37)

4.3. Finite-Element Mesh Updating Strategy

In order to update the finite-element triangulation during CFSI simulation at each
vertex qn

i of the triangle Th ∈ =n
h , the vertex is moved to a new position by

qn+1
i := qn

i + δtun+1
h . (38)

Let dn
i := dn(qi), then

dnoXn
(

qn+1
i

)
= dn

(
qn

i + δtun+1
h − δtun+1

h

)
= dn(qn

i ). (39)

In the above, it implies that the displacement vector of vertices dn
h can be copied to

dn+1
i plus with the addition of δtun+1

h
(
qn

i
)

in order to obtain dn+1
h , as

dn+1
h = dn

h oXn + δtun+1
h (qn

i ) = dn
h + δtun+1

h (qn
i ). (40)

Lastly, the solution of the Laplace equation −∆
~
u = 0(i.e.,

~
u) is used to move the

vertices in the fluid and
~
u = u on the CFSI interface Σ and zero on the other boundaries.

Moving the vertices of each triangle Th ∈ =n
h by the above-given procedure gives a new

finite-element triangulation =n+1
h . (Note: Solving a Laplace equation in the fluid part with

Dirichlet conditions equal to the velocity of the fluid–structure interface).

5. Numerical Tests

In this section, the numerical results of the present study are obtained by computing a
prominent classical benchmark FSI test problem FLUSTRUK-FSI-3* ‘flow around a cylinder’.
The selection of this benchmark test is based on its relevance to the proposed coupling
problem and reliability for achieving the desired accuracy in the results. These results
are then utilized to analyze the combined effect of linearly increasing Reynolds number

Re and mean inflow velocity
¯
U on flow velocity fields at the micro-structural level with

mesh independence analysis to verify the convergence of the results obtained in a non-
classical framework.

The present benchmark test was first proposed and studied by [80] and then
by [23,30,81], respectively, in a classical framework, and more recently by [62] in a non-
classical framework.

5.1. Description of Benchmark Test

A beam, shaped like a rectangular flag, made of an hyper-elastic incompressible
Mooney–Rivlin material, is attached behind a hard fixed cylinder in the computational
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rectangular domain; the flow enters from the left and is free to leave on the right. The
dimensions of a rectangular flag and the computational domain are given as:

Dimension of rectangular flag: [0, l]× [0, h]
Dimension of the computational domain: [0, L]× [0, H]

5.2. Configuration, Boundary, and Initial Conditions

The configuration, boundary conditions, and initial conditions for the present bench-
mark test FLUSTRUK-FSI-3* are described in Table 1, as suggested in [23,30,62]:

Table 1. Configuration, boundary conditions, and initial conditions for the benchmark test.

Configuration Boundary Conditions Initial Conditions

• The dimensions for computational
domain: length L = 2.5 m, height
H = 0.41 m.

• Elastic solid medium (like rectangular
flag) dimensions: length l = 0.35 m,
height h = 0.02 m.

• The left bottom corner is at (0, 0).
• The point (0.2 m, 0.2 m) and r = 0.05 m

are center and radius of a cylinder,
respectively.

• All above set cylinder slightly below the
symmetry line of the computational
domain.

• Top and bottom boundaries of the
computational domain satisfies the
‘no-slip condition’.

• A parabolic profile is prescribed at
the left inlet, i.e.,

u f (0, y) =
¯
U
(

6y(H−y)
H2

)
, where

¯
U is

mean inflow velocity with flux
¯
UH.

• The zero-stress σ · n = 0 is
employed at the right outlet using
‘do-nothing ‘approach.

• For solid medium we consider no
external forces.

• All flow velocities and solid
medium displacements are
considered zero.

Finally, additional material constants used in the numerical test are listed in Table 2.

Table 2. Material constants for numerical test.

Material Constant Value

ρ f = ρs 103 kgm−3

ν f 10−3 m2s−1

c1 106 kgm−1s−1

6. Results and Discussion

In this section, the results of the study are used to analyze the combined effect of

linearly increasing Reynolds number Re and mean inflow velocity
¯
U on flow velocity

fields significantly at the micro-structural level by validating the results in a non-classical
framework with classical solutions present in literature. Further, the mesh independence
analysis is employed to verify the convergence of the results obtained in this study and
demonstrated for flow velocity fields.

