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Abstract: The concept of an ideal free distribution (IFD) is extended to a predator–prey system in a
heterogeneous environment. We consider reaction–diffusion–advection equations which describe
the evolution of spatial distributions of predators and prey under directed migration. Modification
of local interaction terms is introduced, if some coefficients depend on resource. Depending on
coefficients of local interaction, the different scenarios of predator distribution are possible. We
pick out three cases: proportionality to prey (and respectively to resource), indifferent distribution
and inversely proportional to the prey. These scenarios apply in the case of nonzero diffusion and
taxis under additional conditions on diffusion and migration rates. We examine migration functions
for which there are explicit stationary solutions with nonzero densities of both species. To analyze
solutions with violation of the IFD conditions, we apply asymptotic expansions and a numerical
approach with staggered grids. The results for a two-dimensional domain with no-flux boundary
conditions are presented.
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1. Introduction

Dynamics of species and their distributions are the most significant issues in mathe-
matical biology and ecology [1]. Currently, cases of heterogeneous habitat and directional
movement of species (taxis) described by diffusion–advection–reaction equations are being
investigated [2]. Strategies that provide equilibrium states and ensure species survival for
extended periods are crucial for population dynamics. The concept of Ideal Free Distribu-
tion (IFD), introduced in [3], enables the development of an evolutionarily stable strategy
for the interaction of biological communities. Initially, IFD considered only one species,
individuals of which have a complete understanding of the habitat and can freely move to
any point of it. It was a purely behavioral concept that did not take into account population
dynamics. Later, it was expanded to include competing species [4,5] and predator–prey
interactions [6,7]. In [5], Ideal Free Distribution with travel costs was used to describe
disadvantage for species to move and cessation of movement between different patches.
It can be noted that it is promising to analyze the conditions under which IFD is lost and
identify the scenarios that are being realized [8,9].

The study of local predator–prey models with IFD has utilized various assumptions
about species migration between two patches [10,11]. The works utilized classical Lotka–
Volterra equations, modifying predator’s second-kind Holling response and prey’s logistic
growth law. In some predator–prey studies, an IFD strategy was associated to game theory
and adaptive dynamics [12,13]. It was stated that IFD provides an evolutionarily stable
approach. Study [13] explored the impact of resource heterogeneity in the 30 × 30 cellular
automaton model on local predator–prey system dynamics.

Mathematics 2024, 12, 275. https://doi.org/10.3390/math12020275 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020275
https://doi.org/10.3390/math12020275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4812-278X
https://doi.org/10.3390/math12020275
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020275?type=check_update&version=3


Mathematics 2024, 12, 275 2 of 13

The IFD concept was also developed for models described by reaction–diffusion–
advection equations [14–17]. In [14], the authors considered a system of two competing
species with different diffusion strategies and established some important results on persis-
tence, extinction, and coexistence of the competing populations with similar growth laws
and dispersal strategies. Partially, they discussed the ideal free dispersal strategy when
the density of the species matches the carrying capacity of the resources. For one and two
competing species, the IFD is the perfect conformity to its resource distribution p(x, y) [12,18].
An integrodifference equation model was analyzed in [19] to find evolutionarily stable
dispersal strategies when there is spatial heterogeneity and seasonal variation in a habitat.

The multistability of ideal free distributions was found for the system of two competing
species in [20]. There are a number of papers that spread the concept of the IFD on a
predator–prey system [6,7]. To enlarge the IFD concept in the case of reaction–diffusion–
advection equations in a predator–prey system, it is important to correctly define the
growth function of the prey and the functional response of the predator as well as migration
phenomena [21].

The goal of this paper is to extend the ideal free distribution concept to a predator–
prey system in a heterogeneous environment modeling by reaction–diffusion–advection
equations. To reach this aim, we introduce a modified functional response and a growth
function for prey. Apart from commonly used predator taxis on prey, we also employ
directed migration of prey to the resource and away from predator.

