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Abstract: Let G be a graph with the adjacency matrix A(G), and let D(G) be the diagonal matrix
of the degrees of G. Nikiforov first defined the matrix Aα(G) as Aα(G) = αD(G) + (1− α)A(G),
0 ≤ α ≤ 1, which shed new light on A(G) and Q(G) = D(G) + A(G), and yielded some surprises.
The α−adjacency energy EAα (G) of G is a new invariant that is calculated from the eigenvalues of
Aα(G). In this work, by combining matrix theory and the graph structure properties, we provide
some upper and lower bounds for EAα (G) in terms of graph parameters (the order n, the edge
size m, etc.) and characterize the corresponding extremal graphs. In addition, we obtain some
relations between EAα (G) and other energies such as the energy E(G). Some results can be applied
to appropriately estimate the α-adjacency energy using some given graph parameters rather than by
performing some tedious calculations.
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1. Introduction

All graphs in this paper are simple, finite, and undirected. Let G be a graph with
a vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Denote by
n = n(G) = |V(G)| the order of G and m = m(G) = |E(G)| the number of edges of G. Let
di be the i-th largest degree of the vertex of G, D(G) = diag(d1, d2, . . . , dn) be the diagonal
matrix, and A(G) the adjacency matrix of G. The matrix Aα(G) of G is defined in [1] as

Aα(G) = αD(G) + (1− α)A(G), 0 ≤ α ≤ 1. (1)

Clearly,

A(G) = A0(G), D(G) = A1(G), Q(G) = 2A1/2(G),

where Q(G) is the signless Laplacian matrix of G. In this way, A(G), Q(G), and D(G) were
viewed from a new perspective, which resulted in many interesting problems (see [1] for
more details).

The energy E(G) of a graph G was introduced by Gutman [2], i.e.,

E(G) =
n

∑
i=1
|λi(G)|,

where λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) are the eigenvalues of A(G), which are called the
adjacency eigenvalues of G. This quantity has a long-known chemical application (see the
surveys in [3–5] for details).
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Note that Aα(G) is a real and symmetric matrix and all its eigenvalues are real and
denoted by ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G). They are also called the α-adjacency eigenvalues
of G. The α-adjacency energy EAα(G) of a graph G is defined in [6] as

EAα(G) =
n

∑
i=1

∣∣∣ρi(G)− 2αm
n

∣∣∣.
The adjacency and α-adjacency eigenvalues of G obey the following relations:

n

∑
i=1

λi(G) = 0;
n

∑
i=1

λ2
i (G) = 2m, (2)

n

∑
i=1

ρi(G) = 2αm;
n

∑
i=1

ρ2
i (G) = 2(1− α)2m + α2

n

∑
i=1

d2
i . (3)

Clearly,

EA0(G) = E(G), 2EA1/2(G) = QE(G),

where QE(G) is the signless Laplacian energy of G. So, it is of great interest to study the
α−adjacency energy.

In this paper, we provide some new upper and lower bounds for EAα(G) and charac-
terize the extremal graphs that attain these bounds. We also consider the relations between
the α−adjacency energy and the other energies of a graph.

2. Upper Bounds for α-Adjacency Energy of Graphs

For any matrix A, A∗ is the conjugate transpose of A. The singular values of a matrix
A are defined as the square roots of the eigenvalues of A∗A and the energy of A is the sum
of its singular values and is denoted by E(A).

Lemma 1 ([7]). Let A, B ∈ Rn×n and let C = A + B. Then,

E(C) ≤ E(A) + E(B).

Moreover, the equality holds if and only if there exists an orthogonal matrix P such that PA
and PB are both positive semidefinite matrices.

The following lemmas provide some basic properties of the positive semidefinite
matrices.

Lemma 2 ([8]). If A ∈ Rn×n and there exist positive semidefinite matrices X, Y ∈ Rn×n and
orthogonal matrices P, Q ∈ Rn×n, such that A = PX = YQ. Moreover, X = |A|, Y = (AAT)

1
2

are unique matrices that satisfy these equalities. In addition, the matrices P and Q are uniquely
determined if and only if A is nonsingular.

