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Abstract: The field of fluid mechanics was further explored through the use of a particle-in-cell model
for the mathematical study of the Stokes axisymmetric flow through a swarm of erythrocytes in a
small vessel. The erythrocytes were modeled as inverted prolate spheroids encompassed by a fluid
fictitious envelope. The fourth order partial differential equation governing the flow was completed
with Happel-type boundary conditions which dictate no fluid slip on the inverted spheroid and a
shear stress free non-permeable fictitious boundary. Through innovative means, such as the Kelvin
inversion method and the R-semiseparation technique, a stream function was obtained as series
expansion of Gegenbauer functions of the first and the second kinds of even order. Based on this,
analytical expressions of meaningful hydrodynamic quantities, such as the velocity and the pressure
field, were calculated and depicted in informative graphs. Using the first term of the stream function,
the drag force exerted on the erythrocyte and the drag coefficient were calculated relative to the solid
volume fraction of the cell. The results of the present research can be used for the further investigation
of particle–fluid interactions.

Keywords: Stokes flow; red blood cell; particle-in-cell model; Kelvin inversion; Happel-type
boundary conditions

MSC: 35Q30; 35Q35; 35G15; 35J40; 76D07

1. Introduction

Blood cell malfunction can cause diseases such as cardiovascular disease, hematologi-
cal disease, and cancer, due to the damage caused by the mechanical stresses exerted on
them [1]. The mechanical properties of a single cell can be used as biomarkers. Various
experimental methods, e.g., atomic force microscopy, are used to measure the induced
stress or strain on an individual cell, but the scale up to many cells cannot be obtained ex-
perimentally by conventional methods and, thus, high throughput methods are needed [2].
Towards this direction, mathematical models have proven to be a powerful theoretical tool,
since the scale up or the scale down can be achieved via analytical methods.

Among them, particle-in-cell models have been used since the middle of the twentieth
century, mostly in engineering problems dealing with particle–fluid interactions in swarms
of particles, such as sedimentation, fluidization, and the flow of biological fluids. Through
these models, analytical expressions of the macroscopic behavior of the fluid flow can be
extracted from the study of the microscopic flow problem scaled down to a unitary cell
that consists of a single particle surrounded by a fluid envelope. The disturbance that the
other particles of the swarm cause to the flow is modeled by considering a fictitious fluid
boundary of the envelope. The solid/fluid fraction of the swarm defines the thickness of this
fluid envelope. The analytical determination of the flow field allows the straightforward
calculation of quantities of physical, medical, and engineering interest, such as the vorticity
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field, the drag force acting on each particle and the macroscopic pressure gradient. These
can also be used in the study of heat and mass transport processes and phenomena, such
as reaction, diffusion, and adsorption.

Among the different geometrical descriptions that have been adopted for the particle-
in-cell model, the spherical configuration is the most used, since it allows simpler mathe-
matical expressions [3]. A spherical in-cell model was developed in [4] to model Stokes flow
in a spherical cavity by introducing a porous spherical particle, while Faltas and Saad [5]
used a particle-in-cell spherical model to describe creeping flow past slip eccentric spherical
in-cell models. In [4,5] both Happel and Kuwabara conditions were applied. Sherif et al. [6]
used a spherical in-cell model in order to study the interaction between two rigid spheres
with slip surfaces when moving in a micropolar fluid.

With regard to the flow characteristics, the viscous forces dominate the inertial ones
and thus the flow is creeping, which is indicated by a Reynolds number smaller than unity.
Assuming also a steady state, the governing Navier–Stokes equation reduces to the known
system of partial differential equations,{

µ∆v(r) = ∇P(r), r ∈ Ω,
∇ · v(r) = 0, r ∈ Ω,

(1)

namely, Stokes equations [7,8], where r denotes the position vector, µ is the dynamic
viscosity, v is the biharmonic velocity field and P stands for the harmonic pressure field.

Moreover, Papkovich–Neuber [9] proved that two harmonic potentials, Φ, Φ0, fully
describe the flow via the system,{

v(r) = Φ(r)− 1
2
∇[r ·Φ(r) + Φ0(r)], r ∈ Ω,

P(r) = −µ∇ ·Φ(r), r ∈ Ω.
(2)

When the direction of the flow is parallel to the axis of the spheroidal cell, the flow is
considered to be axisymmetric, and thus a very good approximation of the real problem is
provided [9], allowing the reduction of the three-dimensional problem to a two-dimensional
one, practically. By introducing a scalar function, namely a stream function, the Stokes flow
equations are induced to a fourth order of elliptic-type partial differential equation for the
stream function [3,10] that governs the incompressible creeping axisymmetric flow.