We organize the rest of this paper as follows. The equations and special form of local
interaction terms are given in Section 2. Consideration of the system without fluxes is
presented in Section 3. Conditions on diffusion and migration parameters supplying ideal
free distribution are formulated in Section 4. Numerical simulations and related comments
are presented in Section 5. Section 6 deals with the violation of conditions providing ideal
free distribution. Theoretical and numerical analysis is presented. A brief summary is
given in the last section.

2. Governing Equations for Predator–Prey Dynamics in a Heterogeneous Habitat

A mathematical model of the spatio-temporal interaction of prey with density u(x, t)
and predator v(x, t) can be written as a system of equations:

∂u
∂t

= −∇q1 + F1, q1 = −k1∇u + α1u∇Q1,−α2u∇Q2, ∇ =

(
∂

∂x
,

∂

∂y

)
, (1)

∂v
∂t

= −∇q2 + F2, q2 = −k2∇v + α3v∇Q3. (2)

Fluxes qi, (i = 1, 2) contain the terms corresponding to homogeneous diffusion with
coefficients ki and functions Qj (j = 1, 2, 3), which characterize directed migration with
coefficients αi.

We note that diffusion terms in the fluxes can be interpreted as “random wandering”
of individuals in the area in search of food. However, we mean that diffusion describes a
more general process of the natural tendency of each species to spread over the entire range.
As for the functions of directed migration, we consider different taxis mechanisms, so that
Q1 = Q1(p) characterizes the prey resource-oriented taxis (search for the most effective
place in terms of food and survival), and Q2 = Q2(v) is the prey taxis from danger (the
prey try to avoid places where predators congregate). Function Q3 = Q3(u) is responsible,
respectively, for the taxis of the predator on its resource—the prey.

Functions F1, F2 describe local interactions

F1 = µ1u fnm(u, p)− λ1g(u, v, p), (3)

F2 = µ2g(u, v, p)− λ2v, (4)

where µi and intrinsic growth parameters, λi are mortality coefficients.
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In order to expand the description of local interaction and enrich the arsenal of the
system’s behavior, we consider the modified prey growth function and the functional
response of the predator, introducing a dependence on a generalized resource.

Function fnm(u, p) is defined as

fn,m(u, p) =
un

pm

(
1 − u

p

)
, n, m ∈ N, (5)

and we can describe the logistic growth of the prey (n = 0, m = 0), hyperbolic law (n = 1,
m = 0) and so on. Functional response g(u, v, p) is given in the form of

g(u, v, p) =
uv

p + Cu
. (6)

Parameter C > 0 allows realization of the Holling functional response of the second
kind [22,23]. Modification (6) was proposed in [24] to take into account the non-uniform
distribution of the carrying capacity over the environment. The intrinsic growth parameter
for prey µ1 and the rate of mortality for predator λ2 are positive constants as well as
coefficients for nonlinear terms λ1, µ2.

The habitat of both species is a bounded domain, D = [0, a]× [0, b], with boundary
∂D on which no-flux conditions are set:

qj · n = 0, j = 1, 2, (x, y) ∈ ∂D. (7)

System (1)–(7) is supplemented with initial distributions of population densities

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y). (8)

3. Local Interaction (Main System without Fluxes)

Let us consider the problem without diffusion and taxis (k j = 0, αj = 0). For brevity,
we take C = 0 and obtain the system of ODEs,

∂u
∂t

= u
[

µ1un

pm

(
1 − u

p

)
− λ1v

p

]
(9)

∂v
∂t

= v
[

µ2u
p

− λ2

]
. (10)

In this system, spatial coordinates x, y are being parameters because p = p(x, y). There
exist several stationary solutions: unstable trivial equilibrium u = v = 0, solution without
predator u = p, v = 0 and coexistence of both species,

u = Ap, v = Bn pν, (11)

where
A =

λ2

µ2
, Bn =

µ1

λ1
An(1 − A), ν = n + 1 − m. (12)

Solution (11) shows that the prey distribution is proportional to the resource, p(x, y),
and does not depend on parameters n and m. The predator distribution is proportional to
the degree of resource function p(x, y); order ν directly depends on n and m.