Lemma 3 ([9]). If A = (aij)n×n is a positive semidefinite matrix and aii = 0 for some i, aij = 0 =
aji, j = 1, 2, . . . , n .

In 2006, Gutman and Zhou [10] studied the Laplacian energy of graph G,

LE(G) =
n

∑
i=1

∣∣∣µi(G)− 2m
n

∣∣∣,
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where µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) are Laplacian eigenvalues of G. Furthermore, they
first introduced the auxiliary “eigenvalues”. Similarly, let γi, i = 1, 2, . . . , n, be defined via

γi = ρi(G)− 2αm
n

. (4)

Then, in analogy with (2) and combined with (3), we have

n

∑
i=1

γi = 0;
n

∑
i=1

γ2
i = 2M, (5)

where

M = (1− α)2m +
1
2

α2
n

∑
i=1

(
di −

2m
n

)2
.

The following upper bound was proven as Theorem 2.6 in [11]. Next, we give the
extremal graph as a complement to Theorem 2.6.

Theorem 1. Let G be a graph with n vertices and m edges, α ∈ [0, 1). Then,

EAα(G) ≤
√

2Mn. (6)

The equality holds if and only if either G ∼= nK1 or G ∼= mK2.

Proof. We apply similar proof as that shown in Theorem 2 [10]. Consider the sum

S =
n

∑
i=1

n

∑
j=1

(
|γi| − |γj|

)2
, (7)

and by calculation,

S = 2n
n

∑
i=1

γi
2 − 2

( n

∑
i=1
|γi|
)( n

∑
j=1
|γj|
)
= 4nM− 2

(
EAα(G)

)2
.

Since S ≥ 0, thus 4nM− 2(EAα(G))2 ≥ 0 and (6) holds.
Note that the equality in (6) is obtained if and only if S = 0 in (7), meaning that

all |γi|− values are all equal. Therefore, we conclude that G has, at most, two distinct
α−adjacency eigenvalues.

From Nikiforov’s results in [1], a connected graph G has the same α−adjacency
eigenvalue if and only if G is a null graph, i.e., G ∼= nK1.

In addition, a connected graph G has only two distinct α−adjacency eigenvalues if
and only if G is a complete graph, with α 6= 1 [1], i.e., G ∼= tKk, tk = n.

Nikiforov in [1] gave the α−adjacency eigenvalues of Kk, i.e., ρ1(Kk) = k − 1 and
ρi(Kk) = αk− 1 for any 2 ≤ i ≤ k. Since all |γi|−values are the same, then

k− 1− α(k− 1) = α(k− 1)− αk + 1,

i.e., k = 2, with α 6= 1.
We complete the proof.

Theorem 2. Let G be a connected graph with n vertices and m edges, α ∈ [0, 1). Then,

EAα(G) ≤ (1− α)E(G) + α
n

∑
i=1

∣∣∣di −
2m
n

∣∣∣. (8)

The equality holds if and only if G is regular.
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Proof. Since Aα(G) = αD(G) + (1− α)A(G), then we obtain

Aα(G)− 2αm
n

In = α
(

D(G)− 2m
n

In

)
+ (1− α)A(G).

Using Lemma 1, we have

E
(

Aα(G)− 2αm
n

In

)
≤E
(
(1− α)A(G)

)
+ E

(
α
(

D(G)− 2m
n

In

))
=(1− α)E(G) + α

n

∑
i=1

∣∣∣di −
2m
n

∣∣∣.
Thus, (8) follows from EAα(G) = E

(
Aα(G)− 2αm

n In

)
.

Suppose that the equality holds in (8). Then, using Lemma 1, there must exist an
orthogonal matrix P such that

X = P
(

α
(

D(G)− 2m
n

In

))
, Y = P

(
(1− α)A(G)

)
are both positive and semidefinite. Hence,

PTX = α
(

D(G)− 2m
n

In

)
, PTY = (1− α)A(G),

and using Lemma 2, we obtain

X =
∣∣∣α(D(G)− 2m

n
In

)∣∣∣, Y =
∣∣∣(1− α)A(G)

∣∣∣.
So, X = diag

(
|αa1|, |αa2|, . . . , |αan|

)
, where ai = di − 2m

n , i = 1, 2, . . . , n, and a1 = d1−
2m
n ≥ 0.