The problem at hand is completed by setting appropriate boundary conditions. These
can be of either Happel [11] or Kuwabara [12] type. According to the Happel model [11],
the fluid is at rest and the spherical particle moves at a constant velocity within the fluid
envelope, while in the Kuwabara model [12], the particle is stationary and the fluid flow
within the cell is moving with the same constant velocity as the one imposed for the main
stream. Moreover, in the Happel-type model, no shear stress condition is imposed in
the external boundary, while in the Kuwabara model, nil vorticity is assumed. These
differences indicate two different conditions, respectively: (a) the model is self sufficient
with regard to mechanical energy and (b) the model allows the exchange of mechanical
energy between the cell and the environment.

In many cell-in-cell fluid models, numerical methods are employed in order to reach
to a solution. These also provide a basis for numerical implementations [13,14] and a
mean for the assessment of existing numerical results. Despite the advantages of the
numerical methods (e.g., geometrical flexibility, solvability in many kind differential equa-
tions, and boundary value problems), the analytical solutions provide qualitative results
revealing or highlighting the geometrical and the physical characteristics of the flow. In-
dicatively, Datta and Deo [15] used the Kuwabara BCs for numerically solving the creeping
flow around a sphere, while Madasu [16] studied numerically the flow of a sphere with
slip boundary conditions considered in a spherical in-cell model. Furthermore, when a
deformation of the RBCs is also taken into account, the corresponding flow problem is
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mostly numerically simulated [17–20]. Numerical procedures are beyond the scope of the
present study.

Dassios et al. [21] advanced the spherical particle-in-cell models by augmenting the
geometrical complexity from a spherical (symmetrical case) to a spheroidal one—prolate
and oblate (axis-symmetry). This consequently increased the difficulty of the derivation of
the analytical solution governing the flow, which was tackled by introducing the notion
of the semiseparation of variables [22], according to which the stream function was given
through the series expansion of specific combinations of Gegenbauer functions [23] of
mixed order. Sherif et al. [24], with a spheroidal particle-in-cell model, solved the Stokes
flow of a micro-polar fluid past an assemblage of spheroidal particle-in-cell models with
slip boundary conditions. Recently [25], a particle-in-cell model in prolate geometry was
developed using the Papkovich–Neuber representation and the non-axisymmetric flow
fields were obtained in terms of harmonic functions.

With regard to blood flow, we recall that, at a microscopic level, the blood is considered
to be a suspension of three types of cells—namely the erythrocytes or red blood cells (RBCs),
the white blood cells, and the platelets—within an incompressible fluid, the blood plasma,
the rheological behavior of which in small vessels is characterized as Newtonian. Since
both the blood plasma and the RBCs constitute about 98% of the volume of the blood [26],
and due to the role RBCs play in the health condition of human organisms, the study of
their flow is expected to provide important information for medical use.

The RBC is geometrically modeled as a biconcave disk [17,18,20], with a major diam-
eter of about 8 µm and a thickness of at least 2 µm [27]. Therefore, it is mathematically
represented by an inverted prolate spheroid. It was further assumed that it moves with
a constant velocity U along its axis of symmetry within a Newtonian fluid, being at rest.
No shape deformations of the RBC were considered. The process was modeled as a Stokes
flow problem [28] for the translation of a rigid inverted prolate spheroid within a quiescent
unbounded viscous fluid, which was justified by considering the rheological properties of
the blood plasma and the geometrical characteristics of the RBC [26].

Dassios et al. [29] and Hadjinicolaou et al. [30] employed the Kelvin transformation
for obtaining the solution of the relative movement of the erythrocytes or red blood cells
within the blood plasma, representing the biconcave shape of the RBC with an inverted
prolate spheroidal surface. Furthermore, Hadjinicolaou and Protopapas [31] proposed a
Stokes flow model for the study of the blood plasma flow through a swarm of RBCs, in
line with the particle-in-cell concept. It consists of an inverted prolate spheroid resembling
the RBC and a confocal fluid envelope representing the plasma. The boundary conditions
were those of Kuwabara’s type particle-in-cell model [12], expressing non slip flow on the
impenetrable interior inverted prolate spheroid, while a uniform flow velocity and nil fluid
vorticity were assumed on the fictitious exterior boundary. Their solution employed the
R-semiseparation method, which they introduced in [32]. For an extensive literature review,
one may see [21] and the references therein.