The following preposition takes place:

Proposition 1. When m = n, Systems (9) and (10) have Stationary solutions (11) and (12)
satisfying the concept of ideal free distribution (IFD) for both species.
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Proof. Indeed, from (11), we obtain u = Ap and v = Bp, where constants A and B fol-
low (12). Thus, prey is proportional to resource function p(x, y) and predator is proportional
to prey. Therefore, both species correspond to IFD [3,12,14].

Corresponding to (11) distribution for any m, n may be named an IFD–like solution
because prey is always proportional to resource function p(x, y). Further, we call these
solutions IFD for brevity.

Let us discuss the stability of equilibria for Systems (9) and (10). The trivial equilibrium
is unstable, solution u = p, v = 0 is stable when λ2 ≥ λcr

2 and Equilibrium (11) is stable
when (

n
n + 1

)
µ2 = λosc

2 ≤ λ2 < λcr
2 = µ2. (13)

Here, critical value λosc
2 corresponds to oscillatory instability, so a limit cycle exists when

λ2 < λosc
2 . The range of stability of stationary solution (11) δΛ varies under change in n,

δΛ = λcr
2 − λosc

2 =
µ2

n + 1
. (14)

Different stability conditions can exist for the same ν; as n increases, the stability
interval becomes smaller. As a result, we can observe that the prey may control the growth
function by particular n and m in order to shorten or lengthen the stability interval for the
solution that represents the coexistence of two species. This situation is achieved for the
parameter values that fall into the range between the oscillatory regime (λ2 < λosc

2 ) and the
solution without a predator (λ2 > λcr

2 ).
We can obtain the same value of ν with different combinations of parameters m and n,

but parameter n also affects the size of the predator population according to formula

Bn =
µ1

λ1

(
λ2

µ2

)n(
1 − λ2

µ2

)
, (15)

so that when n increases by N, the ratio of the current value of the predator population to
the previous one changes by value

δB =
Bn+N

Bn
=

(
λ2

µ2

)N
, N ∈ N. (16)

Since, for a solution with two species, λ2 < µ2, the predator population decreases.
In this sense, the prey, by adjusting n, can not only change the stability interval, but also
directly reduce the number of the predator.

4. Ideal Free Distribution and Its Advancement

Consider saving Solutions (11) and (12) in System (1)–(6), when fluxes qJ are nonzero
ones.

Proposition 2. Let directed migration functions Qj be given as

Q1 = ln p, Q2 = ln u, Q3 = ln v, (17)

and the following relations hold:

α1 = k1 + να2, α3 = νk2. (18)

Then, (11) is a solution of system (1)–(8).
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Proof. Firstly, reaction terms are zero because (12) satisfies (9) and (10). Substitution (11)
and (12) to fluxes offers

q1 = −k1 A∇p + α1 Ap∇(ln p)− α2 Ap∇(ln Bpν), (19)

q2 = −k2∇(Bpν) + α3Bpν∇(Ap). (20)

After simplifications, we have

q1 = A∇p(−k1 + α1 + α2 pν−1), (21)

q2 = Bpν−1∇p(−k2ν + α3). (22)

Using (18), we come to zero fluxes and, respectively, IFD.

So, with the logarithmic form of directional migration functions (17) and condi-
tions (18), a series of IFD solutions (11) arises, specified by parameter ν. Table 1 presents
the conditions on diffusive and migration parameters for several values of parameter
ν. It illustrates distinct predator distribution scenarios: proportionality to prey density,
neutrality case, and reverse proportionality.

Let us comment on the last two lines, namely cases ν = 0 and ν = −1. Biologically,
ν = 0 corresponds to the absence of predator taxis regarding prey (α3 = 0). In the case
α3 = −k2 (ν = −1), it means that predator taxis is directed to minimum values of prey
density. We discuss these scenarios through computational experiments in Section 5.