Suppose that G is not regular, then, a1 > 0. Let

P =


p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn


and

A =


0 a12 · · · a1n

a12 0 · · · a2n
...

...
. . .

...
a1n a2n · · · 0

.

Since PTX = α
(

D(G)− 2m
n In

)
, then, we have


αa1

αa2
. . .

αan

 =


p11 p21 · · · pn1
p12 p22 · · · pn2

...
...

. . .
...

p1n p2n · · · pnn




α|a1|
α|a2|

. . .
α|an|

,
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i.e., 
αa1

αa2
. . .

αan

 =


α|a1|p11 α|a2|p21 · · · α|an|pn1
α|a1|p12 α|a2|p22 · · · α|an|pn2

...
...

. . .
...

α|a1|p1n α|a2|p2n · · · α|an|pnn

,

which implies that p11 = 1 and p1i = 0, i = 2, . . . , n. So,

P =


1 0 · · · 0

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn


and

Y = P
(
(1− α)A(G)

)

= (1− α)


1 0 · · · 0

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn




0 a12 · · · a1n
a12 0 · · · a2n
...

...
. . .

...
a1n a2n · · · 0



= (1− α)


0 a12 · · · a1n
∗ · · · ∗
...

. . .
...

∗ · · · ∗

.

Since Y = P
(
(1− α)A(G)

)
is positive and semidefinite, using Lemma 3, we obtain

a1j = 0, j = 2, . . . , n, which is a contradiction with the connection of G. Thus, the result
holds.

As a special case α = 1/2, the following corollary can be obtained easily from
Theorem 2.

Corollary 1. Let G be a connected graph with n vertices and m edges. Then,

QE(G) ≤ E(G) +
n

∑
i=1

∣∣∣di −
2m
n

∣∣∣.
The equality occurs if and only if G is regular.

The Zagreb index Zg(G) of a graph G is given in [11] as Zg(G) = ∑n
i=1 d2

i .

Theorem 3. Let G be a graph with n vertices and m edges, α ∈ [0, 1). Then,

EAα(G) ≤ (1− α)E(G) + α
√

nZg(G)− 4m2. (9)

For G being connected, the equality holds if and only if G is regular.

Proof. By applying the Cauchy–Schwarz inequality, we have

n

∑
i=1

∣∣∣di −
2m
n

∣∣∣ ≤ √n
n

∑
i=1

(
di −

2m
n

)2
=
√

nZg(G)− 4m2. (10)
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Combining (8) with (10), we have

EAα(G) ≤ (1− α)E(G) + α
n

∑
i=1

∣∣∣di −
2m
n

∣∣∣ (11)

≤ (1− α)E(G) + α
√

nZg(G)− 4m2. (12)

If G is connected, for the equality, it implies that both equalities hold in (11) and (12),
i.e., G is regular according to Theorem 2 and |di− 2m

n | is mutually equal for all i = 1, 2, . . . , n.
So, the result holds.

3. Lower Bounds for α-Adjacency Energy of Graphs

Let Φ(G; x) = det|xI − Aα(G)| = Πn
i=1(x− ρi(G)) be the characteristic polynomial of

Aα(G).

Theorem 4. Let G be a graph with n vertices and m edges, 0 ≤ α < 1, then,

EAα(G) ≥ n
∣∣∣Φ(G;

2αm
n

)∣∣∣ 1
n

(13)

with the equality if and only if either G ∼= nK1 or G ∼= mK2.

Proof. From the geometric-arithmetic mean inequality, we obtain

EAα(G)

n
=

1
n

n

∑
i=1

∣∣∣ρi −
2αm

n

∣∣∣
≥
( n

∏
i=1

∣∣∣ρi −
2αm

n

∣∣∣) 1
n
=
∣∣∣Φ(G;

2αm
n

)
∣∣∣ 1

n
,

which directly yields (13).
The equality occurs if and only if for any i, j,1 ≤ i, j ≤ n, the equality |ρi − 2αm

n | =
|ρj − 2αm

n | is satisfied. Therefore, we conclude that G has, at most, two distinct α−adjacency
eigenvalues. Using the similar proof of Theorem 1, the result follows.

