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Abstract: This study introduces a polyharmonic framework for analyzing the electromagnetic (EM)
field generated by an oscillating point charge near a dispersive bulk of size comparable to the
wavelength under study. We critically evaluate traditional approaches such as Liénard-Wiechert,
Landau, and Raimond, and propose a Fourier representation of sources that simplifies numerical
implementation and enhances analytical clarity. Our method effectively addresses the limitations of
conventional models and is applicable to both relativistic and non-relativistic scenarios. It includes
the oscillating point dipole fields, providing a comprehensive understanding of the EM field behavior.
The Finite Element Method (FEM) is employed for numerical analysis, demonstrating the method’s
adaptability to complex geometries. While offering significant insights, this study acknowledges
certain limitations and outlines directions for future research.
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1. Introduction

In this study, we investigate the electromagnetic (EM) field generated by a stiff oscillat-
ing charged particle in proximity to a nanosphere by utilizing the diffracted field formalism.
Our primary objective is to elucidate the EM field produced by an oscillating particle in
vacuo. Despite its seemingly academic nature, this problem has practical applications in
various configurations, such as Hertz and Sommerfeld antenna studies [1–4]. Another
example where this kind of source is used lies in the investigation of the potential generated
by a charged point that is fixed in positionand oscillating in magnitude (as provided by
ρ(x, t) = q exp(iω0t)δ(x)) in an inhomogenous cold plasma with no magnetic field [5].

In the context of nanoemitters and their interaction with plasmonic structures, Klimov
et al. [6,7] treated an atom near a dielectric microsphere as a non-relativistic oscillator
consisting of a stationary charge −q and an oscillating charge q. They highlighted the
necessity of a quantum electrodynamics approach to ensure consistent calculation of
photon emission, yet acknowledge that a classical electric dipole model can serve as
a useful approximation [7]. This perspective was echoed by Lobanov et al. in their
numerical study of a point dipole with a periodic array of Yagi-Uda nanoantennas, where
they stated that “The exact description of photon radiation from quantum nanoemitters
is very complicated. A convenient approximation is the model of an oscillating point
dipole.” Similarly, Lassalle et al. modeled an excited two-level atom near a nanosphere
as a harmonically oscillating point dipole [8]. This approach was adopted in [9] as well,
where the study of a point electric dipole in a flat-slab composite structure was conducted.
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Thus, as described in various foundational texts, it is common practice to employ a far-field
dipole approximation [2,10–12].

Remark 1. However, the dipole approximation is only valid when dealing with the far field and for
non-relativistic particles.

Thus, it is necessary to find a better way to describe the field generated by an oscillating
charge ρ(x, t) = qδ(x − a cos(ω0t)ez). The immediate approach is to use the Liénard-
Wiechert fields, which describe the fields produced by a moving charge in quite a compact
form; however, their complexity renders them impractical from a numerical standpoint.
Moreover, the methods proposed by Landau et al. involving a harmonic expansion of the
delta and J.M. Raimond’s Taylor series approximation of the delta distribution [13] are
limited both analytically and numerically, as discussed in Section 2.2.2 of this work.

To address these limitations, we introduce a harmonic decomposition of the source
terms ρ and ȷ. After establishing charge conservation, this method enables us to derive a
harmonic representation of the electromagnetic fields. Our approach is distinguished by its
analytical clarity and directness, allowing us to examine electromagnetic radiation without
resorting to the common simplifications found in the existing literature, particularly the
dipole approximation.

When the sources have been obtained in harmonic form, we use them as the incident
field in the diffraction problem to obtain the diffracted field numerically based on a sphere
and using the Finite Element Method (FEM) [14]. This choice is motivated by the flexibility
of FEM in handling various geometries of the dispersive bulk, although in this case we have
chosen a sphere for simplicity. Furthermore, our solution is presented in the time domain,
moving away from the simplifying assumption of working in the harmonic regime.

The rest of this paper is structured as follows.
Section 2 lays the groundwork for our study, establishing the mathematical formalism

of the diffracted field problem in Section 2.1. We then explore various methodologies
for deriving the EM field produced by an oscillating charge in Section 2.2. This includes
an analysis of the EM field generated by an arbitrary charge distribution and a critical
evaluation of the Liénard-Wiechert, Landau, and Raimond approaches, highlighting their
respective advantages and limitations.

In Section 2.3, we focus on developing a harmonic representation of the sources and
demonstrating the conservation of charge. Section 2.4 is particularly significant, as it
presents the polyharmonic construction of the electric and magnetic fields, complemented
by numerical illustrations.

Section 3 presents the outcomes derived from employing the polyharmonic represen-
tation of the fields. Sections 3.1 and 3.2 detail the computation of the far-field radiated
power from the polyharmonic fields, showing its alignment with the numerical integra-
tion of the Poynting vector around the trajectory of the oscillating charge. Furthermore,
Section 3.3 establishes that the oscillating charge cannot exceed the speed of light, thereby
upholding the principles of Einstein’s theory of relativity. Building on these findings,
Section 3.4 demonstrates how our polyharmonic solution encompasses the scenarios of a
static monopole and a point dipole within a multipolar expansion framework.

Section 3.5 is dedicated to applying the polyharmonic representation of the fields as
the incident field in the diffracted field problem. This leads to a formulation involving
spatial coefficients obtainable through the Finite Elements Method (FEM). A numerical
illustration of the total field is provided in Section 3.6.

Finally, Section 4 summarizes the main contributions of this work, discussing its
limitations and outlining potential avenues for future research.
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2. Materials and Methods
2.1. Mathematical Description of the Problem

The mathematical description of the interaction of an EM field with a time-dispersive
bulk is provided by the Maxwell equations:

∇× Eξ = −∂tBξ ,

∇× Hξ = ∂tDξ + ȷ,

∇ · Dξ = ρ,

∇ · Bξ = 0,

where ξ = {I, I I} represents the restriction of the fields, I corresponds to the total field
outside the bulk, and I I corresponds to to the field inside the bulk. The constitutive relations
are then Hξ = µ−1

0 Bξ , with µ0 the magnetic permeability in vacuo (i.e., the dispersive bulk
has no magnetization) and Dξ = ϵ0(ϵr,ξ ∗ Eξ), where

ϵr,ξ(t) =

{
2πδ(t) if ξ = I,
2πδ(t) + χ(t) if ξ = I I,

with ϵ0 being the vacuum electric permittivity, δ(t) the Dirac’s delta distribution, and χ(t)
the causal electric susceptibility with its support within the bulk. The convolution is the
one corresponding to the Fourier Transform convention in Appendix A. Thus, our new
system of equations in terms of the (Eξ , Bξ) fields reads:

∇× Eξ = −∂tBξ ,

∇× Bξ =
1
c2 ∂t(ϵr,ξ ∗ Eξ) + µ0ȷ,

∇ · (ϵr,ξ ∗ Eξ) =
ρ

ϵ0
,

∇ · Bξ = 0,

where c = (µ0ϵ0)
−1/2 is the speed of light in vacuo . The sources ρ and ȷ represent the

charge density and current corresponding to an oscillating particle; their explicit expression
is provided in Section 2.3. The fields generated by these sources in vacuo are:

∇× E0 = −∂tB0, (1)

∇× B0 =
1
c2 ∂tE0 + µ0ȷ, (2)

∇ · E0 =
ρ

ϵ0
, (3)

∇ · B0 = 0, (4)

where the constitutive relations D0 = ϵ0E0 and H0 = µ−1
0 B0 have been used. Let us

remark here that (E0,B0) is the incident field of our diffraction problem and that it is
defined everywhere in space. The next step is to consider a new set of fields, defined
as E1

ξ := Eξ − E0, B1
ξ := Bξ − B0 which, in the present linear case, satisfy the system of

so-called diffracted fields:
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∇× E1
ξ = −∂tB1

ξ , (5)

∇× B1
ξ =

1
c2 ∂t(ϵr,ξ ∗ E1

ξ) + µ0ȷ0
ξ , (6)

∇ · (ϵr,ξ ∗ E1
ξ) =

ρ0
ξ

ϵ0
, (7)

∇ · B1
ξ = 0, (8)

the sources of which are defined as

ρ0
ξ := −ϵ0∇ · ([ϵr,ξ − 2πδ] ∗ E0) (9)

and
ȷ0
ξ := ϵ0∂t([ϵr,ξ − 2πδ] ∗ E0). (10)

From these definitions, it is easy to see that charge conservation is satisfied. Note that
the support of these new sources is within the bulk, and depends on the electromagnetic
field generated by the oscillating particle. However, obtaining a handy expression of such
a field requires very careful crafting, as shown in the next subsection.