Table 1. Parameter conditions for IFD solutions.

ν Conditions

2 α1 = k1 + 2α2 α3 = 2k2
1 α1 = k1 + α2 α3 = k2
0 α1 = k1 α3 = 0 (any k2)
−1 α1 = k1 − α2 α3 = −k2

5. Computer Experiment with IFD and Its Extension

To solve Problem (1)–(8), we apply the method of Lines with staggered grid discretiza-
tion (see Appendix A) and MATLAB. We begin with parameter values corresponding to
ν = 1 and the hyperbolic growth law of the prey (weak Allee effect). The calculations use
the non-uniform distribution of the prey resource p(x, y), shown in Figure 1. Further, for
convenience of analyzing the results, we consider four sections in the areas of local maxima,
shown in Figure 1.

Figure 2 shows a three-dimensional picture of the distribution of resource (green), prey
(blue) and predator (red). We see that population densities are proportional to the resource
function throughout the two-dimensional habitat. The surfaces of the corresponding
species lie over each other without intersection. When ν = 2, the predator has distribution
proportional to the square of the resource; see Figure 3a. This figure shows a comparison of
truncated three-dimensional distributions of predator and prey, presented for greater clarity
without respect to scale in spatial coordinates. It is clearly visible that the distribution
of predator (red surface) is more elongated in places of local maxima compared to that
of the prey (blue). We note that if Condition (13) is violated, the system switches into an
oscillating mode. Series of Figure 3a–c are shown, where we see how, under the influence
of a small disturbance, the system leaves the stationary state. The amplitude increases and
the system reaches an oscillatory mode with a constant amplitude; see Figure 3d.
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Figure 1. Nonuniform resource distribution p(x, y) (green) and four cross-sections (blue).

Figure 2. Comparison of distributions of resource (green), prey (blue) and predator (red) truncated
by Planes 1 and 4 (see Figure 1), (ν = 1): n = 1, m = 1, k1 = k2 = 0.1, α1 = 0.2, α3 = 0.1, α2 = 0.1,
µ1 = 1.3, λ1 = 0.5, µ2 = 1.0, λ2 = 0.7.

Figure 4a shows the change in the population size of the predator (red color) in com-
parison with the resource (green color) and the prey population (blue color) for two values
of parameter n. Figure 4b illustrates dependencies on parameter n for two characteristics:
δB (see (16)) and δΛ (see (14)) for N = n.
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Figure 3. Oscillations in the distributions of prey (blue) and predator (red) in case of violation of the
stability criterion, when the area is cut by two planes (1 and 4): for a point in the area with coordinates
x = 3, y = 2.
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Figure 4. Impact of parameter n: (a) Densities of predator (red) and prey (blue) in Section 3, n = 1—
solid curve, n = 2—asterisks, ν = const, resource (green); (b) values δB (16) and δΛ (14).

Figure 5 shows the distribution of predator and prey at ν = 0. Here, there is a constant
value of predator population density, independent of the coordinates (red plane), while
prey population density is proportional to the distribution of its resource p(x,y) (blue
surface). We note that in this case we can also observe an oscillating mode, which occurs
when Condition (13) is lost. The same is valid for all rows in Table 1 when n ̸= 0.

Figure 6 demonstrates a situation where the distribution of predator is inversely
proportional to the distribution of prey (ν = −1). The maximum density of the prey
corresponds to the minimum for the predator.
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Figure 5. Comparison of prey (blue) and predator (red) distributions: ν = 0, n = 1, m = 2,
k1 = k2 = 0.1, α1 = 0.1, α3 = 0, α2 = 0.1, µ1 = 1.7, λ1 = 0.4, µ2 = 1.0, λ2 = 0.7.

Figure 6. Comparison of resource (green), prey (blue) and predator (red) truncated by the planes (1
and 4): n = 1, m = 3, k1 = 0.2, k2 = 0.1, α1 = 0.1, α2 = 0.1, α3 = −0.1, µ1 = 1.5, λ1 = 0.5, µ2 = 1.0,
λ2 = 0.7.