Theorem 5. Let G be a graph with n vertices and m edges, then,

EAα(G) ≥

√
2M + n(n− 1)

∣∣∣Φ(G;
2αm

n

)∣∣∣ 2
n

,

where M = (1− α)2m + 1
2 α2Zg(G)− 2α2m2

n . If G ∼= nK1 or G ∼= mK2, the equality holds.

Proof. Consider (
EAα(G)

)2
=
( n

∑
i=1
|γi|
)2

= 2M + ∑
i 6=j
|γi||γj|.

By applying the geometric-arithmetic mean inequality, we obtain

∑
i 6=j
|γi||γj| ≥n(n− 1)

[
∏
i 6=j
|γi||γj|

] 1
n(n−1)

=n(n− 1)
[ n

∏
i=1
|γi|2(n−1)

] 1
n(n−1)

=n(n− 1)
∣∣∣Φ(G;

2αm
n

)∣∣∣ 2
n

.
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By combining the above results, we obtain

(
EAα(G)

)2
≥ 2M + n(n− 1)

∣∣∣Φ(G;
2αm

n

)∣∣∣ 2
n

,

i.e.,

EAα(G) ≥

√
2M + n(n− 1)

∣∣∣Φ(G;
2αm

n

)∣∣∣ 2
n

.

For G ∼= nK1 or G ∼= mK2, it can be easily verified that the equality holds.

Lemma 4 ([12]). Let B = (bij)n×n be a non-negative matrix, n ≥ 2, the largest eigenvalue of B be
ρ(B), and suppose a = min

i
bii, then,

ρ(B) ≥ max
i
{ bii + a

2
+
( (bii − a)2

4
+ ∑

i 6=j
bijbji

) 1
2 }.

Moreover, if B is irreducible, n ≥ 3, and there exists more than one non-zero off-diagonal entry
in at least two rows (two columns) of B , and the inequality strictly holds.

Let ∆ and δ be the maximum degree and the minimum degree of G, respectively.

Theorem 6. Let G be a connected graph of order n ≥ 3, 0 ≤ α ≤ 1, and ρ1(G) the largest
eigenvalue of Aα(G), then,

ρ1(G) ≥ α(∆ + δ) +
√

α2(∆− δ)2 + 4(1− α)2∆
2

(14)

with the equality if and only if G ∼= K1,n−1.

Proof. Using Lemma 4, we obtain

ρ1(G) ≥ α∆ + αδ

2
+
( (α∆− αδ)2

4
+ (1− α)2∆

) 1
2
.

Since G is connected, the matrix Aα(G) is irreducible. Suppose that G has at least
two vertices with degrees larger than 1, then (14) strictly holds according to Lemma 4.

Note that ρ1(K1,n−1) =
αn+
√

α2n2+4(n−1)(1−2α)
2 [1], so the lower bound attains if and only if

G ∼= K1,n−1.

Theorem 7. Let G be a connected graph with n vertices and m edges, n ≥ 3, 0 < α ≤ 1. Then,

EAα(G) ≥ α(∆ + δ) +
√

α2(∆− δ)2 + 4(1− α)2∆− 4αm
n

. (15)

The equality holds if and only if G ∼= K1,n−1.

Proof. Let ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G) be the eigenvalues of Aα(G) and σ the positive
integer such that ρσ(G) ≥ 2αm

n and ρσ+1(G) < 2αm
n , then,

EAα(G) =2
( σ

∑
i=1

ρi(G)− σ · 2αm
n

)
≥2
(

ρ1(G)− 2αm
n

)
≥α(∆ + δ) +

√
α2(∆− δ)2 + 4(1− α)2∆− 4αm

n
. (From (14))
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All the inequalities occurring above become equalities in the cases of G ∼= K1,n−1
(according to Theorem 6) and σ = 1. For the graph K1,n−1, ρ2(G) = α [1] satisfies α < 2αm

n
for α 6= 0. Thus, the equality is obtained in (15) if and only if G ∼= K1,n−1. This proof is
completed.