6.1. Validation of Benchmark Test

The present study is a further extension of [62], which has been used to enhance
the results of the proposed mathematical modeling obtained by computing the classical
benchmark test FLUSTRUK-FSI-3* for the analysis of micro-structural characteristics of fluid
flow in a non-classical framework. To strengthen the obtained results, the present classical
benchmark is validated by comparing the results with classical benchmark solutions of
the literature according to the standards for validation in CFD [82]. For validation, the
flow needs to develop a Karman vortex street during computer simulation around t∼2s.
The validation is based on the comparison of horizontal and vertical displacements of
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the flagella end tip used for computing the frequency and the amplitude of oscillations,
as shown in Figures 4 and 5, respectively. The results are obtained with a mesh of 2199
vertices and a uniform time-step size of 0.005 s. The frequency 4.5 s−1 and the amplitude
0.03 validate the benchmark test FLUSTRUK-FSI-3* with classical solutions, as present
in [23]. In this computation, the notations µc and µr denote the coefficient of micro-inertia
and micro-rotational viscosity, respectively, while λ combines the shear spin and rotational
spin viscosities in the numerical simulation. Further, this validation is performed by taking

Reynolds number Re = 200 and mean inflow velocity
¯
U = 2, and both are related linearly.
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Finally, the number of vertices in the mesh, the frequency, the amplitude, and the time
step size of the present study are compared with the values those are given in [23,30] for
the proposed benchmark test, as listed below in Table 3.
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Table 3. Comparison of numerical data for validation with different studies.

Computation of FSI Tests No. of Vertices Frequency s−1 Amplitude Time-Step Size s

Present Study 2199 4.5 0.03 0.005

Hecht and Pironneau (2017) 2200 5.4 0.03 0.005

Dunne and Rannacher (2006) 2082 0.02226 1.92 0.005

After validation of the benchmark test, the results obtained are used to study the
combined effects of linearly increasing Reynolds number and mean inflow velocity for ana-
lyzing the micro-structural characteristics of fluid flow with mesh independence analysis.

6.2. Analysis of Combined Effects of Linearly Increasing Reynolds Number and Mean
Inflow Velocity

In the present study, the micro-structural characteristics of fluid flow are analyzed

by increasing Reynolds number Re and mean inflow velocity
¯
U linearly. As it is known

that flow velocity and Reynolds number are related directly, and the greater flow velocity
results in a high Reynolds number. It is therefore observed from the obtained results

that a uniform linear increase in Reynolds number Re and mean inflow velocity
¯
U show

the significant combined effect on the micro-rotation velocity field ω, and this effect
increases by increasing the values of both parameters. It is further noticed that although
the micro-rotational effect increases with increasing values, the micro-rotation velocity
profile maintains the same pattern at any particular location in the computational domain,
as shown in Figure 6.
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Furthermore, the combined effect of linearly increasing Re and
¯
U on the velocity field

u are also found very significant in a sense that horizontal and vertical velocity profiles

show great variation by maintaining the same pattern on each increasing value of Re and
¯
U

at any particular location in the computational domain, as displayed in Figures 7 and 8, re-
spectively. These results show similarity with those obtained by increasing micro-rotational
viscosity µr [68] and can be interpreted as that fluid particles experience almost the same

effect either by increasing Reynolds number Re and mean flow velocity
¯
U linearly or by

increasing micro-rotational viscosity µr. These results help us in understanding the be-
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havior of fluid particles inside the computational domain at the micro-structural level in
CFSI phenomena.
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6.3. Mesh Independence Analysis

To check the desired accuracy of results obtained from computer simulations of the
present study, it is very important to demonstrate the convergence of the obtained results
using mesh independence analysis. Usually, mesh convergence ensures that the results
obtained from the study are not affected by changing the size of the mesh. Following
convergence, additional mesh refinement does not affect the results and is independent of
the mesh. A mesh convergence study verifies that the proposed model has converged to a
solution and provides a justification for mesh independence where additional refinement
is unnecessary. To this aim, the mesh independence analysis is employed to verify the
convergence of results obtained in this study, which are demonstrated for flow velocity
fields in a non-classical framework, as shown in Figures 9–11, respectively.
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In the above mesh independence results, nel, nvt, and ndof represent the number
of elements, the number of vertices, and the number of degrees of freedom, respectively.
Further, it can be seen that all these mesh independence results nicely converge for different
meshes taken into account, which validate and strengthen the results obtained during
computer simulations for the present CFSI model in a non-classical framework.

Finally, a list of the number of elements, number of vertices, and number of degrees
of freedom used for obtaining the flow velocity profiles against the mesh independence
analysis are summarized in Table 5.

Table 5. Data for the mesh independence flow velocity profiles.