2.2. The Search for the EM Field Generated by an Oscillating Charge In Vacuo

The problem of obtaining the electromagnetic field generated by a charged oscillating
particle is a very important problem. This subsection begins with the very general approach
of finding the (E, B) fields generated by an arbitrary pair of charge and current distribu-
tions (ρ, ȷ). Usually, these solutions are provided by the so-called Jefimenko’s equations.
However, we show that by following a similar method to the one in [15] for the far field
approximations, it is possible to express the electric field mostly in terms of the current
density. Next, we discuss a number of the efforts that have been made towards representing
the EM field created by an oscillating charge.

2.2.1. The EM Field Generated by an Arbitrary Charge Distribution

First, we consider the system of Equations (1)–(4) (in the sequelae, the superscript
0 denoting the incident field radiated by the oscillating particle in free space has been
removed to alleviate notations). By considering the Lorentz gauge , we can obtain the
electric and magnetic fields (E, B) using the expressions

E = −∂t A −∇ϕ, (11)

B = ∇× A, (12)

where ϕ and A are the retarded potentials [10,11]

ϕ =
1

4πϵ0

∫
R3

ρ(x′, tr)

R
dx′, (13)

A =
µ0

4π

∫
R3

ȷ(x′, tr)

R
dx′, (14)

with the retarded time tr = t − R
c and R = |R| with R = x − x′. The next step consists

of plugging the retarded potentials from Equations (13) and (14) into Equations (11) and
(12) and then taking the appropriate derivatives. Nevertheless, this implies taking the
time derivatives with respect to a function which is in terms of the retarded time tr. In
order to avoid this difficulty and carry our calculations further, we propose using the
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Fourier transform in time (see Appendix A, f̂ denoting the Fourier transform of f ) and then
considering only the spatial derivatives. Starting by transforming the potential ϕ, we have

ϕ̂ =
1

4πϵ0

∫
R3

1
R
Ft→ω{ρ(x′, t − R/c)}dx′,

=
1

4πϵ0

∫
R3

1
R

eiRk0 ρ̂(x′, ω)dx′,

where k0 = ω
c . In a similar way the vector potential in the angular frequency domain reads

Â =
µ0

4π

∫
R3

e+iRk0
ȷ̂(x′, ω)

R
dx′. (15)

Before proceeding, the following identities are necessary:

∇R =
R
R

, (16)

∇ 1
R

= − 1
R2 ∇R = − R

R3 , (17)

∇eiRk0 = ik0eiRk0∇R = ik0eiRk0
R
R

, (18)

and by combining Equations (17) and (18) we obtain

∇
(

eiRk0

R

)
=

(
ik0 −

1
R

)
eiRk0

R2 R.

Equipped with these tools, it is quite easy to obtain B by simply taking the curl of
Equation (15):

B̂ =
µ0

4π

∫
R3

∇×
(

e+iRk0

R
ȷ̂(x′, ω)

)
dx′

=
µ0

4π

∫
R3

∇
(

eiRk0

R

)
× ȷ̂(x′, ω)dx′

=
µ0

4π

∫
R3

(
ik0 −

1
R

)
eiRk0

R2 R × ȷ̂(x′, ω)dx′

after which, by taking the inverse Fourier transform, we arrive at the expression

B = Bint + Brad,

where Bint is the intermediate field and Brad is the radiated field, which are respectively
provided by the integrals

Bint =
µ0

4π

∫
R3

ȷ(x′, tr)× R
R3 dx′, (19)

Brad =
µ0

4πc

∫
R3

∂t ȷ(x′, tr)× R
R2 dx′. (20)

In order to obtain the electric field, it is necessary to consider the Fourier transform of
Equation (11):

Ê = +iωÂ −∇ϕ̂. (21)

The first term on the right-hand side of Equation (21) is quite easy to calculate

iωÂ =
1

4πϵ0c

∫
R3

ik0 ȷ̂(ω, x′)
eiRk0

R
dx′, (22)
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while the second term is much trickier. Its derivation is as follows.

−∇ϕ̂ =
−1

4πϵ0

∫
R3

∇
(

eiRk0

R

)
ρ̂(x′, ω)dx′

=
−1

4πϵ0

∫
R3

ik0ρ̂(x′, ω)
eiRk0

R2 R dx′

+
1

4πϵ0

∫
R3

ρ̂(x′, ω)
eiRk0

R3 R dx′ (23)

Up to this point, most textbooks, e.g., [10,11,16], simply take the inverse Fourier
transform of Equation (23) and provide the electric field in terms of the derivative of the
density of charges, obtaining the so-called Jefimenko’s equations [11,16]. Despite the
straightforward nature of this derivation, we are going to carry the calculations further.
The reason for doing this is laid out in the following subsection. For our purposes, the
second integral in Equation (23) is already in optimum form, and we focus our attention on
the integral defined within a bounded volume Ω:

I Ω :=
∫

Ω
ik0ρ̂(x′, ω)

eiRk0

R2 R dx′. (24)

Notice that the integral we are looking for is the limit case when Ω → R3. Next, we
make use of the continuity equation in the angular frequency domain:

iωρ̂(x′, ω) = ∇′ · ȷ̂.

By defining the function

F(R) :=
eiRk0

cR2 ,

the integral I Ω in Equation (24) can be written in a more compact way (omitting the x′, R,
and ω dependencies) as follows:

I Ω :=
∫

Ω
F∇′ · ȷ̂R dx′.

Remark 2. Notice here that the divergence is being taken with respect to the primed coordinates
(hence, the prime superscript in ∇′).

Due to the fact that we are working with Cartesian coordinates, it is possible to write

R = x − x′ = ∑
η=x,y,z

(η − η′)eη ,

where (ex, ez, ez) denote the Cartesian unit vectors; then, we have

I Ω = ∑
η=x,y,z

∫
Ω
(η − η′)F∇′ · ȷ̂ dx′eη = ∑

η=x,y,z
IΩ,ηeη . (25)

Each one of these η integrals can be evaluated by means of the identity (η − η′)F∇′ ·
ȷ̂ = ∇′ ·

[
(η − η′)F ȷ̂

]
− ȷ̂ · ∇′[(η − η′)F

]
and the Green–Ostrogradsky theorem [17,18],

as follows:

IΩ,η =
∫

∂Ω
(η − η′)F ȷ̂ · nout

∣∣
∂Ω dS′ −

∫
Ω

ȷ̂ · ∇′[(η − η′)F
]

dx′.
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Taking the limit Ω → R3 and following the assumption in [15] that ȷ is spatially bounded,
the surface integral vanishes, leading to

IR3,η = −
∫
R3

ȷ̂ · ∇′[(η − η′)F
]

dx′.

The gradient (with respect to the primed coordinates) can be computed explicitly:

∇′[(η − η′)F
]
=F∇′(η − η′) + (η − η′)∇′F

=− Feη − (η − η′)R
(

ik0

R
− 2

R2

)
F

and we have

IR3,η =
∫
R3

F ȷ̂ · eη + (η − η′) ȷ̂ · R
(

ik0

R
− 2

R2

)
F dx′. (26)

Plugging Equation (26) into Equation (25), we obtain

IR3 =
∫
R3

[
ȷ̂ + R( ȷ̂ · R)

(
ik0

R
− 2

R2

)]
F dx′. (27)

Before taking the inverse Fourier transform, we will try to express the term between
square brackets (which we call ȷ) in a more illuminating way. First, we rearrange ȷ as

ȷ = ȷ̂ − R( ȷ̂ · R)
2

R2 + ik0
R( ȷ̂ · R)

R
.

