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Abstract: RGB-D-based technology combines the advantages of RGB and depth sequences which
can effectively recognize human actions in different environments. However, the spatio-temporal
information between different modalities is difficult to effectively learn from each other. To enhance
the information exchange between different modalities, we introduce a SlowFast multimodality
compensation block (SFMCB) which is designed to extract compensation features. Concretely, the
SFMCB fuses features from two independent pathways with different frame rates into a single
convolutional neural network to achieve performance gains for the model. Furthermore, we explore
two fusion schemes to combine the feature from two independent pathways with different frame rates.
To facilitate the learning of features from independent multiple pathways, multiple loss functions
are utilized for joint optimization. To evaluate the effectiveness of our proposed architecture, we
conducted experiments on four challenging datasets: NTU RGB+D 60, NTU RGB+D 120, THU-READ,
and PKU-MMD. Experimental results demonstrate the effectiveness of our proposed model, which
utilizes the SFMCB mechanism to capture complementary features of multimodal inputs.

Keywords: action recognition; multimodality compensation; SlowFast pathways; swin transformer;
dual-stream

MSC: 68T07

1. Introduction

Human action recognition is widely used in computer vision research, such as intel-
ligent video surveillance, intelligent human—computer interaction, robot control, video
retrieval, pose estimation, and many other fields [1-3]. Since the environments faced by
human action recognition are diverse and complex, capturing effective features for action
recognition is still a challenging problem. Recently, several works focused on exploiting
the complementary information provided by RGB and depth [4-6] models have made
considerable progress.

Human action recognition in RGB videos has been extensively studied in the past
decades. In the early years, the method was to manually extract the behavioral features
in the video that can represent the temporal and spatial changes of human action. There
are mainly methods involving spatiotemporal volume [7,8], spatiotemporal interest points
(STIP) [9] and trajectory [10,11]. Deep learning methods have a powerful ability to learn
and analyze under complex network structures, which has made them become the main-
stream of current human behavior research. Two-stream-based networks [12] can capture
different types of information from different input models with little computational cost,
but it is difficult to learn complete action sequences. Several works [13,14] have tried dense
temporal sampling to learn more motion information, but sampling frames may generate
high computational costs. Extracting larger features from the spatiotemporal dimension,
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the 3D convolutional neural network (CNN)-based approach achieves better performance
in human behavior recognition. Its drawback is the high number of parameters and com-
putational complexity. Transformer-based methods can achieve remarkable results in the
global connection mode, but these methods rely on the pre-training of large-scale datasets
and train with many parameters. Over the years, numerous studies have proposed the
integration of RGB, depth, and skeleton modalities for accurate human action recogni-
tion, with works including those by [4,15-19]. Decision-level fusion methods have shown
promising results that aim to capture the unique features of each modality independently
and combine them to produce the final classification score. However, this method does not
use neural networks to learn features from each other and cannot capture complementary
information. Based on the good performance of two-stream structure and multimodal
learning strategies, we propose a SlowFast multimodality compensation network for RGB-
D action recognition. The framework consists of two separate networks and SFMCB to
capture spatial semantics and motion information. To learn the rich color and texture infor-
mation in RGB video, the fast pathway runs at high frame rates and captures motion with
fine temporal resolution. In addition, the fast pathway makes it lightweight by reducing the
number of channels to reduce the complexity of the network model for video recognition.
The slow pathway runs at low frame rates to capture spatial semantics and distance infor-
mation on depth sequences. SFMCB aims to extract compensatory and more discriminative
features from fast pathway and slow pathway source data for action recognition.
The main contributions of this paper are summarized as follows:

*  An efficient SlowFast multimodality compensation framework is proposed to learn
complementary features. Our framework uses a single swin transformer network [20]
to learn spatio-temporal features from RGB and depth sequences separately. To en-
hance the generalization ability of the model, the extracted features are fed into SFMCB,
which effectively learns complementary features;

*  We explore two fusion schemes to combine the feature from two independent path-
ways with different frame rates. To facilitate the learning of features from independent
multiple pathways, multiple loss functions are utilized for joint optimization in the
SlowFast Compensation Networks. To ensure comprehensive analysis and evaluation,
we validate our proposed architecture on multiple RGB-D datasets.

The rest of this paper is organized as follows: In Section 2, we provide a brief overview
of some related work. Section 3 provides an overview of our proposed framework and
presents the details of the architecture. In Section 4, we present our experimental results
and analyze the performance of the model. Finally, we summarize our work and draw
conclusions in Section 5.

2. Related Work

At present, human behavior recognition is one of the hotspots in the field of com-
puter vision, and its working process is mainly divided into two parts: feature extraction
and behavior recognition. Feature extraction needs to extract features which represent
the key information from the video, and its features directly have a decisive impact on
the recognition effect. This paper briefly introduces human action recognition methods
for single-modality action recognition, multimodality action recognition, and attention
mechanism of video understanding.