Number of Elements (nel) Number of Vertices (nvt) Number of Degrees of Freedom (ndof)

4101 2116 30,015

7369 3702 53,315

11,212 5764 81,012

15,502 7911 111,308

7. Conclusions

In this paper, the combined effect of linearly increasing Reynolds number Re and mean

inflow velocity
¯
U on flow velocity fields with mesh independence analysis has been studied

by employing a monolithic Eulerian formulation to Cosserat fluid–structure interaction
(CFSI) problems at a micro-structural level in a non-classical framework. The governing
mathematical modeling of the CFSI problem has been derived using underlying laws of
continuum mechanics. The results of the present study have been obtained by computing a
prominent classical FSI benchmark test FLUSTRUK-FSI-3* with FreeFEM++ software. This
benchmark test was validated by comparing the results with classical solutions present in
the literature. The frequency 4.5 s−1 and the amplitude 0.03 of oscillations with a mesh
of 2199 vertices and a uniform time-step size of 0.005 s validated the benchmark test in a
non-classical framework. The results obtained indicated that a uniform linear increase in

Reynolds number Re and mean inflow velocity
¯
U produced a significant combined micro-

structural effect on the micro-rotation velocity field ω, and a direct relation was found
between the micro-rotational effect and both parameters. Moreover, this combined effect
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of increasing Re and
¯
U on the velocity field u has also been observed as very significant

in the sense that horizontal and vertical flow velocity profiles experienced great variation

by maintaining the same pattern on each increasing value of Re and
¯
U at any particular

location in the computational domain. Furthermore, the mesh independence analysis
has been employed to verify the convergence of all results and demonstrated for flow
velocity fields in a non-classical framework. The results converged nicely on employing
the mesh independence analysis, which enhanced the desired accuracy of the obtained
results and strengthened the governing modeling of the proposed CFSI problem. Further,
the validation of the classical benchmark test made the results very significant and robust
for the analysis of the micro-structural characteristics of fluid flow, especially using mesh
independence analysis to ensure the desired accuracy of the obtained results. However, the
implementation of algorithmic description requires enhanced computational resources to
achieve the desired accuracy of results due to three additional micro-rotational degrees of
freedom (dof), which makes the CFSI model very complex. Finally, the present study can
be extended further for the analysis of the effects of micro-viscosity parameters on flow
velocity fields for such coupling problems in a non-classical framework.
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54. Basting, S.; Quaini, A.; Čanić, S.; Glowinski, R. Extended ALE method for fluid–structure interaction problems with large

structural displacements. J. Comput. Phys. 2017, 331, 312–336. [CrossRef]
55. Liu, J. A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near

contact of structures. J. Comput. Phys. 2016, 304, 380–423. [CrossRef]
56. Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [CrossRef]
57. Coupez, T.; Silva, L.; Hachem, E. Implicit boundary and adaptive anisotropic meshing. In New Challenges in Grid Generation and

Adaptivity for Scientific Computing; Springer: Cham, Switzerland, 2015; pp. 1–18.
58. Robinson-Mosher, A.; Shinar, T.; Gretarsson, J.; Su, J.; Fedkiw, R. Two-way coupling of fluids to rigid and deformable solids and

shells. ACM Trans. Graph. TOG 2008, 27, 1–9. [CrossRef]
59. Boffi, D.; Cavallini, N.; Gastaldi, L. The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J.

Numer. Anal. 2015, 53, 2584–2604. [CrossRef]
60. Wang, Y.; Jimack, P.K.; Walkley, M.A. A one-field monolithic fictitious domain method for fluid–structure interactions. Comput.

Methods Appl. Mech. Eng. 2017, 317, 1146–1168. [CrossRef]
61. Afra, B.; Delouei, A.A.; Mostafavi, M.; Tarokh, A. Fluid-structure interaction for the flexible filament’s propulsion hanging in the

free stream. J. Mol. Liq. 2021, 323, 114941. [CrossRef]
62. Hajano, N.H.; Khan, M.S.; Liu, L. Increasing Micro-Rotational Viscosity Results in Large Micro-Rotations: A Study Based on

Monolithic Eulerian Cosserat Fluid–Structure Interaction Formulation. Mathematics 2022, 10, 4188. [CrossRef]
63. Cosserat, E.; Cosserat, F. Theorie des Corps Déformables; A. Hermann et Fils: Paris, France, 1909.
64. Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–18. [CrossRef]
65. Eringen, A.C. Simple microfluids. Int. J. Eng. Sci. 1964, 2, 205–217. [CrossRef]
66. Condiff, D.W.; Dahler, J.S. Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 1964, 7, 842–854. [CrossRef]
67. Bazdar, H.; Toghraie, D.; Pourfattah, F.; Akbari, O.A.; Nguyen, H.M.; Asadi, A. Numerical investigation of turbulent flow and

heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J. Therm. Anal. Calorim. 2020, 139, 2365–2380.
[CrossRef]

68. Arasteh, H.; Mashayekhi, R.; Goodarzi, M.; Motaharpour, S.H.; Dahari, M.; Toghraie, D. Heat and fluid flow analysis of metal
foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J.
Therm. Anal. Calorim. 2019, 138, 1461–1476. [CrossRef]