Now, we consider the vector identity ( ȷ̂ × R)× R = R( ȷ̂ · R)− R2 ȷ̂ [18], and from this,
we have

R( ȷ̂ · R)

R
=

( ȷ̂ × R)× R
R

+ R ȷ̂,

ȷ̂ − 2
R( ȷ̂ · R)

R2 = − ( ȷ̂ × R)× R
R2 − R( ȷ̂ · R)

R2 .

Then, ȷ can be seen as

ȷ = −
[
( ȷ̂ × R)× R

R2 +
R( ȷ̂ · R)

R2

]
+ ik0

[
( ȷ̂ × R)× R

R
+ R ȷ̂

]
.

Substituting this result into Equation (27) and then plugging that new integral into
Equation (23), we finally arrive at the following expression.

−∇ϕ̂ =
1

4πϵ0

∫
R3

ρ̂
eiRk0

R3 R dx′

− 1
4πϵ0c

∫
R3

ik0
( ȷ̂ × R)× R

R3 eiRk0 dx′,

+
1

4πϵ0c

∫
R3

[
( ȷ̂ × R)× R

R4 +
R( ȷ̂ · R)

R4

]
eiRk0 dx′

− 1
4πϵ0c

∫
R3

ik0 ȷ̂(ω, x′)
eiRk0

R
dx′

From Equation (22), we can recognize the last integral as −iωÂ; then, after taking the
inverse Fourier transform, we obtain

E = Ec + Eint + Erad,
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where Ec is the Coulomb field, Eint the intermediate field, and Erad the radiated field
provided by the integrals

Ec =
1

4πϵ0

∫
R3

ρ(x′, tr)

R3 R dx′, (28)

Eint =
1

4πϵ0c

∫
R3

[
(ȷ(x′, tr)× R)× R

R4 +
(ȷ(x′, tr) · R)

R4 R
]

dx′, (29)

Erad =
1

4πϵ0c2

∫
R3

(∂t ȷ(x′, tr)× R)× R
R3 dx′. (30)

At this point, the reader may be wondering about the reason we have used all these
extra steps, when Jefimenko’s equations already provide an explicit expression for the
electric field. When dealing with Jefimenko’s equations, the magnetic field is in terms of
the electric current ȷ, and the electric field is in terms of the distribution of charge ρ [11,16].
This point of view, albeit intuitively very clear, makes it difficult to compare the terms
corresponding to the radiation field. By carrying out the manipulations described above,
we ensure that the intermediate and radiated electric and magnetic fields are all expressed
solely in terms of the electric current. The utility of this approach is shown in Section 3.1.

2.2.2. The Different Approximations to the Oscillating Source Problem

• The Liénard-Wiechert’s Field approach
The academic problem of describing the E and B fields generated by a charged
particle moving along a given trajectory u(t), called the Liénard-Wiechert fields, has
been studied in many books [10,11,15,19–21]. The basic idea is to consider a charge
density ρ and an electric current j provided by

ρ(x, t) = qδ(x − u(t)), (31)

ȷ(x, t) = qδ(x − u(t))v(t), (32)

where δ is a Delta distribution and v(t) = du
dt . From here, there are many ways

to tackle the problem of obtaining the E and B generated fields: Jackson [10] and
Landau [19] considered an elegant formalism using quadrivector approach, while
Panofsky [15] and Heald [20] used the so-called Liénard-Wiechert potentials, which
can be obtained by direct substitution in Equations (13) and (14) and then carrying
all the necessary derivatives. The deduction of the fields E and B following this
procedure can be seen in [11]. For this subsection, we have decided not to follow any
of these approaches, instead proceeding by direct substitution of the sources (31) and
(32) into Equations (19), (20) and (28)–(30), that is:

Bint =
qcµ0

4π

∫
R3

δ(x′ − u)
β × n

R2 dx′, (33)

Brad =
qcµ0

4π
∂t

∫
R3

δ(x′ − u)
β × n

cR
dx′, (34)

Ec =
q

4πϵ0

∫
R3

δ(x′ − u)
R2 n dx′ (35)

Eint =
q

4πϵ0

∫
R3

δ(x′ − u)
R2

[
(β × n)× n + (β · n)n

]
dx′, (36)

Erad =
q

4πϵ0
∂t

∫
R3

δ(x′ − u)
cR

(β × n)× n dx′, (37)

where we have introduced the usual following shorthand conventions:

β :=
v
c

, n :=
R
R

.
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The procedure that is shown in Appendix C follows the ideas expressed by Heald
and Marion in [21]; the main difference is that while Heald and Marion considered
Jefimenko’s equations, we use Equations (33) and (37).

Remark 3. We have decided to include the full deduction of the Liénard-Wiechert fields
because, as far as we have seen, while this result has been quoted. the steps towards its
obtention have not been shown. Griffiths simply states that the deduction is very difficult, and
Heald and Marion say that it is necessary to perform heroic algebra . Therefore, we believe
that it is important to show, as best we can, how to obtain one of the main results in classical
electrodynamics.

When the fields E and B have been provided by Equation (A25) and Equation (A19),
that is,

B =
qcµ0

4π

[
a × n
K2Rc2 +

a · n(β × n)
c2K3R

+
(1 − β2)(β × n)

K3R2

]
tr

and

E =
q

4πϵ0

[
(1 − β2)(n − β)

K3R2 +
[a × (n − β)]× n

c2K3R

]
tr

,

with a = Kc
.

β, it might be easy to think that the fields produced by an oscillating
particle could be retrieved by considering the specific trajectory

u(tr) = a cos(ω0tr)ez,

where a and ω0 are the oscillation amplitude and angular frequency, respectively; nev-
ertheless, as pointed out by Spohn in [20], the Liénard-Wiechert fields are less explicit
than they appear to be. This is due to the fact that Equation (A25) and Equation (A19)
depend on the retarded time, which is itself a solution of a transcendental equation (in
general, a non-trivial one), namely,

tr = t − |x − a cos(ω0tr)ez|
c

.

Let us note here that if the particle is at constant speed with a straight trajectory, then
the Liénard-Wiechert fields can be found almost straightforwardly [11]. However,
the solution to this problem when dealing with an oscillating charge, in this case the
retarded time, is a function of the present time and the position (tr := tr(t, x)).

• The Landau Spectral Resolution Approach
In the The Classical Theory of Fields , Landau et al. [19] considered that the fields
produced by moving charges can be expanded as a superposition of monochromatic
waves. Assuming that ρ(x, t) and ȷ(x, t) have a Fourier integral representation, we
can write

ρ(x, t) =
∫

ω∈R
ρ̂(x, ω)e−iωt dω, (38)

ȷ(x, t) =
∫

ω∈R
ȷ̂(x, ω)e−iωt dω.

According to Landau, it is clear that each Fourier component of ρ(x, t) and ȷ(x, t) is
responsible for the creation of the corresponding monochromatic component of the
field. Thus, it is natural to consider the following Fourier integral representations of
the potentials ϕ(x, t) and A(x, t):

ϕ(x, t) =
∫

ω∈R
ϕ̂(x, ω)e−iωt dω, (39)

A(x, t) =
∫

ω∈R
Â(x, ω)e−iωt dω.
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In the sequelae, we only work with ϕ(x, t), as all the discussion applies to A(x, t) as
well; substituting Equation (38) into Equation (13), we obtain

ϕ(x, t) =
1

4πϵ0

∫
R3

∫
ω∈R

ρ̂(x, ω)e−iωtr dω
1
R

dx′,

=
∫

ω∈R
e−iωt

(
1

4πϵ0

∫
R3

ρ̂(x′, ω)
eiωR/c

R
dx′

)
dω.