6. Violation of Ideal Free Distribution

Let us analyze how the solution changes when the conditions on the parameters are
violated. For brevity, we consider the special case of System (1)–(6): n = m = 0, λ1 = 1,
µ2 = 1, C = 0, α2 = 0:

∂u
∂t

= ∇(k1∇u − α1u∇p) + u
[

µ1

(
1 − u

p

)
− v

p

]
,

∂v
∂t

= ∇(k2∇v − α3v∇u) + v
[
−λ2 +

u
p

]
. (23)

So, taxis to resource p(x) acts for the prey, and the predator is oriented only on prey
distribution (see case ν = 1 in Table 1). We let

k1 = α1 + ε, k2 = α3 + γε. (24)

We look for a stationary solution in the form of a formal series,

u = u0 + εu1 + ε2u2 + . . . , (25)

v = v0 + εv1 + ε2v2 + . . . . (26)

When conditions
k1 = α1, k2 = α3
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are held and ε = 0, there exists the IFD solution,

u0 = λ2 p, v0 = µ1(1 − λ2)p.

Collecting terms at the same powers, we obtain the following equations at the first power, ε,

0 = ∇
[

α1∇u1 + λ2∇p − α2
u
p
∇p
]
− λ2(µ1u1 + v1) ≡ g1,

0 =

[
α3∇v1 + γµ1(1 − λ2)∇p − α1µ1(1 − λ2)p∇

(
u1

λ2 p

)
− α2

v1

p
∇p
]
+ µ1(1 − λ2)u1 ≡ g2.

Expression gj can be written in the form

g1 = ∇
[

α1 p∇
(

u1

p

)
+ λ2 p′

]
− λ2(µu1 + v1), (27)

g2 = ∇
[

α3 p∇
(

λ1v1 − µ1(1 − λ2)u1

λ2 p

)
+ γµ1(1 − λ2)∇p

]
+ µ1(1 − λ2)u1. (28)

For domain D, from the stationary condition of solution gj = 0, integration yields the
following integral identities: ∫

D
u1dx = 0,

∫
D

v1dx = 0. (29)

This means that if the conditions of the IFD are violated, the contribution of first-order
additives for deviations from IFD distributions of prey and predator (25) is completely
leveled out. This raises the question of whether the additives are in phase, the answer to
which is provided by the results of a computational experiment.

Let us analyze these deviations for small variations in diffusion and migration param-
eters. Figure 7 shows the results of computational experiment at k1 (IFD) and k̂1 = k1 + ε
(dashed line). One can see that variations are most noticeable in areas of local maxima of
the resource function. With ν = 0, the distribution of the predator at k1 > k1 ceases to be
homogeneous; we observe the largest deformations in zones of extrema p(x); see Figure 7c.
In the case of ν = −1, Figure 7d, the variations in predator distribution are rather small.
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Figure 7. Violation of IFD. Prey (blue) and predator (red) distributions in Section (Plane) 4 for different
values ν: IFD (solid lines) and deviation due to variation of diffusion parameter k̂1 = k1 + ε (dashed
lines); function resource (green); k1 = 0.2, k2 = 0.1, α1 = 0.1, α2 = 0.1, α3 = −0.1, µ1 = 1.5, λ1 = 0.5,
µ2 = 1.0, λ2 = 0.7.
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Changing of diffusion coefficient k̂2 = k2 − ε leads to the difference in variations of
prey and predator, see Figure 8. For ν > 0, there is a decrease in the prey population and
an increase in the predator. When ν = 0, the picture does not change, as it was promised
in Table 1. For negative values of ν, there is an increase in the density of the prey and a
decrease in the density of the predator.
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Figure 8. Violation of IFD. Prey (blue) and predator (red) distributions in Section (Plane) 4 for different
values ν: IFD (solid lines) and deviation due to variation of diffusion parameter k̂2 = k2 − ε (dashed
lines); function resource (green); k1 = 0.2, k2 = 0.1, α1 = 0.1, α2 = 0.1, α3 = −0.1, µ1 = 1.5, λ1 = 0.5,
µ2 = 1.0, λ2 = 0.7.