2.1. Single-Modality Action Recognition

In videos, traditional methods have limitations which extract spatio-temporal behav-
ioral features through manual methods, such as Histogram of Oriented Gradient (HOG) [8]
and STIP [9]. In recent years, methods of deep learning have been able to learn and distin-
guish human action features from raw video frames, exhibiting superior representation
capabilities and powerful performance. To address the challenge of capturing motion infor-
mation, Ref. [21] proposed a temporal template that computes frame-to-frame differences
to capture the entire motion sequence. Ref. [12] introduced a two-stream CNN model with
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a spatial network and a temporal network. To reduce the cost of computing optical flow,
Ref. [22] proposed a method that accelerates deep two-stream architecture by replacing
optical flow with motion vector. Furthermore, the method of training 3D convolutional
to explore spatiotemporal features has attracted considerable attention. In order to simul-
taneously understand the spatio-temporal features in videos, Ref. [23] pioneered the use
of 3D convolutional networks for simultaneous spatio-temporal feature learning in action
recognition. In particular, C3D [24] developed an end-to-end framework that effectively
adapts to deep 3D convolutional networks for spatio-temporal feature learning from raw
videos. However, C3D ignores the long-term dependence of video on spatio-temporal and
performs poorly on standard benchmarks. A Long-term Temporal Convolution (LTC) is
proposed in [14] to build the long-term temporal structure by reducing the spatial resolu-
tion and increasing the temporal extent of the 3D convolutional layers. Ref. [25] proposed
a nolocal operation that captures long-term dependencies, which refers to modeling the
correlation between any two locations in a feature map.

2.2. Multimodality Action Recognition

In complex scenes, single-modal action recognition has limitations. In order to improve
the accuracy and robustness of human behavior recognition, multi-modal information is
combined to learn complementary features. The two-stream structure proposed by [12]
is a solution to the problem of insufficient information caused by a single modality. This
framework consists of a spatial network and a temporal network, which are combined to
obtain the final result by merging the prediction scores. Another approach to addressing the
limitations of single-modal action recognition was proposed by [26] that developed a two-
stream architecture which incorporated low-resolution RGB frames and high-resolution
center crops. Since then, researchers have continued to build on these classic two-stream
frameworks, exploring new ways to improve their performance. Ref. [27] proposed a
temporal segment network (TSN), which performs sparse temporal sampling of the video,
and fuses the classification scores of the segments. Depth sequences and RGB are treated as a
single entity in [28], and scene flow information is being extracted from them. First, dynamic
images are generated from feature sequences, then different dynamic images are input into
two different convolutional neural networks, and finally, their classification scores are fused
for human action recognition. To explore complementary information, jointly training
multiple networks has attracted considerable attention. Ref. [16] improved performance
from videos by converting RGB and depth sequences into two pairs of dynamic images
(one pair for RGB and one pair for depth), and jointly training a single neural network to
recognize human actions using both types of dynamic images. A Modality Compensation
Network (MCN) is proposed [18] to explore common features between different modalities.
In order to facilitate mutual learning of features extracted from dynamic images of multiple
modalities, Ref. [29] proposed a novel Segment Cooperative ConvNet (SC-ConvNet), which
utilizes a rank pooling mechanism [30] to construct these features. In another work, Ref. [31]
introduced a cross-modality compensation block (CMCB) that improved the interaction
between different modalities by jointly learning compensation features. To improve the
performance of human action recognition, 3D convolutional models with two-stream or
multi-stream designs are studied [32-35]. The work of [32] designs a novel 3D convolutional
two-stream network, which is an Inflated 3D ConvNet (I3D) that is based on 2D ConvNet
inflation. Feichtenhofer [35] introduced a two-stream 3D convolutional framework, which
comprises a slow pathway for low frame rate and a fast pathway for high frame rate to
capture semantic and motion information.

2.3. Attention Mechanism for Video Understanding

In recent years, attention-based neural networks to explore video understanding work
have attracted considerable attention, such as person reidentification [36] and video object
segmentation [37]. The work of [38] proposes using the Transformer model, originally
designed for natural language processing, for image recognition tasks. To address the
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limitation of handling long token sequences in videos, Ref. [39] proposed a transformer-
based approach which decomposes the different components of the transformer encoder
along the temporal and spatial dimensions. In order to improve attention efficiency, Ref. [40]
proposes a novel directed-attention mechanism to understand human actions in exact order.
A trajectory attention block (trajectory attention block) is proposed [41] to enhance the
robustness of human action recognition in dynamic scenes which generates a set of specific
trajectory markers along the spatial dimension and performs pooling operations along
the temporal dimension. The work of [42] proposes a multi-view transformer for video
recognition that laterally connects multiple encoders to efficiently fuse mutual information
from different features within the video. A self-supervised Video Transformer (SVT) is
designed by [43], which allows learning cross-view information and the dependencies
between motion from video clips of different spatial extents and frame intervals. In addition,
a lot of work has proposed effective methods for the memory and computational overhead
issues in Transformer-based action recognition. To reduce the memory and computation
constraints, a Shifted Chunk Transformer (SCT) was designed by [44], which involves
dividing each frame into several local patches and inputting them into the image blocks of
Locality-Sensitive Hashing (LSH). A Recurrent Visual Transformer (RViT) was proposed
by [45] to reduce memory, which utilizes an attention gate mechanism and is operated in a
recurrent manner.