Comparing this last equality with Equation (39), we find that

ϕ̂(x, ω) =
1

4πϵ0

∫
R3

ρ̂(x′, ω)
eiωR/c

R
dx′.

Remembering that ρ̂(x, ω) is the Fourier transform of ρ(x, τ), after some manipula-
tions, ϕ̂(x, ω) can be written as

ϕ̂(x, ω) =
1

4πϵ0

1
2π

∫
τ∈R

∫
R3

ρ(x′, τ)
eiω(t+|x−x′ |/c)

|x − x′| dx′ dτ.

Now, we consider the singular charge distribution, as in Equation (31), to obtain

ϕ̂(x, ω) =
q

4πϵ0

1
2π

∫
τ∈R

eiω(τ+|x−u(τ)|/c)

|x − u(τ)| dτ.

Upon substitution of this expression into Equation (39), we arrive at

ϕ(x, t) =
q

4πϵ0

1
2π

∫
ω∈R

∫
τ∈R

eiω(τ+|x−u(τ)|/c−t)

|x − u(τ)| dτ dω, (40)

and similarly, for A(x, t), we have

A(x, t) =
qµ0

4π

1
2π

∫
ω∈R

∫
τ∈R

v(τ)
eiω(τ+|x−u(τ)|/c−t)

|x − u(τ)| dτ dω. (41)

From the above expressions, it is evident that the right-hand side of the equation
explicitly depends on the present time. This feature avoids issues related to the
retarded time, which is a notable problem when using the Liénard-Wiechert fields.
However, difficulties emerge when attempting to explicitly compute these integrals.
This arises due to the fact that the particle’s trajectory, denoted by u, is in principle
unrestricted in its choice of any argument τ. Moreover, the exponential function in
Equations (40) and (41) necessitates a sweep over all the (ω, τ) values in R2.

• The Raimond’s Taylor Series Expansion Approach
In [13] J.M. Raimond proposes another way to represent the charge density ρ(x, t) =
qδ(x − a cos(ω0t)ez) using a Taylor series expansion of the Dirac delta in the sense of
distributions:

δ(x − g(t)ez) = δ(x)− g(t)ez · ∇δ(x) +
g2(t)

2
ez · ∇[ez · ∇δ(x)] + . . . ,

where g(t) = a cos(ω0t). In this way, the charge density can be rewritten:

ρ(x, t) =
∞

∑
n=0

ρn(x, t) =
∞

∑
n=0

(g(t))nϱn(x),

where the ρn(x, t) is the n-th charge density and ϱn(x) is provided by

ϱn(x) =
q[−ez · ∇]nδ(x)

n!
=

q(−1)n

n!
∂nδ(x)

∂zn .



Mathematics 2024, 12, 321 11 of 46

The reader may identify ϱn(x) as the singular charge distribution of a 2n-pole (i.e.,
n = 0 monopole, n = 1 dipole, n = 2 quadrupole, etc.) [22,23]. Now, by considering
the charge conservation, we can write:

∂ρ

∂t
=

∞

∑
n=0

n(g(t))n−1g′(t)
q(−1)n

n!
∂nδ(x)

∂zn

=0 − ∂

∂z

∞

∑
n=1

(g(t))n−1g′(t)
q(−1)n−1

(n − 1)!
∂n−1δ(x)

∂zn−1

=0 − ∂

∂z

∞

∑
n=1

(g(t))n−1g′(t)ϱn−1(x)

=0 − ∂

∂z

∞

∑
n=1

g′(t)ρn−1(x, t).

From this last expression, it can be seen that the current distribution ȷ(x, t) can be
written as

ȷ(x, t) =
∞

∑
n=0

ȷn(x, t),

where ȷ0(x, t) = 0 and ȷn(x, t) = g′(t)ρn−1(x)ez (n > 0). From the above expressions,
it is easy to see that there is a conservation of charge between the n-th current density
ȷn(x, t) and the n-th charge density ρn(x, t) for n ≥ 0.
Thus, it is possible to consider the charge distribution pairs (ρn(x, t), ȷn(x, t)) in order
to obtain the fields generated by an oscillating charge. In this case, the retarded
potentials are

ϕ(x, t) =
q

4πϵ0

∞

∑
n=0

(−1)n

n!

〈
∂nδ(x′)

∂z′n
,
(g(t − c−1||x − x′||))n

||x − x′||

〉
,

=
q

4πϵ0

∞

∑
n=0

1
n!

∂n

∂z′n

[
(a cos(ωt − k||x − x′||))n

||x − x′||

]
x′=0

(42)

In the same fashion, we can write the vectorial magnetic potential as

A(x, t) =
qµ0

4π

∞

∑
n=1

(−1)n−1

(n − 1)!

〈
∂n−1δ(x′)
∂z′(n−1)

,
g′(t − c−1||x − x′||)(g(t − c−1||x − x′||))n

||x − x′||

〉
, ez

=
qµ0

4π

∞

∑
n=1

−ωa2

(n − 1)!
∂n−1

∂z′(n−1)

[
sin(ωt − k||x − x′||)(cos(ωt − k||x − x′||))n

||x − x′||

]
x′=0

ez (43)

The potentials in Equations (42) and (43) are expressed in terms of the present time
t. However, the multiple derivatives that must be computed render the expressions
impractical. One could argue that for a large value of ||x||, only a few terms are
necessary to obtain a good approximation, as demonstrated in [13] by retaining up to
the dipole term. However, this approach would essentially involve another far-field
approximation [10]. In the following subsection, we present a more practical and
elegant method for representing an oscillating charge.

2.3. Harmonic Decomposition of the Sources

As seen in the previous subsection, the Liénard-Wiechert fields are not the best way to
obtain the fields produced by an oscillating particle. The main problem is that the source
terms depend on the trajectory that describes the charge. For this reason, it is convenient
to find a way to decompose the source terms in a polyharmonic way. This idea has been
previously considered by Landau [19] and, as evident from Equations (42) and (43), by
Raimond [13], albeit indirectly.
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Remark 4. However, as demonstrated in the previous subsection, the expressions derived from
Landau’s and Raimond’s ideas are challenging to implement in practice. Thus, a new approach for
describing the sources is necessary.

In this subsection, we propose another approach inspired in quantum mechanics,
which can be summarized as follows: The superposition of waves spread in a certain
domain can be seen as a particle . Physically, this means that a very localized source can
be seen as the interference of a certain kind of waves. Mathematically speaking, we are
looking to find a sequence such that we can have convergence in the sense of distributions
to a Dirac delta [24–26]. It is worth noting that a similar concept was employed in [27,28]
for the case of a charged particle in uniform motion.

2.3.1. Two Fourier Expansions for the Sources

Let us start our analysis by providing the charge density ρ and its current density ȷ
simply by

ρ(x, t) = qδ(x⊥)⊗ ϱ(z, t), x⊥ = (x, y), (44)

with ϱ(z, t) := δ(z − a cos(ω0t)) and

ȷ(x, t) = qδ(x⊥)⊗ ȷ(z, t)ez, (45)

and with ȷ(z, t) := −aω0 sin(ω0t)ϱ(z, t) out of charge conservation. Notice that ϱ and ȷ are
not multiplied by the charge. It then turns out that the charge density is not harmonic,
despite the harmonic motion of the particle. In other words, no complex function ϱ(z) can
be found such that ϱ(z, t) = Re{ϱ(z)eiωt}.

Remark 5. This is quite important, as in references such as [10,22] this is the starting point when
representing an oscillating dipole.