7. Discussion and Conclusions

The concept of IFD implies a correlation between the distribution of a species and its
resource [3]. For one species, the density is directly proportional to its resource function in a
heterogeneous habitat. However, his concept needs to be clarified in the case of a predator–
prey system [10]. Our goal is to derive a reaction–diffusion–advection model, being IFD
for the prey on a heterogeneous environment, and offer a description of a scenario when
a predator occurs on habitat. We can talk about the presence of IFD in the predator–prey
system when only the relationship between the prey and its resource is subordinated to
this principle, since, in a certain sense, this relationship is primary. Strictly speaking, if the
prey is proportional to the resource, which itself is a resource for the predator, then the
predator must be proportional to the distribution of the prey to satisfy the concept of IFD.
The implementation of stationary solutions in this case is possible for various variants of
predator distribution, which are discussed in Section 5.

We design the model under consideration in such a way that both the prey and the
predator can influence the dynamics and the stationary distribution of species. For a
predator, such a “tool” is the trophic function with parameter C and directed migration
function Q3. The prey has a “larger arsenal”: a growth function with parameters m, n and
two directed migration functions Q1, Q2. It is stated above that a “pure” IFD solution is
possible if the statements of Propositions 1 and 2 are fulfilled.

If simply Statements (17) and (18) of Proposition 2 are met, then only the prey satisfies
the IFD concept, and different stationary distributions are possible for the predator. Co-
efficients m, n greatly impact the shape of stationary distribution as well as the stability
interval. We leave open the question of whether it is beneficial for the prey to shorten
the stability interval, thereby increasing the risk of occurrence of an oscillatory regime.
By controlling parameters m, n in the growth function of the prey, it is possible to reach
different distributions, but we are far from thinking that the stationary solutions obtained in
this way are the volitional choice of the prey itself. Really, each decision should be viewed
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as some kind of compromise or superposition of all the acting species. If the predator is
immobile—for example, the web of a spider is motionless relative to the free movements
of the prey—then the resulting distribution depends only on the prey; see, for example,
Figure 5). However, for any behavior of the prey, varying the parameters of diffusion and
directed migration, the predator may prevent the scenario chosen by the prey.

The paper attempts to generalize the concept of ideal free distribution to the case of
a predator–prey system in a heterogeneous habitat. We extend the concept of ideal free
distribution to the case where there is only a proportional distribution of the prey to its
resource, while the predator can have different scenarios. We introduce a modernized
prey growth Function (5), allowing the implementation of various variants of stationary
solutions with an ideal free distribution.

Here, we do not consider the influence of parameter C in (6) on dynamics of the system.
This question and temporal dependence may be a subject of future study.
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Appendix A. Numerical Scheme

To discretize Systems (1) and (2), we introduce uniform grids on both coordinates:

xi = (i − 1
2
)hx, i = 0, . . . , nx + 1, hx =

a
nx

, (A1)

yj = (j − 1
2
)hy, j = 0, . . . , ny + 1, hy =

b
ny

. (A2)

Such a choice is related to the conditions on the fluxes. For this, we introduce lines of fictious
nodes: x0 = −hx/2, xnx+1 = a + hx/2, y0 = −hy/2, ymm+1 = b + hy/2. Species densities
u, v at node (xi, yj) are further denoted by ui,j, vi,j. We introduce then the staggered grids
along the coordinates to calculate fluxes:

xi+ 1
2
= ihx, i = 0, . . . , nx,

yj+ 1
2
= jhy, j = 0, . . . , ny.