As an application of Theorem 7, we provide the graph K1,5 + e, which is obtained from
K1,5 by adding an edge between two pendent vertices of K1,5. Through simple computation,
we know that EAα(K1,5 + e) ≥ 2α + 2

√
9α2 − 10α + 25, which provides an estimation for

EAα(K1,5 + e).
Let f (δ) = α(∆ + δ) +

√
α2(∆− δ)2 + 4(1− α)2∆− 4αm

n , and by comparison, we find
that f (δ) ≥ f (1). For a connected graph, we have δ ≥ 1. Then, the following corollary can
be obtained using Theorem 7 and the results are the same as Theorem 3.4 [11].

Corollary 2 ([11]). Let G be a connected graph with n vertices and m edges, n ≥ 3, 0 < α ≤ 1.
Then,

EAα(G) ≥ α(∆ + 1) +
√

α2(∆ + 1)2 + 4∆(1− 2α)− 4αm
n

. (16)

The equality holds if and only if G ∼= K1,n−1.

4. The Relation between α-Adjacency Energy and Other Energies

As we know, the energy E(G) ≥ 0 with the equality holds if and only if m = 0, which
is a direct analog for the α−adjacency energy EAα(G). Indeed, it is evident from (1) that
EAα(G) ≥ 0 and it is obvious (from the proof of Theorem 1) that EAα(G) = 0 if and only if
m = 0.

Theorem 8 ([11]). If G is a regular graph with n vertices , 0 ≤ α < 1, then,

EAα(G) = (1− α)E(G).

Theorem 9. If the disconnected graph G has two components G1 and G2, and the average vertex
degree of G1 is the same as G2, then,

EAα(G) = EAα(G1) + EAα(G2).

Proof. Let G1, G2 be graphs on ni vertices and mi edges for i = 1, 2, then, n = |V(G)| =
n1 + n2 and m = |E(G)| = m1 + m2. Since 2m1

n1
= 2m2

n2
= 2m

n , then,

EAα(G) =
n1+n2

∑
i=1

∣∣∣ρi(G)− 2αm
n

∣∣∣
=

n1

∑
i=1

∣∣∣ρi(G1)−
2αm1

n1

∣∣∣+ n2

∑
i=1

∣∣∣ρi(G2)−
2αm2

n2

∣∣∣
= EAα(G1) + EAα(G2).

We complete the proof.

If the condition 2m1
n1

= 2m2
n2

is not satisfied, it may due to one of the following three cases:
EAα(G) > EAα(G1) + EAα(G2), EAα(G) < EAα(G1) + EAα(G2), or EAα(G) = EAα(G1) +
EAα(G2). This requires further study.

In particular, if G2 consists of n2 isolated vertices, then,

EAα(G) =
n1

∑
i=1

∣∣∣ρi(G1)−
2αm

n1 + n2

∣∣∣+ n2 · (
2αm

n1 + n2
).
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Theorem 10. Let G be a graph with n vertices. Then,

|EAα(G)− αLE(G)| ≤ E(G). (17)

If G ∼= nK1, the equality holds.

Proof. Note that

Aα(G)− 2αm
n

In = α
(

D(G)− A(G)− 2m
n

In

)
+ A(G)

= α
(

L(G)− 2m
n

In

)
+ A(G),

using Lemma 1, we obtain

EAα(G) = E
(

Aα(G)− 2αm
n

In

)
= E

(
α
(

L(G)− 2m
n

In

)
+ A(G)

)
≤ E

(
α
(

L(G)− 2m
n

In

))
+ E(A(G)) = αLE(G) + E(G)

and

αLE(G) = E
(

α
(

L(G)− 2m
n

In

))
= E

((
Aα(G)− 2αm

n
In

)
− A(G)

)
≤ E

(
Aα(G)− 2αm

n
In

)
+ E(−A(G)) = EAα(G) + E(G).

Thus, the result follows. Finally, if G ∼= nK1, EAα(G) = LE(G) = E(G) = 0, then the
equality holds.

The following theorems give two Nordhaus–Gaddum-type bounds in terms of the
order n.