Nevertheless, it is appropriate to notice that the distribution ϱ(z, ·) is a 2π
ω0

-periodic
distribution. Thus, ϱ and ȷ(z, t) can be expanded as a Fourier series (See Appendix B):

ϱ(z, t) = ∑
l∈Z

ϱF
l (z, t), ȷ(z, t) = ∑

l∈Z
ȷF
l (z, t),

with

ϱF
l (z, t) = w(z)Tl

(
z
a

)
e+ilω0t

and

ȷF
l (z, t) = −aω0 sin(ω0t)w(z)Tl

(
z
a

)
e+ilω0t, (46)

where Tl are the Chebyshev polynomials of the first kind [29] and w(z) is the weight
function

w(z) :=
1

π
√

a2 − z2
χ[−a,a](z),

with χ[−a,a](z) a characteristic function.

2.3.2. Continuity Equation for the Harmonic Components of the Sources

In the previous paragraph, an expansion for ρ and ȷ was linked by the so-called charge
conservation, namely, ∇ · ȷ +

.
ρ = 0. Notice that for moving point particles this equation

has to be understood in the sense of distributions [17,24–26]. However, what about the
different components ϱF

l and ȷF
l ? In other words, is there any transference of energy between

the different waves oscillating with the different frequencies at stake ω0, 2ω0, etc. . . ? To
answer this question, we have to care much more about the notation referring to l. While ϱF

l
oscillates with angular frequency lω0, the scalar function ȷF

l is a mix of two oscillations with
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different frequencies, namely, (l − 1)ω0 and (l + 1)ω0, due to the presence of the sin(ω0t)
term in Equation (46). Making use of the complex representation of sin(ω0t), it follows that

ȷ(z, t) = ∑
l∈Z

ȷF
l (z, t) = ∑

l∈Z

aω0

2i
w(z)Tl(

z
a
)[ei(l−1)ω0t − ei(l+1)ω0t].

As can be seen, this representation is not in a convenient form; instead, we would like
to see each term in the series oscillating at angular frequency lω0 (where l is a dummy
index), namely,

ȷ(z, t) = ∑
l∈Z

ȷT
l (z)e

+ilω0t. (47)

This can be easily achieved after renaming indices (l + 1 → l and l − 1 → l) for the
corresponding terms ei(l−1)ω0t and ei(l+1)ω0t, which allows us to obtain

ȷT
l (z) :=

aω0

2i
[ξ l+1(z)− ξ l−1(z)], (48)

where ξ l(z) = w(z)Tl(
z
a ). Analogously, for ρ(z, t) we obtain

ρ(z, t) = ∑
l∈Z

ϱF
l (z, t) = ∑

l∈Z
ϱT

l (z)e
+ilω0t = ∑

l∈Z
ξ l(z)e

+ilω0t. (49)

Thus, the arcane meaning of the superscripts T and F is clear: T (resp. F) means true
(resp. false) in the sense that each spatial coefficient corresponds to only one l ∈ Z.
Correspondingly, the conservation of charge can be now formulated for each multiple of
the angular frequency ω0. From the definition of ρ(x, t) and ȷ(x, t), the conservation of
charge implies that

∂tϱ(z, t) + ∂z ȷ(z, t) = 0,

and by plugging in the harmonic expansions of ϱ(z, t) and ȷ(z, t) we obtain

∑
l∈Z

[
ilω0ξ l(z) +

aω0

2i
∂z(ξ l+1(z)− ξ l−1(z))

]
e+ilω0t = 0.

In light of the fact that e+ilω0t with l ∈ Z is a basis [24,25] for our polyharmonic decomposi-
tion, all the terms between square brackets are equal to zero. Thus, the following identity
is obtained:

lξ l(z) =
a
2

∂z(ξ l+1(z)− ξ l−1(z))

and the conservation of charge for each l-th term in the expressions Equations (47) and
(49) follows. Upon demonstrating that there is no transfer among the distinct harmonic
components of the charge density ρ(x, t) and the current density ȷ(x, t), we may proceed
to employ these Fourier expansions to derive the electric and magnetic induction fields for
an oscillating charged particle. This is shown in the following subsection.

2.4. The Building of E and B via Polyharmonic Computations

The main consequence of the term-by-term harmonic decomposition of the sources and
the conservation of charge is that the electric and magnetic induction fields, respectively E and
B, can be seen as a superposition of the fields El(x, t) and Bl(x, t), that is, fields generated by
the harmonic densities of the charge ϱT

l (z)e
+ilω0t and current ȷTl (z)e

+ilω0t. Each one of these
fields oscillates in terms of multiples of the fundamental angular frequency ω0. This subsection
is devoted to this issue, starting work with Equations (19), (20) and (28)–(30) and considering
R = x − x′, R = |R|, and tr = t − R

c the retarded time.

Remark 6. In this case, the retarded time is not in terms of a transcendental equation, and is
instead provided explicitly in terms of the present time t.
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2.4.1. Fourier Expansion of the Fields E and B

We start by applying the delta distribution δ(x′⊥) from Equations (44) and (45) to the
expressions (19) and (20) and (28)–(30), which implies that E and B are provided by

E(x, t) =
1

4πϵ0

∫
R

q
cR̃3

[
ȷ(z′, t̃r)

R̃
+

∂t ȷ(z′, t̃r)

c

]
(ez × R̃)× R̃dz′,

+
1

4πϵ0

∫
R

q
R̃3

[
ϱ(z′, t̃r) + ȷ(z′, t̃r)

ez · R̃
R̃c

]
R̃dz′,

B(x, t) =
µ0

4π

∫
R

q
R̃2

[
ȷ(z′, t̃r)

R̃
+

∂t ȷ(z′, t̃r)

c

]
ez × R̃dz′,

where R̃(x, z′) := x − z′ez, R̃(x, z′) := |R̃(x, z′)|, and t̃r(x, z′, t) := t − R̃
c . Note that in the

previous equations and the sequelae, the explicit dependencies on x, z′ and t are omitted.
The next step is to define the functions

Q(x, z′, t) := ϱ(z′, t̃r) + ȷ(z′, t̃r)
ez · R̃

R̃c
, (50)

K(x, z′, t) :=
ȷ(z′, t̃r)

R̃
+

∂t ȷ(z′, t̃r)

c
. (51)

allowing the electric and magnetic fields to be written in a more compact way as

E(x, t) =
1

4πϵ0

∫
R

q
cR̃3 FE(x, z′, t)dz′,

with

FE(x, z′, t) :=
(

cQ(x, z′, t)R̃ + K(x, z′, t)(ez × R̃)× R̃
)

and

B(x, t) =
µ0

4π

∫
R

q
R̃2 K(x, z′, t)ez × R̃dz′.

From the definitions of ϱ(z, t) in Equation (49) and ȷ(z, t) in Equation (47), we know that
Equations (50) and (51) read

Q(x, z′, t) = ∑
l∈Z

e+ilω0tQl(x, z′),

K(x, z′, t) = ∑
l∈Z

e+ilω0tKl(x, z′),

where

Ql(x, z′) :=
[

ϱT
l (z

′) + ȷT
l (z

′)
ez · R̃

R̃c

]
e−ilk0R̃, k0 =

ω0

c
,

Kl(x, z′) :=
[

1
R̃
+

ilω0

c

]
ȷT
l (z

′)e−ilk0R̃.

Notice that there is a phase shift e−ilk0R̃ in these expressions due to the retarded time
tr. Therefore, E(x, t) and B(x, t) can be seen as a superposition of elementary harmonic
terms, i.e.,

E(x, t) = ∑
l∈Z

El(x, t) = ∑
l∈Z

e+ilω0tEl(x),

B(x, t) = ∑
l∈Z

Bl(x, t) = ∑
l∈Z

e+ilω0tBl(x),
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with spatially dependent coefficients provided by

El(x) =
1

4πϵ0

∫
[−a,a]

q
cR̃3

(
cQl(x, z′)R̃ + Kl(x, z′)(ez × R̃)× R̃

)
dz′, (52)

Bl(x) =
µ0

4π

∫
[−a,a]

q
R̃2 Kl(x, z′)ez × R̃dz′ , (53)

where we have used the fact that the support of ϱT
l (z

′) and ȷT
l (z

′) lies within the interval
[−a, a]. These coefficients can be computed numerically; thus, the building of the E and B
fields is complete.