The discretization is based on two-node difference and averaging operators

(dxw)i,j =
wi+ 1

2 ,j − wi− 1
2 ,j

hx
,
(
dyw

)
i,j =

wi,j+ 1
2
− wi,j− 1

2

hy
,

(δxw)i,j =
wi+ 1

2 ,j + wi− 1
2

2
,
(
δyw

)
i,j =

wi,j+ 1
2
+ wi,j− 1

2

2
.

These operators are valid for integer and half-integer values of i and j.
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Then, the balance method is employed: Equations (1) and (2) are integrated over
cell

[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
. To determine the fluxes in the x-direction, q1,x, q2,x, we

perform an integration over cell [xi, xi+1]×
[
yj− 1

2
, yj+ 1

2

]
. For the fluxes in the y-direction,

q1,y, q2,y, we integrate over cell
[

xi− 1
2
, xi+ 1

2

]
×
[
yj, yj+1

]
.

The result is a system of ordinary differential equations for ui,j, vi,j.

u̇i,j =
[
−dxq1x − dyq1y + F1

]
i,j, i = 1, . . . , nx, j = 1, . . . , ny, (A3)

v̇i,j =
[
−dxq2x − dyq2y + F2

]
i,j. (A4)

Expressions for prey fluxes are the following:

q1,x,i+ 1
2 ,j = [−k1dxu + α1δxudx(ln p) + α2δxudx(ln v)]i+ 1

2 ,j, (A5)

i = 0, . . . , nx, j = 1, . . . , ny,

q1,y,i,j+ 1
2

=
[
−k1dyu + α1δyudy(ln p) + α2δyudy(ln v)

]
i,j+ 1

2
, (A6)

i = 1, . . . , nx, j = 0, . . . , ny,

and for predators they are

q2,x,i+ 1
2 ,j = [−k2dxv + α3δxvdx(ln u)]i+ 1

2 ,j, i = 0, . . . , nx, j = 1, . . . , ny, (A7)

q2,y,i,j+ 1
2
=
[
−k2dyv + α3δyudy(ln u)

]
i,j+ 1

2
, i = 1, . . . , nx, j = 0, . . . , ny. (A8)

The local terms (reaction) are determined at the nodes of the main grid,

F1,i,j = ui,j

[
µ f (ui,j)−

vi,j

Pi,j + Cui,j

]
, (A9)

F2,i,j = vi,j

(
−λ +

ui,j

Pi,j + Cui,j

)
. (A10)

Here, the discrete analogue of resource function p(x, y) is defined by the following formula:

Pi,j =

 1
hxhy

x
i+ 1

2∫
x

i− 1
2

y
j+ 1

2∫
y

i− 1
2

dxdy
p(x, y)


−1

, i = 1, . . . , nx, j = 1, . . . , ny. (A11)

The finite-dimensional system, (A3)–(A11), is supplemented with discrete analogues of
no-flux conditions,

qm,x, 1
2 ,j = 0, qm,x,nx+

1
2 ,j = 0, j = 1, . . . , ny, m = 1, 2, (A12)

qm,y,i, 1
2
= 0, qm,y,i,ny+

1
2
= 0, i = 1, . . . , nx, m = 1, 2. (A13)

Finally, we write the system ODEs:

Ẇ = Φ(W), W(0) = W0. (A14)

Here, W—vector of values of variables in grid nodes,

W =
(

u1,1, ..., unx ,1, ..., unx ,ny , v1,1, ..., vnx ,1, ..., vnx ,ny

)
. (A15)
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The initial data for System (A14) are obtained from (8):

W0 =
(

u0
1,1, ..., u0

nx ,1, ..., u0
nx ,ny , v0

1,1, ..., v0
nx ,1, ..., v0

nx ,ny

)
. (A16)

The fourth-order Runge–Kutta method is used to integrate the (A14) system over time.
Our numerics showed that to calculate spatial distributions with two favorable zones in
the habitat, it is sufficient to take 30 nodes per each coordinate (grid 30 × 30). Computa-
tions carried out on the 60 × 60 grid did not reveal any noticeable changes in stationary
distributions, nor when analyzing oscillatory regimes.
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