3. Slowfast Multimodality Compensation Block

Our network structure consists of two separate slow and fast pathway networks of
swin transformers, which are designed to capture finer spatio-temporal features in RGB-D
modalities. A SlowFast multimodality compensation block fused with a swin transformer
network is proposed to learn compensated information from RGB and depth modalities.
With this approach, the network can enhance the robustness of the introduced slow and fast
pathway networks for action recognition. The proposed framework for human recognition
contains two important components, as illustrated in Figure 1: independent Swin-S and
Swin-B network designs in the upper and lower parts, and the SlowFast multimodality
compensation block in the middle.
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Figure 1. SlowFast multimodality. Compensation fusion swin transformer. Network has two
separate pathways and a SlowFast multimodality Compensation block. The slow pathway learns
2D spatiotemporal features in deep images at a low frame rate. The fast pathway captures color and
texture information in RGB images at high frame rates. The SlowFast multimodality Compensation
block learns compensation information from RGB and depth images by using laterally connected
fusion. We use F;, S; and Kf to describe the processing of information for RGB, depth, and SlowFast
multimodality compensation, respectively. Swin-S illustrates a small version of the swin transformer.
Swin-B illustrates a base version of the swin transformer.

3.1. Baseline Mode

Based on the dual-stream framework, two neural networks operating at different frame
rates are designed to capture spatio-temporal features with different properties from the
entire RGB and depth sequence. The proposed two-stream architecture for learning spatio-
temporal information consists of two horizontal and independent pathways: one pathway
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processes depth sequences of low frame rate through the Swin-S network; the other pathway
processes RGB sequences of high frame rate through the Swin-B network. In addition,
SlowFast multimodality compensation block is designed to fuse data from two independent
paths with different frame rates into a single convolutional neural network, with the aim of
achieving higher performance gains for the model. The complete structure of the proposed
network can be seen in Figure 1.

The slow path processes the depth dynamic images of segment 7, while weakening its
temporal modeling ability and enhancing its spatial modeling ability. The fast pathway
processes a dynamic sequence from A x T RGB fragments, where A > 1 represents the frame
rate ratio between the fast and slow pathways. In our experiments, a typical value of A = 2
is used. The fast pathway has a higher input frame rate and utilizes a significantly lower
channel capacity to achieve good performance for the fast pathway model. An example
instantiation of the dual-stream SlowFast Swin Transformer network is shown in Table 1,
where the temporal-spatial sizes are denoted by T x (H x W), with T representing the
length of the temporal dimension, and H x W representing the height and width of a video
frame. As shown in Table 1, the slow pathway of T = 4 frames is sparsely sampled from
the 64 frames raw clip and converted to 128 channels as the input of the network. Fast
pathway with T = 8 frames and converted to 96 channels as the input of the network.

For the two pathways we proposed, which are independent of each other, one pathway
does not learn the representations captured by the other pathway. To build the complemen-
tary information of the two pathways to be fused, we design two concatenation methods
which enable matching of feature sizes before fusion. The characteristic shape of the slow
pathway is denoted as {T, H, W, C}, and the characteristic shape of the fast pathway is
denoted as {AT, H, W, uC}. We constructed the following two transformation methods:

e Time-to-depth: We split and join {AT, H, W, uC} into {T, H, W, AuC}, meaning that
we split all time dimensions into A parts, and then concatenate at the channel;

e Time-Step Sampling: We strictly sample at time step A, so {AT, H, W, uC} becomes
{T,H,W,uC}.

Table 1. An illustrative example that demonstrates the implementation of the SlowFast multimodality
compensation fusion swin transformer networks. The output sizes are denoted by T x (H x W) for
temporal and spatial resolutions. Here, the frame rate ratio is A = 2 and the frames of slow pathway
T is 4. Swin transformer blocks are shown by parentheses. S: slow pathway. F: fast pathway. Output
sizes: T x (H x W).

Stage Slow Pathway Fast Pathway Slow Output Fast Output
raw - S 64 x (224 x 224) F:64 x (224 x 224)
data layer - S:4 x (224 x 224) F:8x (224 x 224)
conv 4 x 4,128, stride 4 x 4 4 x 4,96, stride 4 x 4 S:4x (56 x 56) F:8x (56 x 56)
stage 1 (dim = 128, head = 4) (dim = 96, head = 3) S:4 % (56 x 56) F:8x (56 x 56)
stage 2 (dim = 256, head = 8) (dim = 192, head = 6) S:4x (28 x28) F:8x (56 x 28)
stage 3 (dim = 512, head = 16) (dim = 384, head = 12) S:4x (14 x 14) F:8x (14 x 14)
stage 4 (dim = 1024, head = 32) (dim = 768, head = 24) S:4x(7x7) F:8x(7x7)

3.2. SlowFast Multimodality Compensation Block

It is difficult for dual-stream swin transformer networks to realize each other’s exis-
tence to capture compensating features and improve the recognition accuracy of the model.
In action recognition, information of complementary has always been an effective method
and a research difficulty. Motivated by the superior performance of the compensation
networks, we propose a SlowFast Multimodality Compensation Block (SFMCB). On the
baseline model, the features extracted in the third stage of the dual-stream swin transformer
network are connected and added to the SlowFast Multimodality Compensation Block to
learn complementary information.
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As illustrated in Figure 2, the proposed SFMCB first collects features from two indepen-
dent information streams, reshapes and transposes them into a unified pathway, and then
applies convolutional layers for further learning. Specifically, SFMCB consists of two 1 x 1
convolutional layers and one 3 x 3 convolutional layer, where the first convolutional layer
converts the number of channels to 1024. In addition, each convolutional layer is followed
by a batch normalization (BN(-)) layer and a (ReLU(+)) activation function. Formally,
the features F; and S; are captured from the Fast and Slow pathways after stage 3 which
are concatenated as