2.4.2. A Geometrical Description of the Fields

Despite the complicated appearance of Equations (52) and (53) it is possible to extract
a priori information about the geometric behaviour of the (E,B) fields. Starting with the
vector identity (ez × R̃)× R̃ = (ez · R̃)R̃ − R̃2ez, we can rewrite the spatial coefficients as

El(x) =
1

4πϵ0

{ ∫
R

q
cR̃3 Φsph

l (x, z′) dz′x

−
∫
R

q
cR̃3 Φ f lat

l (x, z′) dz′ez

}
,

where Φsph
l and Φ f lat

l are defined by

Φ f lat
l (x, z′) := −z′

(
cQl(x, z′) + (z − z′)Kl(x, z′)

)
+ Kl(z′, R̃)R̃2

and
Φsph

l (x, z′) := cQl(x, z′) + (z − z′)Kl(x, z′).

Finally, the spatial coefficients for the magnetic induction field read

Bl(x) =
µ0

4π

∫
R

q
R̃2 Kl(x, z′)ez × x⊥dz′,

From these representations, it is easy to see that the first integral term of E, which is
called Esph, is a field with spherical symmetry. However, due to the action of the second
integral term, in the sequel E f lat the total field is flattened out in the direction perpendicular
to the motion. On the other hand, the field lines of B circle around the z-axis, and as
expected are perpendicular to the field lines of the electric field.

The only drawback we have encountered is that E0
l might be singular between

(0, 0,−a) and (0, 0,+a). Figure 1 shows cuts along the planes x = 0 and y = 0 of the
imaginary part of the harmonic electric field components El for l = 1, 2, 3, 4. For l = 1
(cf. Figure 1a), it is possible to recognize the typical shape of the Green function (or point
dipole along z). The real part of the harmonic magnetic field components Hl = Hl/µ0 is
shown in Figure 2, which, as expected, circles around the z-axis. Finally, the projection of
the Poynting vector field on the canonical planes is shown in Figure 3. Again, it is possi-
ble to recognize the radiation pattern of the point dipole in Figure 3a. The computation
of the electric and magnetic fields has been carried out by means of Equations (52) and
(53). In order to compute these integrals numerically, the following change of variables is
used: z′ = a sin(θ). This allows the term 1√

a2−z′2
, which comes from the definition of w(z′)

(see (A3)), to be eliminated. With this change of variable, the formulae were coded into
GetDP by P. Dular and C. Geuzaine (Liege, Belgium) open-source software [30], from the
source available at https://gitlab.onelab.info/getdp/getdp/-/tree/oscillating_multiharm
(accessed on 9 November 2014), using a simple trapezoidal rule with 300 integration points.
Visualization was then performed using Gmsh v4.12.1 open-source software [31].

https://gitlab.onelab.info/getdp/getdp/-/tree/oscillating_multiharm
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Figure 1. Harmonic components of the imaginary part of the electric field (in V/m) generated by an
oscillating particle, El for l = 1, 2, 3, 4 (cuts along the planes x = 0 and y = 0). The size of the arrows
is redundant with the colorscale.

Figure 2. Harmonic components of the real part of the magnetic field (in A/m) generated by an
oscillating particle, Hl = Bl/µ0 for l = 1, 2, 3, 4 (cuts along the planes x = 0 and y = 0).
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Figure 3. Harmonic components of the real part of the Poynting vector field (in W/m2) generated by
an oscillating particle, Sl for l = 1, 2, 3, 4 (cuts along the planes x = 0 and y = 0).

3. Results
3.1. Far-Field Radiated Power

As was mentioned before, the main approach towards the study of the EM field
generated by an oscillating charge requires consideration of the far field approximation .
In this subsection, we demonstrate how it is possible, using the polyharmonic expression
from the previous subsections, to retrieve the same results reported in the literature [10].

3.1.1. The Polyharmonic Representation of the EM Far Field Approximations

Remembering Equations (20) and (30), the radiated electric and magnetic induction
fields are provided by

Brad =
µ0

4πc

∫
R3

∂t ȷ(x′, tr)× n
R

dx′,

Erad =
1

4πϵ0c2

∫
R3

(∂t ȷ(x′, tr)× n)× n
R

dx′,

where n = R
R . Using the fact that the electric current is defined as ȷ(x′, tr) := qδ(x⊥)⊗

ȷ(z, tr)ez, the fields read

Brad = q
µ0

4πc

∫
R

∂t ȷ(z′, t̃r)ez × ñ
R̃

dz′, (54)

Erad = q
1

4πϵ0c2

∫
R

(∂t ȷ(z′, t̃r)ez × ñ)× ñ
R̃

dz′, (55)

and, as before, R̃ = x − z′ez, ñ = R̃
R̃ , and t̃r = t − R̃

c . Now, in order to compute the radiated
fields ad infinitum, we make the following approximations for when |x′| ≪ |x|:
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ñ ≃ x
|x| = ν,

1
R̃

≃ 1
|x| ,

t̃r ≃ t − |x|
c

+

(
z
|x|

)(
z′

c

)
= τr. (56)

By plugging these approximations into Equations (54) and (55), we arrive at the expressions

Brad ≃ B∞ =q
µ0

4πc|x|
∫
R

∂t ȷ(z′, τr)dz′ez × ν,

Erad ≃ E∞ =q
1

4πϵ0c2|x|
∫
R

∂t ȷ(z′, τr)dz′(ez × ν)× ν,

=cB∞ × ν. (57)

From this last equation, it is clear that we can focus our attention on just B∞. Therefore, the
next step is to consider its polyharmonic representation. Remembering the definitions of
ȷ(z′, τr) in Equation (47) and τr in (56), we know that

B∞ = ∑
l∈Z

eilω0tBl
∞, (58)

with the spatial coefficient Bl
∞ defined as

Bl
∞ := ilω0

qµ0

4πc|x| e
−ilk0|x |

∫
R

ȷT
l (z

′) exp
[

ilk0
z
|x| z

′
]
(ez × ν) dz′.

Here, it is important to emphasize that B0
∞ = 0; thus, the results obtained in this subsection

are for l ̸= 0. Notice that the integral term resembles a spatial Fourier transform that goes
from z′ → ηl , with the new variable

ηl := lk0
z
|x| .

Thus,
Bl

∞ = ilω0
qµ0

4πc|x| e
−ilk0|x |2πFz′→ηl

{
ȷT
l (z

′)
}
(ez × ν).

This Fourier transform can be easily computed using the definition in Equation (48):

2πFz′→ηl

{
ȷT
l (z

′)
}
= 2π

[
Fz′→ηl

{
ξ l+1(z

′)−Fz′→ηl

{
ξ l−1(z

′)
}] aω0

2i
.

Fortunately, the Fourier transform of ξ l is provided in Equation (A5), and after using
identity (A27) we obtain

2πFz′→ηl

{
ȷT
l (z

′)
}
= ail lω0

Jl(ηla)
ηla

,

which implies that

Bl
∞ = il+1 qµ0

4πc
(lω0)

2 a
|x| e

−ilk0|x | Jl(ηla)
ηla

(ez × ν),

= il+1 µ0

4π
c(lk0)

2qa
e−ilk0|x |

|x|
Jl(ηla)

ηla
(ez × ν),

=
µ0

4π
c(lk0)

2 e−ilk0|x |

|x| (ν × pz)

(
il−1 Jl(ηla)

ηla

)
,
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where we have defined the dipole moment vector pz = qaez. Notice that this last expression
is very similar to the one in [10] for the magnetic dipole field in the radiation zone. Calling

Al = il−1 µ0

4π
c(lk0)

2e−ilk0|x |,

we obtain

Bl
∞ = Al

Jl(ηla)
ηla

(ν × pz)

|x| ,

and its square norm is provided by

|Bl
∞|2 =

|Al |2
|x|2

(
Jl(ηla)

ηla

)2[
1 −

(
z
|x|

)2]
|pz|2,

=
|Al |2
|x|2

(
Jl(ηla)

ηla

)2[
1 −

(
aηl
alk0

)2]
|pz|2, (59)

where we have used the fact that ηl = lk0
z
|x | . This last result is used later in the study of

the radiated power.