Theorem 11. Let G be a graph with n vertices, n ≥ 2, G the complement graph of G, then,

EAα(G) + EAα(G) <
√

n2(n− 1)[2(1− α)2 + α2(n− 1)].

Proof. Let

M = M(G) = (1− α)2m(G) +
1
2

α2
n

∑
i=1

(
di −

2m(G)

n

)2

and

M(G) = (1− α)2m(G) +
1
2

α2
n

∑
i=1

(
di −

2m(G)

n

)2
.

In fact,
n

∑
i=1

d2
i ≤ (n− 1)(

n

∑
i=1

di) = 2(n− 1)m(G)
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with the equality if and only if either G ∼= nK1 or G ∼= Kn, then, we have

M(G) + M(G)

=(1− α)2(m(G) + m(G)) + α2
n

∑
i=1

(
di −

2m(G)

n

)2

=(1− α)2 · n(n− 1)
2

+ α2
( n

∑
i=1

d2
i −

4m2(G)

n

)
≤(1− α)2 · n(n− 1)

2
+ α2[2(n− 1)m(G)− 4m2(G)

n
]

≤(1− α)2 · n(n− 1)
2

+ α2 · n(n− 1)2

4

=
n(n− 1)

4
[2(1− α)2 + α2(n− 1)].

For n ≥ 2, since the size of the edges of Kn and Kn is different from n(n−1)
4 , we have

M(G) + M(G) <
n(n− 1)

4
[2(1− α)2 + α2(n− 1)]. (18)

In combination with EAα(G) ≤
√

2Mn of Theorem 1, it is easy to see that the inequality

EAα(G) + EAα(G) ≤
√

4n[M(G) + M(G)]

<
√

n2(n− 1)[2(1− α)2 + α2(n− 1)]

holds.

Lemma 5 ([11]). Let G be a connected graph with n vertices and m edges and ρ1(G) the largest
eigenvalues of Aα(G), then,

ρ1(G) ≥ 2m
n

.

The equality holds if and only if G is regular.

Theorem 12. Let G be a graph with n vertices and G be the complement graph of G, then,

EAα(G) + EAα(G) ≥ 2(1− α)(n− 1). (19)

The equality occurs if and only if G and G are both regular with only one positive adjacency
eigenvalue, respectively.

Proof. Note that

EAα(G) + EAα(G)

=
n

∑
i=1

∣∣∣ρi(G)− 2αm(G)

n

∣∣∣+ n

∑
i=1

∣∣∣ρi(G)− 2αm(G)

n

∣∣∣
≥2
(

ρ1(G)− 2αm(G)

n

)
+ 2
(

ρ1(G)− 2αm(G)

n

)
≥2
(2m(G)

n
− 2αm(G)

n

)
+ 2
(2m(G)

n
− 2αm(G)

n

)
(by Lemma 5)

=2(1− α)(n− 1).
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All equalities occur if and only if G is regular (according to Lemma 5). In addition,

EAα(G) = 2
(

ρ1(G)− 2αm(G)

n

)
, ρ2

(
Aα(G)− 2αm(G)

n
In

)
< 0,

and

EAα(G) = 2
(

ρ1(G)− 2αm(G)

n

)
, ρ2

(
Aα(G)− 2αm(G)

n
In

)
< 0.

Thus,

Aα(G)− 2αm(G)

n
In = (1− α)A(G)

and

Aα(G)− 2αm(G)

n
In = (1− α)A(G).

Both G and G have only one positive eigenvalue. This proof is completed.

5. Conclusions

In this paper, we considered some properties of α-adjacency energy. In particular, we
obtained some new upper bounds in terms of the graph parameters associated with the
structure of the graph (Theorems 2 and 9) and some new lower bounds (Theorems 4 and 7).
Moreover, extremal graphs have been provided within these theorems. It will be interesting
to explore more properties of this spectral graph invariant in the future. There are also
other theorems such as Theorem 10, where graphs satisfying the equality cannot be found
yet so further research is needed.

The α-adjacency energy merges the energy (the case where α = 0) and the signless
Laplacian energy (the case where α = 1/2). Therefore, if we choose an appropriate value of
α in some upper or lower bounds, the results will be clear and intuitive and, at the same
time, can enrich spectral graph theory.
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