In the present manuscript, we introduce the Happel type particle-in-cell model and
employing the Kelvin inversion and the semiseparation of variables technique, we solve a
Stokes flow problem for a swarm of erythrocytes moving through the blood plasma.

The structure of the manuscript is as follows. In Section 2, the physical problem
is mathematically formulated and the solution is derived. In Section 3, the results are
discussed and sample calculations for the stream function and analytical expressions for
the velocity field, the frag force and the drag coefficient are obtained, while Section 4
contains the conclusions of the present research.

2. Mathematical Formulation and Solution

A particle-in-cell model is used in order to describe the relative flow of the blood
plasma through a swarm of red blood cells (Figure 1). For the problem at hand, we consider
two confocal inverted prolate spheroidal surfaces (Figure 2). The inner one, S′a, representing
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the RBC, is assumed to be solid moving with a velocity in the positive direction of x3. The
exterior one, S′b, stands for the fictitious fluid boundary of the particle-in-cell model.

Assuming that the flow is creeping, i.e., the inertial forces dominate over the viscous
ones, which is denoted by a Reynolds number much less than unity (Re << 1), and taking
into account the imposed axial symmetry of the physical and the geometrical model with
respect to x3 axis, the governing equation for the Stokes flow problem is described by the
fourth order partial differential equation,

E
′4ψi(r′) = 0, r′ ∈ V′, (3)

where E
′2 is the Stokes operator, E

′4 = E
′2 ◦ E

′2, r′ is the position vector, V′ is the flow field,
and ψi(r′) is the corresponding stream function.

Figure 1. Swarm of red blood cells in Stokes flow.

Figure 2. Statement of the problem.
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Boundary conditions of Happel’s type model [11] imposes non-slip conditions on the
solid surface S′a, which are expressed by the following equations:

uη′ = x̂3 · η̂′ on S′a, (4)

uθ′ = x̂3 · θ̂′ on S′a, (5)

where uη′ , uθ′ are the dimensionless velocity’s components and η̂′, θ̂′ are the unit vectors
in the inverted prolate spheroid coordinate system (η′, θ′, φ), η′ ≥ 0, θ′ ∈ [0, π] and
φ ∈ [0, 2π), [33].

Moreover, on the fluid surface, S′b, Happel’s model assumes that there is no flow across
the boundary, i.e.,

uη′ = 0 on S′b, (6)

and zero tangential shear stress, i.e.,

Πη′θ′ = 0 on S′b, (7)

where Πη′θ′ is the dimensionless tangential stress [3].
Furthermore, denoting by γ > 0 the solid volume fraction of the cell, V1 the volume of

the cell and V2 the volume of the solid, the connecting relation is

γV1 = V2, (8)

through which the exterior inverted prolate spheroid is defined.
In the inverted prolate spheroidal coordinates (τ′, ζ ′, φ), where τ′ = cosh(η′) ≥ 1,

ζ ′ = cos(θ′) ∈ [−1, 1], φ ∈ [0, 2π) and c > 0 denotes the semifocal distance, the Stokes
operator is given as:

E
′2 =

1
c2(τ′2 − ζ ′2)

[
(τ′2 − 1)

∂2

∂τ′2
+ (1− ζ ′2)

∂2

∂ζ ′2

]
. (9)

The BCs (4) through (7) are expressed in the inverted prolate spheroidal geometry via
the following relations: (10)–(13).

∂ψi(τa, ζ ′)

∂ζ ′
= c2(τ2

a − 1)ζ ′, ζ ′ ∈ [−1, 1], (10)

∂ψi(τa, ζ ′)

∂τ′
= −c2(1− ζ ′2)τa, ζ ′ ∈ [−1, 1], (11)

∂ψi(τb, ζ ′)

∂ζ ′
= 0, ζ ′ ∈ [−1, 1], (12)

τ2
b − ζ ′2

2

[
(τ2

b − 1)
∂2ψi(τb, ζ ′)

∂τ′2
− (1− ζ ′2)

∂2ψi(τb, ζ ′)

∂ζ ′2

]
=

= τb(τ
2
b − 1)

∂ψi(τb, ζ ′)