Ky =FE @S, M

where @ represents concatenation operator we designed. Furthermore, we define the input
of the network in the a 1 x 1 convolution layer and a 3 x 3 convolution layer as

lel(K) = RELU(BN(f(Wle X K))), (2)

F3><3(K) = RELU(BN(f(W3><3 X K))), (3)

where K is the feature obtained by connecting the RGB and depth modalities, W41 is
a standard 1 x 1 convolution kernel and Wjsy3 is a standard 3 x 3 convolution kernel.
Therefore, total parameters of the entire network framework are calculated as

Piotal = Prgp + Pdepth + Psrmcs, 4)

where Prgp is the Swin-5 network parameter that is trained on RGB Modality, Py, is the
Swin-B network parameter that is trained on depth Modality, and Psrcp is the parameters
of the SFMCB block.
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Figure 2. The structures of SEMCB. F, and S; represent features extracted after stage 3. @ indicates

v
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the transformation methods which connect F;, S; with different channel numbers (Time-to-depth or
Time-Step Sampling). Complementary features are captured with convolutional networks.

3.3. Joint Optimization and Fusion

The proposed compensation framework differs from models that solely rely on a single
RGB or depth frame, as it operates on a pair of images (RGB and depth) and captures their
respective features. To facilitate the learning of features from two independent pathways
and capture complementary information that enhances discrimination ability, multiple
loss functions are utilized for joint optimization in the SlowFast Compensation Networks.
To improve the recognition effect, we apply the segmentation training strategy proposed
in [27] to obtain dynamic images, and then input dynamic images of RGB and depth into
the network at different frame rates. During the process of the proposed network to train,
we employ cross-entropy loss function to optimize learning and class probability score is

formulated as
g(WcX+bc)
S —
chi:l e(wCiX+bfi)

pro. = log (5)

where weight W, bias b for the softmax layer and C represents the number of action
categories. The weights and biases are optimized during the training process, with the
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goal of minimizing the cross entropy loss and improving the accuracy of the classification
model. The class probability scores for the SlowFast multimodality compensation fusion
block (SFMCB), RGB, and depth modalities are represented by pro._srpycp, Proc—RrGB.
and pro._geptn, respectively. Additionally, the loss functions for different modules are
optimized using the following formulas:

C
Lsrmca(Y,C) = — Y ye(proc_srmcs), (6)
c=1
C
Lrce(Y,C) = — Y ye(proc_rcs), and 7)
c=1
C
Ldepth (]// C) == Z Ye (proc—depth)/ (8)
c=1

where y, is the ground-truth label for the ¢ action.

During testing, a pair of RGB and depth sequences with different frame rates are
simultaneously input into the proposed trained network. Then, the scores for each category
can be obtained by compensating learning from RGB and depth modalities. Based on the
analysis of various aggregation functions by [27], we choose max, average, and product for
feature aggregation in our proposed architecture, resulting in the formation of the fusion
vector vy, which is denoted as follows:

U fusion = URGB © Udepth © USFMCB, )

where vrgp and vy, represent scores obtained from the independent Fast and Slow
pathways using the RGB and depth modalities, while vsry;cp represents the scores obtained
from the complementary features learned by SFMCB, and © is aggregation functions
which are the element max, element sum, or element multiplication (Mul). To obtain the
corresponding class labels, we use the score of vgrpicp as the probability distribution of the
test and choose the largest score as the result.

4. Experimental Results and Analysis

For evaluation, we perform experiments on the following RGB-D datasets: the NTU
RGB+D 60 dataset [46], NTU RGB+D 120 dataset [47], THU-READ [48], and PKU-MMD [49].
Furthermore, we analyzed the experimental results to further probe the effectiveness of
each component in our work.

4.1. Datasets

NTU RGB+D 60 is a multimodal dataset for action recognition and behavior analysis. It
contains RGB and depth images captured from 3D sensors and RGB cameras, which record
human behaviors for 60 action categories. Two different evaluation protocols are used to
assess to generalization abilities of action recognition algorithms. For cross-subject (C-Sub),
the training and testing sets have 40,320, and 16,560 samples, respectively. For cross-view
(C-View), there are 37,920 and 18,960 samples in the training and testing sets, respectively.

NTU RGB+D 120 dataset is a large-scale dataset for RGB+D human action recognition,
compared with the RGB+D 60 action recognition dataset version, which provides more
video samples, action categories, human subjects and camera views. The dataset is jointly
captured by three cameras in different orientations with 32 settings and contains 106
different subjects with a total of over 114,000 video samples and eight million frames.
A total of 120 action categories are captured in this dataset, which includes daily activities,
mutual activities, and health-related activities. This data provides four distinct data types:
RGB, depth, skeletal joints, and infrared radiation. In the cross-subject (C-Sub) protocol,
the 106 subjects were divided into separate training and testing groups, where the training
group utilized samples described in [47], and the remaining samples were used for testing.
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Under the cross-setup (C-Set) protocol, training and testing groups were determined based
on the set ids, where samples with even set ids were utilized for training samples with odd
set ids were used for testing.