3.2. Radiated Power

The expression for the far-field radiated power for an oscillating particle is now
derived, first for the relativistic case and later for the non-relativistic one.

• Relativistic case.
We know from the definition of the Poynting vector and (57) that

S∞ = E∞ × H∞ =
c

µ0
(B∞ × ν)× B∞ =

c
µ0

|B∞|2ν. (60)

Remembering the Fourier expansion of B∞ in Equation (58), we have

|B∞|2 = ∑
l∈Z
l ̸=0

∑
m∈Z
m ̸=0

ei(l−m)ω0tBl
∞Bm

∞.

Now, we can consider the time-averaged Poynting vector; in light of the fact that B∞
is 2π

ω0
-periodic, we integrate Equation (60) from − π

ω0
to π

ω0
to obtain

⟨S∞⟩ = c
µ0

⟨|B∞|2⟩ν,

where the quantities between the brackets are time-averaged. From the orthogonality
of the complex exponential, we have

⟨|B∞|2⟩ = ∑
l∈Z
l ̸=0

|Al |2
|x|2

(
Jl(ηla)

ηla

)2[
1 −

(
aηl
alk0

)2]
|pz|2.

When obtaining the power, it is customary to calculate the flux of the averaged
Poynting vector through a spherical surface of radius R0 (while this could be any
surface encompassing the EM sources, the spherical surface is the one that allows the
simplest calculations), that is,

∫ 2π

0

∫ π

0
⟨S∞⟩R2

0 sin θ dθ dϕ =
c

µ0

∫ 2π

0

∫ π

0
⟨|B∞|2⟩R2

0 sin θ dθ dϕ,

= ∑
l∈Z
l ̸=0

2πc
µ0

|Al |2
∫ π

0

(
Jl(ηla)

ηla

)2[
1 −

(
aηl
alk0

)2]
|pz|2 sin θ dθ.

Next, we perform the change of variable:
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u = aηl = alk0
z

R0
= alk0 cos θ,

after which the differential du reads

du = −alk0 sin θ dθ.

After these calculations, the flux of the averaged Poynting vector reads

∫ 2π

0

∫ π

0
⟨S∞⟩R2

0 sin θdθdϕ =

∑
l∈Z
l ̸=0

2πc
µ0alk0

|Al |2
∫ alk0

−alk0

(
Jl(u)

u

)2[
1 −

(
u

alk0

)2]
|pz|2du.

(61)

Calling

Dl :=
c(2π)2

ω0µ0alk0
|Al |2 =

2πc
µ0alk0

(
µ0

4π
c(lk0)

2
)2

=
Z0c2(lk0)

4

8π(alk0)
, (62)

where Z0 = µ0c is the impedance of free space, because D−l = −Dl we can obtain the
averaged energy flux as follows:∫ 2π

0

∫ π

0
⟨S∞⟩R2

0 sin θ dθ dϕ =
∞

∑
l=1

2Dl

∫ alk0

−alk0

(
Jl(u)

u

)2[
1 −

(
u

alk0

)2]
du|pz|2,

=
∞

∑
l=1

Pl (63)

with Pl as the l-th contribution provided by

Pl = 4Dl

∫ alk0

0

(
Jl(u)

u

)2[
1 −

(
u

alk0

)2]
du|pz|2, l ≥ 1,

= 4Dl

[ ∫ alk0

0

J2
l (u)
u2 du − 1

(alk0)2

∫ alk0

0
J2
l (u)du

]
|pz|2, (64)

where, by means of the identities obtained in Appendix D, we can see that the integrals
are provided by

IS
l (alk0) =

∫ alk0

0

J2
l (u)
u2 du =

alk0
2l

[ Jl J′l+1 − Jl+1 J′l
1 + 2l

+
Jl J′l−1 − Jl−1 J′l

1 − 2l

]
alk0

l ≥ 1, (65)

IR
l (alk0) =

∫ alk0

0
J2
l (u)du =

[
IR

l−2 −
2(l − 1)

alk0
J2
l−1 − 2(l − 1)IS

l−1

]
alk0

l > 1, (66)

IR
1 (ak0) =

∫ ak0

0
J2
1 (u)du =

[
IR

0 − ak0(J2
1 − J2

0 )
]

ak0
l = 1, (67)

where the function IR
0 is defined trough an integral (see (A37)). Employing

Equations (65)–(67), it is possible to compute the radiated power flux in a semi-
analytical manner. In particular, if we focus our attention on the case where
l = 1.

P1 = 4D1

∫ ak0

0

(
J1(u)

u

)2[
1 −

(
u

ak0

)2]
du|pz|2,

or in more explicit fashion,

P1 = 4Dl

{
ak0

2

[
J1 J′2 − J2 J′1

3
+ J1 J′0 − J0 J′1

]
ak0

+

IR
0 (ak0)

ak0
− [J2

1 (ak0) + J2
0 (ak0)]

(ak0)2

}
|pz|2.
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Remark 7. It is important to note that in this case we have made no restrictions regarding
the velocity of the charged particle, albeit it cannot be faster than c (this is studied in greater
depth in Section 3.3). Thus, the expressions derived here are valid even for charges with speeds
near c.

• Non-relativistic case.
Let us recall that the position of the charged particle follows the law a cos(ω0t), which
means that the maximum speed attainable by this particle is aω0. In the context of the
non-relativistic regime, this necessitates that aω0 ≪ c, or equivalently, alk0 ≪ l. For
l = 1, we have 0 < u < ak0 ≪ 1. In this case, the behaviour of J1 near the origin is
well known, namely, J1(u) ∼ u

2 ; as a result, we have

J2
1 (u)
u2 ∼ 1

4
(68)

and obtain

P1 ∼ D1 |pz|2
∫ ak0

0

(
1 − u2

(ak0)2

)
du,

i.e.,

P1 ∼ D1
2
3

ak0|pz|2 =
Z0c2(k0)

4

8π(ak0)

2
3

ak0|pz|2 =
Z0c2(k0)

4

12π
|pz|2.

The reader may recognize this last equality as the expression used in [10] for the total
radiated power. Finally, Figure 4 shows a comparison between the power Pl (for
l = 1, 2, 3) obtained analytically by means of (64) when using the far field approxima-
tion and the power computed numerically by considering the Poynting vector flux
across the surface of a pill box that encloses the trajectory of the charged particle, as
depicted in Figure 5b. The Poynting vector is obtained via Equations (52) and (53),
and the numerical integrations were performed using the GetDP solver [30]. As can
be seen, both approaches fit perfectly.

0 2 4 6 8 10 12
λ0/a

10−4

10−3

10−2

10−1

100

101

lo
g 1

0
(P

l/
P

re
f

0
)

Analytical l = 1

Numerical l = 1

Analytical l = 2

Numerical l = 2

Analytical l = 3

Numerical l = 3

Figure 4. Comparison of the powers Pl (l = 1, 2, 3) obtained analytically (thick lines) and numerically
(crosses), normalized by the quantity Pref

0 obtained analytically for l = 1 and λ0/a = 1. The analytical
data were obtained by numerical integration of the formula in Equation (64). The numerical data
were obtained by 3D numerical intgration of the Poynting vector shown in Figure 3.
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X

Y

Z

Figure 5. (a) Pill-box surface (green lines) enclosing the sphere (blue lines) on which is plotted the
Poynting vector. The trajectory of the particle is indicated by the red line. (b) Zoom on the pill-box
and sphere. The yellow–green map represents the real part of the total Poynting vector for l = 0. The
blue–yellow map represents the square norm of the total electric field for l = 0.