∂τ′
+ ζ ′(1− ζ ′2)

∂ψi(τb, ζ ′)

∂ζ ′
, ζ ′ ∈ [−1, 1],

(13)

where τ′ = τa, τ′ = τb, τa > τb, represent the surfaces S′a, S′b, respectively.
Using (12) the Equation (13) becomes

(τ2
b − ζ ′2)

∂2ψi(τb, ζ ′)

∂τ′2
= 2τb

∂ψi(τb, ζ ′)

∂τ′
, ζ ′ ∈ [−1, 1]. (14)
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Summarizing, the problem at hand is defined via Stokes Equation (3), with boundary
conditions (10)–(12), and (14).

A straightforward attempt to solve the problem via the separation of variables method
encountered significant difficulties that did not allow the derivation of the eigenfunctions
of kernel space of E4. In order to overcome these difficulties, the Kelvin inversion method
was employed aiming to transform the problem to an equivalent one for which separable
solutions could be obtained. According to this, every vector r defined in a domain V is
transformed to a new one r′, defined in a domain V′, which is the Kelvin image of the
initial V, such as

r′ =
b2

r2 r, (15)

where b > 0 is the radius of the inversion sphere and |r| = r (Figure 3).

Figure 3. Kelvin’s inversion.

In the present work, Kelvin’s inversion method was used and the initial domain V′

between the two confocal inverted prolate spheroids, was transformed in a new domain V,
which is the domain between two confocal prolate spheroids. This way, we transformed
the inverted prolate spheroidal cell model (non-convex cell) to a prolate spheroidal one
(convex cell), which allowed the use of the analytical results obtained for an analogous
problem in the prolate spheroidal geometry (Figure 4).

In regard to the stream function, Dassios in [34] proved that the steam function ψi(r′) is
related to the stream function ψ(r), describing the flow between the two prolate spheroids
via the equation

ψi(r′) =
b3

r3 ψ(r), (16)

or equivalently,

ψi(τ
′, ζ ′) =

b3

c3
√

τ2 + ζ2 − 1
3 ψ(τ, ζ), (17)

where (τ, ζ, φ) denote the prolate spheroidal coordinates, where −1 ≤ ζ ≤ 1, τ ≥ 1 and
are connected [29] with the inverted spheroidal ones (τ′, ζ ′, φ) via the relations

τ′ζ ′ =
b2

r2 τζ, (18)

(τ′2 − 1)(1− ζ ′2) =
b4

r4 (τ
2 − 1)(1− ζ2), (19)

where r = c
√

τ2 + ζ2 − 1.
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Figure 4. The inverted domain.

Consequently, Kelvin’s inversion method transforms the problem at hand into
the following:

E4ψ(τ, ζ) = 0, (τ, ζ) ∈ V, (20)

∂ψ(τb, ζ)

∂ζ
= c2(τ2

b − 1)ζ, ζ ∈ [−1, 1], (21)

∂ψ(τb, ζ)

∂τ
= −c2(1− ζ2)τb, ζ ∈ [−1, 1], (22)

∂ψ(τa, ζ)

∂ζ
= 0, ζ ∈ [−1, 1], (23)

(τ2
a − ζ2)

∂2ψ(τa, ζ)

∂τ2 = 2τa
∂ψ(τa, ζ)

∂τ
, ζ ∈ [−1, 1], (24)

where τ = τa, τ = τb express the surfaces Sa, Sb of the external and the internal
spheroid, respectively.

The solution of (20) is derived using the concept of semiseparation [22], according to
which the stream function assumes the form

ψ(τ, ζ) = g0(τ)G0(ζ) + g1(τ)G1(ζ) +
+∞

∑
n=2

[gn(τ)Gn(ζ) + hn(τ)Hn(ζ)], (25)

where Gn, Hn are Gegenbauer functions of the first and the second kind, respectively [23],
and gn, hn are particular linear combinations of Gegenbauer functions.

Matching the specific characteristics of the flow expressed through the BCs, and those
of the Gegenbauer functions, the stream function assumes the form

ψ(τ, ζ) =
+∞

∑
n=2,4,...

gn(τ)Gn(ζ), (26)
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where
g2(τ) = A1G1(τ) + C2G2(τ) + D2H2(τ) + A4G4(τ) + B4H4(τ) (27)

and for n = 4, 6, 8, . . . ,

gn(τ) = AnGn−2(τ) + BnHn−2(τ) + CnGn(τ) + Dn Hn(τ)
+An+2Gn+2(τ) + Bn+2Hn+2(τ).