PKU-MMD is a comprehensive, multimodal 3D dataset designed to facilitate a deep
understanding of human behavior. The dataset encompasses 66 distinct objects and was
captured from three different camera views. This dataset contains 1076 long video se-
quences, each video sequence contains 20 action instances of 51 action classes, and nearly
20,000 motion instances. The dataset also provides data sources for different modalities,
which include depth maps, RGB images, skeletal joints, infrared sequences, and RGB videos.
Action recognition was performed following a cross-subject (C-Sub) and cross-view (C-
View) evaluation protocol. For C-Sub, the training and testing sets contain 18,134 samples
and 2600 samples, respectively. For C-View, the training set contains videos from camera 1
and camera 3, while the test set contains videos from other cameras. The training set and
test set contain 13,813 samples and 6919 samples, respectively.

THU-READ dataset record videos for egocentric action recognition, which contains
40 different actions performed by eight subjects. THU-READ defines two evaluation
protocols which are cross-group (CG) and cross-subject (CS). The CG protocol categorizes
video samples into three distinct groups based on the number of times each action is
performed, with one group allocated for training and the remaining groups used for testing.
Conversely, the CS protocol splits video samples into four groups based on the subjects
featured in the footage, with three groups designated for training and the fourth used for
testing. We use the two protocols described in [48] and calculated the recognition accuracy
on all groups and splits.

4.2. Implementation Details

Network Inputs: To reduce redundancy, we resize both RGB and Depth sequences to
224 x 224 during model training. In the RGB modality, certain frames are selected from the
original video to construct a dynamic image. Similarly, in the depth modality, the dynamic
image is obtained by applying the time span A based on the range of the RGB image, and is
discretized into intervals within the range of [0, 255] via linear transformation. To further
augment the training samples, random cropping and horizontal flipping are applied to
RGB and Depth sequences. Unless otherwise specified, the parameter 7 is 4 and A is fixed
to2.

Model Training: During training, stochastic gradient descent (SGD) was chosen as the
optimizer with weight decay and momentum set to 0.0001 and 0.9, respectively. For the
learning rate, an initial value of 0.001 was set and a Step Scheduler was used to decrease it.
For THU-READ and PKU-MMD, the preset step number was set to 4 with a learning rate re-
duction ratio of 0.6. For NTU RGB+D 60 and NTU RGB+D 120, the preset step number was
set to 20 with a learning rate reduction ratio of 0.1. To enhance the representation of robust
features and reduce the risk of overfitting, dropout was employed with a regularization
ratio of 0.5.

Model Testing: Our testing is conducted in accordance with the testing protocol pro-
posed in [27], in which different dynamic images are constructed to evaluate the proposed
network. The final recognition result averages the classification accuracies across all action
categories. To ensure consistency with the training phase, the input for testing is resized
to 224 x 224 and augmented with random cropping and horizontal flipping techniques.
Unless otherwise specified, the fusion method used is sum.

4.3. Efficacy of the Proposed Method

We compare the proposed method to evaluate the effectiveness of the SlowFast Mul-
timodality Compensation network, using several RGB-D datasets for experimentation.
To balance the parameters of the proposed framework, we selected the swin transformer in
the following experiments. Specific configurations vary depending on the network model,
and further details are provided below:
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. Swin-S: The small model in the swin transformer serves as the backbone of a TSN, which
is designed to process RGB sequences for action recognition in a single-modality approach;

e  Swin-B: The base model in the swin transformer serves as the backbone of a TSN,
which is designed to process depth sequences for action recognition in a single-
modality approach;

e FE-Swin: The dual-stream architecture is used to learn features from RGB and depth
modalities separately, and then combine the scores for action recognition. The back-
bone of the dual-stream structure is Swin-S and Swin-B, respectively;

*  J-Swin: Joint optimization based on Swin-S and Swin-B;

¢ J-Swin-SEMCB-I: J-Swin transformer with SFMCB and concatenation methods of
Time-to-depth;

e J-Swin-SFMCB-II: J-Swin transformer with SEMCB and concatenation methods of
Time-Step Sampling.

(1) Joint Optimization: We evaluate the impact of joint optimization by conducting
experiments to compare the performance of various network architectures on the PKU-
MMD. Specifically, we use Swin-S with ImageNet pre-training and Swin-B with ImageNet21
pre-training in all experiments. It is worth noting that 7 is set to 4 in the slow pathway and
the frame rate ratio between slow and fast is set to 2. Specifically, the sampling lengths in
RGB and depth modalities are 8 and 4, respectively. Table 2 shows the results.

Table 2. Conducted experiments on the PKU-MMD with RGB and depth as inputs to compare the
accuracy of F-Swin and J-Swin. The notations for the header were specified as [RGB + depth], which
corresponds to input with SlowFast ratio.