69. Oveissi, S.; Toghraie, D.; Eftekhari, S.A. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous
fluid. Phys. E Low-Dimens. Syst. Nanostructures 2016, 83, 275–283. [CrossRef]

70. Lukaszewicz, G. Micropolar Fluids: Theory and Applications; Springer Science & Business Media: Berlin, Germany, 1999.
71. Hecht, F. New development in FreeFem++. J. Numer. Math. 2012, 20, 251–266. [CrossRef]

https://doi.org/10.1051/m2an:2007003
https://doi.org/10.1002/cnm.1031
https://doi.org/10.1016/j.cma.2013.10.006
https://doi.org/10.1016/0045-7825(95)92707-9
https://doi.org/10.1002/(SICI)1097-0363(19971130)25:10&lt;1207::AID-FLD616&gt;3.0.CO;2-R
https://doi.org/10.1137/060678439
https://doi.org/10.1016/j.jcp.2016.11.043
https://doi.org/10.1016/j.jcp.2015.10.015
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1145/1360612.1360645
https://doi.org/10.1137/140978399
https://doi.org/10.1016/j.cma.2017.01.023
https://doi.org/10.1016/j.molliq.2020.114941
https://doi.org/10.3390/math10224188
https://doi.org/10.1512/iumj.1967.16.16001
https://doi.org/10.1016/0020-7225(64)90005-9
https://doi.org/10.1063/1.1711295
https://doi.org/10.1007/s10973-019-08637-3
https://doi.org/10.1007/s10973-019-08168-x
https://doi.org/10.1016/j.physe.2016.05.004
https://doi.org/10.1515/jnum-2012-0013


Mathematics 2023, 11, 2074 21 of 21

72. Kim, C.; Jung, M.; Yamada, T.; Nishiwaki, S.; Yoo, J. Freefem++ code for reaction-diffusion equation–based topology optimization:
For high-resolution boundary representation using adaptive mesh refinement. Struct. Multidiscip. Optim. 2020, 62, 439–455.
[CrossRef]

73. Dapogny, C.; Frey, P.; Omnès, F.; Privat, Y. Geometrical shape optimization in fluid mechanics using FreeFem++. Struct. Multidiscip.
Optim. 2018, 58, 2761–2788. [CrossRef]

74. Krivovichev, G.V. A computational approach to the modeling of the glaciation of sea offshore gas pipeline. Int. J. Heat Mass Transf.
2017, 115, 1132–1148. [CrossRef]

75. Belytschko, T.; Liu, W.K.; Moran, B.; Elkhodary, K. Nonlinear Finite Elements for Continua and Structures; John Wiley & Sons:
Hoboken, NJ, USA, 2014.

76. Batra, R.C. Elements of Continuum Mechanics; AIAA: Reston, VA, USA, 2006.
77. Bath, K.J. Finite Element Procedures; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996.
78. Marsden, J.; Hughes, T.J.R. Mathematical Foundations of Elasticity; Dover Publications: New York, NY, USA, 1993.
79. Ciarlet, P.G. Mathematical Elasticity: Volume 1: Three-Dimensional Elasticity; North Holland Publishing Company: Amsterdam, The

Netherlands, 1988.
80. Schafer, M.; Turek, S. Benchmark computations of laminar flow around a cylinder. Notes Numer. Fluid Mech. 1996, 52, 547–566.
81. Turek, S.; Hron, J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar

incompressible flow. In Fluid-Structure Interaction; Springer: Berlin, Heidelberg, 2006; pp. 371–385.
82. American Society of Mechanical Engineers. Standard for Verification and Validation in Computational Fluid Dynamics and Heat

Transfer: An American National Standard; American Society of Mechanical Engineers: New York, NY, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00158-020-02498-3
https://doi.org/10.1007/s00158-018-2023-2
https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.117

	Introduction 
	Cosserat Fluid–Structure Interaction Modeling 
	Fluid–Structure Interaction Problem Description 
	Coupling Conditions 
	Kinematic Condition 
	Dynamic Condition 
	Geometric Condition 

	Field Variables and Tensors 
	Conservation Laws 
	Constitutive Relations 
	Derivation of the Mooney–Rivlin Stress Tensor 
	Mathematical Formulation of Cosserat Fluids Theory 

	Variational Formulation 
	Discretization 
	Monolithic Semi-Implicit Time Discretization 
	Monolithic Finite Elements Space-Discretization 
	Finite-Element Mesh Updating Strategy 

	Numerical Tests 
	Description of Benchmark Test 
	Configuration, Boundary, and Initial Conditions 

	Results and Discussion 
	Validation of Benchmark Test 
	Analysis of Combined Effects of Linearly Increasing Reynolds Number and Mean Inflow Velocity 
	Mesh Independence Analysis 

	Conclusions 
	References