(28)

The coefficients An, Bn, Cn, Dn, n = 2, 4, 6, . . . should be calculated by applying the
BCs. Since the resulting linear system is infinite, a cut-off technique is applied. We observe
that for n = N the linear system has 2N equations and 2N + 1 unknowns. Therefore an
extra condition is needed in order to reach at a solvable square system. This condition
is obtained by requiring that the solution for the spheroidal-in-cell model tends to the
one in the sphere-in-cell model, when the semifocal distance tends to zero, which sets
equal to zero the constant B4. This condition creates a 2N × 2N linear system for the
unknown coefficients.

Employing the obtained expression for the stream function ψi(τ
′, ζ ′), hydrodynamic

quantities such us the velocity components uτ′ , uζ ′ and the pressure gradient P are derived [3]
through the relations

uτ′ = −
1

c2
√

τ′2 − ζ ′2
√

τ′2 − 1

∂ψi
∂ζ ′

, (29)

uζ ′ =
1

c2
√

τ′2 − ζ ′2
√

1− ζ ′2
∂ψi
∂τ′

, (30)

∂P
∂τ′

= − µ

c(τ′2 − 1)
∂(E′2ψi)

∂ζ ′
, (31)

∂P
∂ζ ′

=
µ

c(1− ζ ′2)

∂(E′2ψi)

∂τ′
, (32)

where µ is the shear viscosity of the fluid.
The drag force [3] exerted from the inverted prolate spheroid τ′ = τa to the fluid is

Fd = πµ
∫ SB

SA

v′3
∂

∂n′

(
E′2ψi
v′2

)
ds′, (33)

where A, B are two points on the meridian plane and the integration is from point A
through point B and, if R is the reference area, ρ is the mass density of the fluid, the drag
coefficient is

Cd =
2Fd

ρU2R
. (34)

Since the Reynolds number is defined as

Re =
ρUL

µ
, (35)

the drag coefficient (34) assumes the form

Cd =
1

Re
2πL
UR

∫ SB

SA

v′3
∂

∂n′

(
E′2ψi
v′2

)
ds′, (36)

where L is the characteristic length.
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For completeness, we present below in terms of (τ, ζ), the metric coefficients (37). The
Stokes operator through them is then given in (38), while ∂

∂n′ , ds′ in the inverted prolate
spheroidal system of coordinates are given via (39).

h′1 =
c(τ2 + ζ2 − 1)

√
τ2 − 1

b2
√

τ2 − ζ2
, h′2 =

c(τ2 + ζ2 − 1)
√

1− ζ2

b2
√

τ2 − ζ2
,

h′3 =
c(τ2 + ζ2 − 1)

b2
√

τ2 − 1
√

1− ζ2
, v′ =

1
h′3

,
(37)

E′2 =
c2(τ2 + ζ2 − 1)

b4(τ2 − ζ2)

[
2τ(τ2 − 1)

∂

∂τ
+ (τ2 − 1)(τ2 + ζ2 − 1)

∂2

∂τ2 +

+2ζ(1− ζ2)
∂

∂ζ
+ (1− ζ2)(τ2 + ζ2 − 1)

∂2

∂ζ2

]
,

(38)

∂

∂n′
= h′1

∂

∂τ
, ds′ =

1
h′2

dζ. (39)

3. Results and Discussion

Approximating the stream function ψ using only the first term of the series expansion,
the stream function assumes the form

ψ(τ, ζ) ≈ ψ(2)(τ, ζ) = [A1G1(τ) + C2G2(τ) + A4G4(τ) + D2H2(τ)]G2(ζ), (40)

which is a plausible assumption, as most of the fundamental characteristics of the flow
seem to be contained in the leading term.