Model Modality C-Sub C-View
Swin-S RGB 76.56% 77.73%
Swin-B depth 73.57% 74.26%
F-Swin RGB + depth 80.34% 82.23%
J-Swin [RGB + depth] 89.65% 90.05%

A weighted average of the two streams based on F-Swin is first taken, resulting in
accuracies of 80.34% (C-Sub) and 82.23% (C-View), which outperform either single modality.
Additionally, J-Swin method achieves approximately 9.31% and 7.82% improvements in
accuracy on the two protocols, respectively. The observed enhancements serve as a proof
of concept that the Joint Optimization approach can substantially boost the accuracy of
human action recognition.

(2) Impact of parameter 7: The parameter T controls the number of sampling frames
of the depth sequence, and increasing T can usually improve the spatiotemporal repre-
sentation performance of depth sequences. In the conducted experiments, we varied the
value of T from 2 to 8, while keeping the same value of A to evaluate the recognition
performance. The experimental results are expressed and summarized in Figure 3. As T
increases, the required spatio-temporal features are more abundant, and the corresponding
efficiency is also improved. Increase 7 to obtain corresponding recognition performance
is not absolute, which refers to T being large enough and the spatiotemporal information
contained in the dynamic image can be used for most action video sequences.

(3) Comparing various fusion techniques: Based on J-Swin-SFMCB-], different com-
monly fusion methods are evaluated to obtain the final classification, which includes
maximum, product, and mean score fusion. As shown in Table 3, we summarize the
experimental results of three commonly used fusion methods on the PKU-MMD dataset
and compare their performance. Compared with Max, average and product fusion can
achieve more ideal results, where average fusion is used for remainder of experiments in
this paper.
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T
Figure 3. Compare the performance of different values of the parameter T on the PKU-MMD dataset
using J-Swin-SEMCB-II with [RGB + depth]. Specifically, the T from 2 to 8 and keep A constant to

evaluate the recognition accuracy.

Table 3. Comparative accuracy of the proposed J-Swin-SFMCB-I using [RGB + depth] on the PKU-
MMD dataset.

Fusion Methods Modality C-Sub C-View
Max [RGB + depth] 88.82% 89.41%
Product [RGB + depth] 90.72% 91.61%
Sum [RGB + depth] 90.52% 91.36%

(4) Convergence of J-Swin-SFMCB-II: The 7 is set to 5 in the experiments. Figure 4
displays the accuracy curves of training and validation for the two evaluation protocols
on the PKU-MMD using J-Swin-SEMCB-II. The model converges rapidly, with the entire
training process taking approximately 32 iterations. On the C-Sub and C-View protocols,
the validation accuracy is able to converge to nearly 100% and best accuracy of training
obtained 92.59% and 93.96%, respectively.

100 199.28] 100
93.96]
90 90
80 80
70 70

60 3 60

50

Accuracy(%)
w
S
Accuracy(%

40 40
30 30

20 —e— Validation 20 —e— Validation

W Validation best W Validation best
10 —e— Training 10 —e— Training
m  Training best ®  Training best

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Iterations Iterations

(a) C-Sub (b) C-View

Figure 4. The experiments conducted on the PKU-MMD dataset using J-Swin-SFMCB-II with [RGB +
depth] as input yielded high levels of training and validation accuracy.

(5) Effectiveness from SEMCB: To interpret the benefits of SEMCB in capturing com-
plementary features, we conduct rigorous experiments on the PKU-MMD dataset. Figure 5
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expresses the experimental results. According to the analysis of the results, the proposed
framework of ]-Swin achieves recognition performances of 89.65%(C-Sub) and 90.05%(C-
View). Meanwhile, under the work of SFMCB, the recognition performance of the frame-
work on J-Swin-SFMCB-I has also been improved by 1.07% and 1.56%, respectively. Com-
pared with J-Swin, the recognition accuracy of the J-Swin-SFMCB-II framework are also
increased by 2.81% and 2.96%, respectively. The improvement factor can be attributed to
the compensation function captured by SEMCB from the slow and fast pathways.

[89.65%] [90.72%] [92.46%] [90.05%] [91.61%] [93.01%]
80 A 80 -
60 - 60 -
S S
g %
40 - 40 -
20 4 201
0- . 0-
JSwin  J-Swin-SFMCB-l }J-Swin-SFMCB-I JSwin  J-Swin-SFMCB-I J-Swin-SFMCB-I
(a) C-Sub (b) C-View

Figure 5. Comparisons with different benefits for C-Sub and C-View protocols on the PKU-MMD
dataset using the designed model with different structures.

4.4. Comparison to the State-of-the-Art

In this section, we conduct multiple experiments on the THU-READ, PKU-MMD,
NTU RGB+D 60 dataset and NTU RGB+D 120 datasets to evaluate the effectiveness of
the proposed framework and compare our model in optimal settings with state-of-the-art
approaches with different input modalities.

The experimental comparison results on the THU-READ dataset are shown in Table 4,
where the experimental parameter T = 2. We can see from Table 4 that J-Swin-SFMCB-II
achieves 87.0% and 94.2% for the CS and CG protocols, respectively. The confusion matrix
of the CG protocol on the THU-READ dataset is shown in Figure 6 with group 3 used for
training and the remaining groups used for testing. The proposed recognition framework
performs perfectly on “bounce_ball”, “cut_fruit”, “fetch_water”, “fold”, “ wear_watch”, etc.
However, some actions did not achieve accurate prediction results, such as “open_door”,
“push_button”, and “thumb”. This is largely due to the similarity in appearance and action
of the recognized objects.

Table 4. Comparing our method using [RGB + depth] with previous action recognition methods on
the THU-READ dataset.

Method Modality CS CG
Two-stream [12] RGB + flow 55.1% 89.0%
J-ResNet-CMCB [31] <VDI, DDI> 77.2% 92.3%
DSCMT [6] <VDI, DDI> 76.6% 92.0%
J-Swin-SEMCB-1 [RGB + depth] 85.6% 93.1%

J-Swin-SFMCB-II [RGB + depth] 87.0% 94.2%
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zip_up
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wash_hand
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throw_paperplane
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insert_tube
fold
fetch_water
draw_paper
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clean_table
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Predicted label

Figure 6. The confusion matrix for J-Swin-SFMCB-II was obtained through the CG protocol on
the THU-READ dataset with input [RGB + depth], where group 3 was used for training and the
remaining two groups were used for testing.

By considering the effect of the parameter 7 on the results, we compare our model
in T = 5 with several approaches, and the comparison results for the C-Sub and C-Set
protocols on the PKU-MMD are shown in Table 5. Specifically, the proposed J-Swin-
SEMCB-I with joint training can be observed to outperform the previous work J-ResNet-
CMCB [32] by 1.2% and 0.9%, respectively. Furthermore, the proposed J-Swin-SFMCB-II
model achieves recognition accuracies of 92.6% and 94.0% which outperforms all compared
methods on the C-Sub and C-Set protocols, respectively.

Figure 7 displays the confusion matrices for the C-Sub protocols on the PKU-MMD
dataset. The J-Swin-SFMCB-II model effectively differentiates actions with high similarity
on the protocols. In particular, the C-Sub protocol achieves accurate recognition of many
typical actions with 100% accuracy, such as “hand shaking”, “jump up”, and “brushing
hair”. In addition, actions such as “putting something inside a pocket”, “taking something
out from a pocket”, “saluting”, and “throwing” are often confused. This misclassification
can be mainly attributed to the similarity in motion between the two interactions or high
similarities in object appearance. The results demonstrate that the proposed J-Swin-SFMCB-
II can distinguish actions and improve recognition performance by learning complementary
information from jointly optimized networks.
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writing
wipe face

wear on glasses

wearjacket

use a fan feeling warm
typing on a keyboard

touch neck(neckache)
touch head (headache)
touch chest

touch back(backache)
throw

tear up paper

taking a selfie

take out something from pocket
take off jacket

take off glasses

take off a hat/cap

standing up

sitting down

salute

rub two hands together
reading

put something inside pocket
put on a hat/cap

pushing other person

punching/slapping other person

True label

pointing to something with finger
point finger at the other person
playing with phone/tablet

pickup

pat on back of other person
make a phone call/answer phone
Kicking something

Kicking other person

jump up

hugging other person

hopping (one foot jumping)

hand shaking

hand waving

giving something to other person
falling

eat meal/snack

drop

drink water

cross hands in front (say stop)
clapping

cheer up

check time (from watch)
brushing teeth

brushing hair

bow

Table 5. Comparing our method using [RGB + depth] with previous action recognition methods on
the PKU-MMD dataset.

Method Modality C-Sub C-View

TSN [27] RGB + depth 79.3% 78.2%
Bi-LSTM [50] skeleton 86.5% 92.2%
SA-LSTM [51] skeleton 86.3% 91.4%

J-ResNet-CMCB [31] <VDI, DDI) 90.4% 91.4%
DSCMT [6] <VDI, DDI> 92.4% 93.8%
J-Swin-SFMCB-1 [RGB + depth] 91.6% 92.3%
J-Swin-SFMCB-II [RGB + depth] 92.6% 94.0%
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Figure 7. Confusion matrix of J-Swin-SFMCB-II obtained by C-Sub protocol on the PKU-MMD with
the input [RGB + depth].

The comparison of experiments result performed on the NTU RGB+D 60 dataset is
summarized in Table 6 Based on SEMCB, J-Swin-SFMCB-I achieves superior performance
on the challenging NTU RGB+D 60 dataset by capturing features from the entire RGB and
depth sequence. Specifically, our proposed recognition framework achieves accuracies of
90.2% and 91.5% on the C-Set and C-Sub protocols, respectively. For J-Swin-SFMCB-II,
the accuracy from J-Swin-SFMCB-I is boosted by approximately 1.1% and 1.3%.

Figure 8 shows the confusion matrix matrices for C-Sub protocol on the NTU RGB+D
60 dataset. The proposed method performs perfectly in aspects such as “walking towards”,
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“picking up”, and “take off a hat/cap”. However, it performs poorly in recognizing
certain action pairs such as “rubbing two hands” and “clapping”, which share very similar
appearances.

Figure 8. Confusion matrix for the C-Sub setting on NTU RGB+D 60 dataset using the J-Swin-SFMCB-
IT with the inputs [RGB + depth].