Moreover, the unknown coefficients in (40) by applying the BCs (4)–(7) can be calcu-
lated through the system


G1(τb) G2(τb) G4(τb) H2(τb)

G′1(τb) G′2(τb) G′4(τb) H′2(τb)

G1(τa) G2(τa) G4(τa) H2(τa)

K1(τa) K2(τa) K3(τa) K4(τa)




A1

C2

A4

D2

 =



2G2(τb)

τ2
b−1

2G1(τb)

τ2
b−1

0

0

, (41)

where 

K1(τa) =

(
τ2

a −
1
5

)
G′′1 (τa)− 2τaG′1(τa)

K2(τa) =

(
τ2

a −
1
5

)
G′′2 (τa)− 2τaG′2(τa)

K3(τa) =

(
τ2

a −
1
5

)
G′′4 (τa)− 2τaG′4(τa)

K4(τa) =

(
τ2

a −
1
5

)
H′′2 (τa)− 2τaH′2(τa)

, (42)

and the Gegenbauer functions of the first kind appeared above are

G1(x) = −x, G2(x) =
1− x2

2
, G4(x) =

(1− x2)(5x2 − 1)
8

, x ∈ R, (43)

while the one of the second kind is

H2(x) =
1
4
(1− x2)ln

∣∣∣∣ x + 1
x− 1

∣∣∣∣+ x
2

, x > 1. (44)
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Consequently, the first order approximation, ψ
(2)
i , of the solution series ψi(τ

′, ζ ′) is

ψi(τ
′, ζ ′) ≈ ψ

(2)
i (τ′, ζ ′) =

b3

r3 ψ(2)(τ, ζ). (45)

In order to depict streamlines, we used the relations that connect each one of the
prolate spheroidal coordinates τ, ζ with the inverted prolate spheroid coordinates τ′, ζ ′,
which are derived from (18), (19) via the relations

τ(τ′, ζ ′) =

√
2

2cr′

√
b4 + c2r′2 +

√
(b4 + c2r′2)2 − 4b4c4τ′2ζ ′2, (46)

ζ(τ′, ζ ′) =

√
2

2cr′

√
b4 + c2r′2 −

√
(b4 + c2r′2)2 − 4b4c4τ′2ζ ′2. (47)

In Figures 5–7 we depict streamlines in the plane x2 = 0 for the stream function
ψ(2)(τ, ζ) with values −0.01, −0.1, −0.2, −0.3, −0.4, −0.5 and 0.01, 0.1, 0.5, 0.9 and −0.1,
−0.3, −0.5, −0.7, −0.9 (from the outer to the inner prolate spheroid), respectively, setting
in all cases b = 5, c = 4.

Figure 5. ψ(2) = −0.01,−0.1,−0.2,−0.3,−0.4,−0.5, τa = 1.4, τb = 1.2.

Figure 6. ψ(2) = 0.01, 0.1, 0.5, 0.9, τa = 1.15, τb = 1.05.
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Figure 7. ψ(2) = −0.1,−0.3,−0.5,−0.7,−0.9, τa = 1.4, τb = 1.05.

In Figures 8–10, we depict streamlines for the stream function ψ
(2)
i (τ′, ζ ′), assuming

the values −3, −2, −1, −0.1 and 1, 10, 30, 50, and −4, −3, −2, −1 (from the outer to the
inner inverted prolate spheroid) respectively, using in all cases b = 5, c = 4, while the solid
volume fraction of the cell, γ, is 0.48, 0.59 and 0.22, respectively.

Next we derive the results for the original problem using the Kelvin inversion method
if a1, a3 > 0 are the small and the long semiaxes of the prolate spheroid (i.e., a3 > a1 > 0),

c =
√

a2
3 − a2

1 is the semifocal distance and b > 0 is the radius of the inversion sphere, the
volume V of the inverted prolate spheroid is given by the formula

V =
∫ ∫ ∫ 1

h′1h′2h′3
dτdζdϕ. (48)

Figure 8. ψ
(2)
i = −3,−2,−1,−0.1, τa = 1.4, τb = 1.2.

Using (8), (33), (45), and (48) we plot in Figure 11 the drag force, F(2)
d , (the superscript (2)

denotes the use of the first order approximation for the stream function, i.e., ψ
(2)
i ) exerted

on the solid spheroid versus the solid volume fraction of the cell, γ, while in Figure 12 we
plotted the ReCd(2) (the superscript (2) denotes the use of the first order approximation for
the stream function, i.e., ψ

(2)
i ) versus the solid volume fraction of the cell, γ. These figures

are depicted using τa = 1.4 and τb ∈ [1.03, 1.04] and, therefore, 3.64 ≤ b3
b1
≤ 4.17. Since the
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normal aspect ratio of an RBC [27] is 4, we plotted the drag force and the ReCd, taking into
account a deformation of the RBC from −8.98% up to 4.34%. The aspect ratio of the cell is 4
when γ = 0.42 and F(2)

d = 67.6, ReCd(2) = 86.