Table 6. Evaluating our model using [RGB + depth] as input on the NTU RGB+D 60 dataset in
comparison with previous action recognition approaches.

Method Modality C-Sub C-View

TSN [27] RGB + depth 75.5% 78.1%
Deep Bilinear [52] RGB + depth + skeleton 85.4% 90.7%
SC-ConvNets [29] (VDI, DDI) 89.4% 91.2%
J-Swin-SFMCB-I [RGB + depth] 90.2% 91.5%
J-Swin-SFMCB-II [RGB + depth] 91.3% 92.8%

The comparison of experiments result performed on the NTU RGB+D 120 dataset
is summarized in Table 7 and the parameter T = 5. Based on SFMCB, J-Swin-SFMCB-I
achieves superior performance on the challenging NTU RGB+D 120 dataset by capturing
complementary information. Specifically, our proposed recognition framework achieves
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accuracies of 88.6% and 89.7% on the C-Set and C-Sub protocols, respectively. For J-Swin-
SFMCB-II, the accuracy from J-Swin-SFMCB-1 is boosted by approximately 0.7% and 0.6%.

Figure 9 shows the confusion matrix matrices for C-Sub protocol on the NTU RGB+D
120 dataset. The proposed method performs perfectly on “carry object”, “bounce ball”,
“kicking something”, “walking apart”, etc. We can also note that “putting on glasses” and
“taking off glasses”, are frequently misidentified due to the high similarity between the
objects in human-object interactions. Similarly, “counting money” and “folding paper” are
also easily confused, as they have very similar appearances. These results suggest that the
proposed dual-stream of SlowFast structure can effectively learn spatial-temporal feature

and SFMCB strategy can capture the complementary information from multiple modalities.

Figure 9. Confusion matrix for the C-Sub setting on NTU RGB+D 120 dataset using the J-Swin-
SFMCB-II with the inputs [RGB + depth].

Table 7. Evaluating our model using [RGB + depth] as input on the NTU RGB+D 120 dataset in
comparison with previous action recognition approaches.

Method Modality C-Sub C-Set
Two-Stream [12] RGB + depth 58.5% 54.8%
TSN + VDIs + DDIs [27] skeleton 86.1% 86.9%
VPN [53] skeleton 86.3% 87.8%
J-ResNet-CMCB [31] (VDIL, DDI) 82.8% 83.6%
J-Swin-SFMCB-I [RGB + depth] 88.6% 89.7%

J-Swin-SFMCB-II [RGB + depth] 89.3% 90.3%
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4.5. Analysis and Discussion

The proposed J-Swin-SFMCB has been extensively evaluated on multimodal datasets,
outperforming current state-of-the-art RGB-D-based methods in terms of recognition per-
formance. These results demonstrate that the dual-stream SlowFast structure can effectively
capture spatio-temporal information. As seen in the analysis of the confusion matrix, our
method achieves high accuracy in distinguishing most actions across different datasets of
varying sizes and dimensions. While the network performs admirably in many respects, we
must acknowledge that it falls short when it comes to accurately recognizing fine or subtle
actions. Specifically, the proposed architecture is constrained to certain actions with very
similar visual appearances and highly similar interactive behaviors. In addition, the idea
behind this method is to improve performance and accuracy by fusing information from
different modalities, so it can be applied to other similar problems or tasks.

Figure 10 shows the improvement of J-Swin-SFMCB-II over J-Swin with [RGB, depth]
inputs on the PKU-MMD. The proposed SEMCB significantly outperforms J-Swin on
most actions, indicating that it can learn compensatory features from dual-stream net-
works to achieve significant performance improvements. For the C-Sub protocol, the pro-
posed method achieves more than 10% improvement on complex actions such as “waving
hand” (§13,15.1%), “putting on a hat/hat” (128, 15.7%), “rubbing two hands” (431, 15.6%),
and “Take Off Your Glasses” ({36, 21.5%). For the C-View protocol, many actions such as
“pushing other person” (#27,8.3%), “putting on a hat/ca” (428,14.2%), and “putting on
glasses” (149, 27.8%) achieve significant improvements.

Gain on AP (%)
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(b) C-View

Figure 10. The average precision gain of J-Swin-SFMCB-II compared to J-Swin with input [RGB,
depth] on the PKU-MMD dataset and the horizontal axis that represents 51 action IDs provided
in [49].

5. Conclusions

In this work, an efficient SlowFast Multimodality Compensation fusion swin trans-
former networks was proposed for RGB-D-based human action recognition. Our network
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architecture consists of two separate slow and fast pathway networks of swin transformer
and employs a standard cross-entropy loss function to jointly optimize learning. To con-
struct the complementary information of the two pathways to be fused, we designed
SEMCB to learn finer spatio-temporal features in RGB-D modalities. For evaluation, we
conducted experiments on four RGB-D datasets and the experimental results demonstrate
the robustness and effectiveness of the proposed method compared to the state-of-the-art
methods. In conclusion, the proposed approach for human action recognition has both
strengths and weaknesses. The method utilizes a combination of modalities can adapt to
various environmental requirements and changing human behavior, thus providing greater
flexibility in interpreting human actions. However, the proposed method is limited in its
ability to distinguish between highly similar actions.
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