Figure 9. ψ
(2)
i = 1, 10, 30, 50, τa = 1.15, τb = 1.05.

Figure 10. ψ
(2)
i = −4,−3,−2,−1, τa = 1.4, τb = 1.05.

From Figure 11, we see that the drag force increases more slowly when γ ∈ [0.23, 0.3]
and faster at higher values of γ. This means that, for small values of the volume fraction of
the Happel cell in-cell model, the neighboring cells have a smaller effect on the flow, while
when γ > 0.3 they rapidly influence the flow since the drag on the cell is much higher.

A quantitative study indicated that the stream function using only the first term of the
series expansion provided satisfactory results for applications when γ ∈ [0.25, 0.65] and the
moderate axis ratio of the spheroids a3

a1
< 3. It is observed that, as the solid volume fraction

of the cell increases, both F(2)
d and ReCd(2) increase and, specifically for values γ > 0.3, the

rate of the increase grows more rapidly as is shown in Figures 11 and 12.
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Figure 11. The drag force, F(2)
d , versus the solid volume fraction of the cell, γ.

Figure 12. The drag coefficient, ReCd(2), versus the solid volume fraction of the cell, γ.

4. Conclusions

In the present manuscript, we further expanded the concept of particle-in-cell models
from convex to non-convex ones and particularly to inverted spheroids, and we used
this to study the flow of a swarm of erythrocytes (RBCs) into the blood plasma. The
particle-in-cell model consists of two confocal inverted prolate spheroids, where the inner
one represents the RBC and the exterior one stands for the boundary of the fictitious
fluid envelope surrounding the RBC. In this way, we modeled the disturbance that the
neighboring erythrocytes of the swarm cause to the flow. The thickness of the fluid envelope



Mathematics 2023, 11, 2156 14 of 15

was defined so that the fluid volume fraction of the cell should be equal to the fluid volume
fraction of the swarm.

Due to the physical characteristics of the blood’s flow in capillaries, the inertial non-
linear terms of the Navier–Stokes equation are negligible. Furthermore, we assumed that,
due to the small diameter of the capillaries, the flow is axisymmetric, which allows the
reduction of the original 3D problem to an axisymmetric 3D one and, practically, to a 2D
one. Moreover, the axisymmetric Stokes flow was considered to be at a steady state. This
provided a very good approximation of the real problem.

The problem was fully described by a fourth order partial differential equation of
elliptic type for a scalar function, ψi, i.e., E′4ψi = 0, where ψi is the stream function, E′2

is the Stokes operator, and E′4 = E′2 ◦ E′2 is the Stokes bistream operator. Moreover, the
Happel-type boundary conditions were imposed; i.e., on the inner inverted spheroidal
surface, no slip conditions were in place, while the fictitious surface was assumed to be
impenetrable and free of tangential stresses. These conditions secured that the model is
self-sufficient with regard to mechanical energy. Since the inverted spheroidal surface
is not smooth enough to apply the given boundary conditions, and due to the complex
structure of the kernel space of the Stokes fourth order partial differential operator reflected
by its non-separability, the analytical solution was obtained by employing the powerful
Kelvin’s inversion method and the semiseparation technique [22]. The Kelvin inversion
with respect to a sphere transformed the problem at hand to an equivalent one in the prolate
spheroidal coordinates.

In this system, the ‘new’ stream function ψ was derived in semiseparable form through
series expansions of Gegenbauer functions of the first and the second kind of even order [3].
The connecting formula between the stream function ψ in the prolate spheroidal system
with the stream function ψi in the inverted prolate spheroidal system leads to an analyt-
ical expansion for the stream function ψi in R-semiseparable form. These results are in
agreement with all the known results in the relevant geometries.

Using the stream function expansion, the velocity field and the macroscopic pressure
field were derived accordingly. Streamlines representing ψ, ψi, based on the first term of
the series expansion, were depicted, shedding light on the quantitative and qualitative
characteristics of the particular kind of flow. Moreover, using the first order approximation
of the stream function, quantities of bioengineering interest—the drag force F(2)

d and the
drag coefficient ReCd(2)—were calculated and plotted versus the solid volume fraction of
the cell, γ.

The obtained analytical results may be further used for the analytical investigation
of mass transport phenomena in blood flow, such as drug delivery or as a benchmark in
relative numerical models.
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