3.3. The Particle Cannot Be Supraluminal

It is common sense that for the l-th component of the magnetic induction field in Equation (58)
(namely, Bl

∞) the l-th averaged Poynting vector ⟨Sl
∞⟩ := c

µ0
|Bl

∞|2 (see Equation (57)), and the
power Pl (provided by Equations (61)–(64)), the value converges with growing l. A divergence
would result in a total value of infinity. Due to the connection between Bl

∞, ⟨Sl
∞⟩ and Pl, it

follows that if the magnetic field diverges, then the two others diverge as well.
The lth magnetic field depends on l only in

Bl
∞ ∼ l · Jl(l · ak0 cos θ).

For large l, Jl(lβ) can be written as follows [32]:

Jl(l ak0 cos θ) ∼ el (tanh(a0)−a0)√
2π l tanh(a0)

, with a0 = arccosh
(

1
ak0 cos θ

)
. (69)

Combining this result with Equation (59), it is possible to see that Bl
∞ behaves as

Bl
∞ ∼

√
l

π
√

1 − (ak0 cos θ)2
el(
√

1−(ak0 cos θ)2−arcosh( 1
ak0 cos θ )).

This only converges with l → ∞ if the argument of the exponential function is negative,
which, in the form of Equation (69), leads to the following inequalities.

a0 > tanh(a0)

⇔ a0 > 0

⇔ 0 < ak0 cos θ < 1

⇔ ak0 < 1

⇔ v := aω0 < c

With v = aω0 being the maximum velocity of our point charge in this sinusoidal movement,
the condition for convergence is matched in the physical sense of Einstein’s postulate that
nothing is faster than light [10,11].
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Remark 8. This result holds irrespective of whether the particle has a mass.

3.4. Multipolar Expansion of the Fields

The results presented in the preceding subsection indicate that the radiated power
calculated using the polyharmonic representation of the EM field aligns with the results
derived from the oscillating point dipole approximation, when the far field approximation
is used . This subsection aims to elucidate the reasons behind this phenomenon and to
provide a method for estimating the error associated with this approximation. In order to
illustrate this method, we examine the Coulomb field outlined in Equation (28), applying
the polyharmonic representation of the charge density (ρ(x, t)) as defined in Equations (44)
and (49), that is,

Ec(x, t) = ∑
l∈Z

e+ilω0t q
4πϵ0

∫
[−a,a]

ϱT
l (z

′)e−ilk0R̃ R̃
R̃3 dz′. (70)

To simplify our analysis, it is convenient to define the following function:

F l
E,c(x) :=

q
4πϵ0

e−ilk0r x
r3 , (71)

where r = |x|. Upon substitution of Equation (71) into Equation (70), we obtain

Ec(x, t) = ∑
l∈Z

e+ilω0t
∫
[−a,a]

ϱT
l (z

′)F l
E,c(x − z′ez) dz′. (72)

The reader can identify the Type 1 integral as defined in Appendix F; however, our analysis
requires summing only for l ≥ 0. To facilitate this, we note the following relationships:

ϱT
−l(z

′) = ϱT
l (z

′) = ϱT
l (z

′), F−l
E,c(x) = F l

E,c(x),

where the overline symbol denotes the complex conjugate. Consequently, Equation (72)
can be reformulated to incorporate these observations, as follows:

Ec(x, t) =
∫
[−a,a]

ϱT
0 (z

′)F0
E,c(x − z′ez) dz′

+ 2Re

{ ∞

∑
l=1

e+ilω0t
∫
[−a,a]

ϱT
l (z

′)F l
E,c(x − z′ez) dz′

}
. (73)

The integrals presented in Equation (73) can be reformulated using a vector Taylor series
(multipole expansion), as outlined in Equation (A58):

Ec(x, t) =F0
E,c(x)d0,0 +

N

∑
n=1

and0,nD(n)
ez [F0

E,c(x)] + 2Re

{ ∞

∑
l=1

N

∑
n=1

eilω0tandl,nD(n)
ez [F0

E,c(x)]
}

+ 2Re

{
1

(N + 1)!

∞

∑
l=1

eilω0t
∫
[−a,a]

(z′)N+1ϱT
l (z

′)D(N+1)
ez [F l

Ec(x − sz′ez)]dz′
}

,

where N represents the highest term in the Taylor expansion and dl,n is defined as follows.

dl,n =

{[
2n( n+l

2
)
!
]−1 if n ≥ l and n + l is even,

0 otherwise
(74)

Equation (74) establishes a selection rule that links the l-th multiple of the angular frequency
ω0 with the n-th term of the Taylor expansion (2n-pole). This relationship is more clearly
demonstrated in Table 1, where the truncation term is considered with N = 3.
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Table 1. Compatible pairs of l and n, indicated by • symbol, when N = 3.

l/n 0 1 2 3

0 • •
1 • •
2 •
3 •
...

This table exemplifies a broader principle.

Remark 9. When employing multipole expansion to represent the electromagnetic field generated
by an oscillating charge, it becomes apparent that the 2n-pole order of our expansion limits the
observable oscillating frequencies lω0. These angular frequencies must adhere to the rule requiring
that n ≥ l and n + l be even.

Therefore, the Coulomb field Ec(x, t) reads

Ec(x, t) =F0
E,c(x)d0,0 +

N

∑
n=1

and0,nD(n)
ez [F0

E,c(x)] + 2Re

{ N

∑
n=1

n

∑
l=1

eilω0tandl,nD(n)
ez [F l

E,c(x)]
}

+ 2Re

{
1

(N + 1)!

∞

∑
l=1

eilω0t
∫
[−a,a]

(z′)N+1ϱT
l (z

′)D(N+1)
ez [F l

Ec(x − sz′ez)]dz′
}

. (75)

Our next objective is to conduct a similar analysis, this time focusing on the radiated field
as described in Equation (30). For this purpose, we use the polyharmonic representation of
the current density, ȷ(x, t), as detailed in Equations (45), (47) and (48). The expression for
the radiated field is provided by

Erad(x, t) = ∑
l∈Z

e+ilω0t q
4πϵ0

∫
[−a,a]

ȷT
l (z

′)e−ilk0R̃ilω0
(ez × R̃)× R̃

c2R̃3 d z′. (76)

By defining the function

F l
E,rad(x) := aω0

q
4πϵ0

e−ilk0rilω0
(ez × x)× x

c2r3 , r = |x|, (77)

we can reformulate Equation (76) as

Erad(x, t) = ∑
l∈Z

e+ilω0t
∫
[−a,a]

1
aω0

ȷT
l (z

′)F l
E,rad(x − z′ez)d z′. (78)

To ensure that the summation includes only terms with l ≥ 0, we observe the following
relationships:

ȷT
−l(z

′) = ȷlT(z′) = −ȷT
l (z

′), F−l
E,rad(x) = F l

E,rad(x).

With these relationships in mind, Equation (78) can be rewritten as

Erad(x, t) = 2Re

{ ∞

∑
l=1

e+ilω0t
∫
[−a,a]

1
aω0

ȷT
l (z

′)F l
E,rad(x − z′ez), dz′

}
. (79)
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By considering Equation (A62), we can reformulate Equation (79) as follows:

Erad(x, t) =2Re

{ ∞

∑
l=1

e+ilω0t 1
2i
[dl+1,0 − dl−1,0]F

l
E,rad(x)

}

+ 2Re

{ ∞

∑
l=1

e+ilω0t
N

∑
n=1

an 1
2i
[dl+1,n − dl−1,n]D(n)

ez [F l
E,rad(x)]

}
+ 2Re

{ ∞

∑
l=1

e+ilω0t 1
(N + 1)!

∫
[−a,a]

(z′)N+1 ȷT
l (z

′)
aω0

D(N+1)
ez [F l

Erad(x − sz′ez)]dz′
}

. (80)

Here, dl+1,n and dl−1,n follow the same rule established in Equation (74). After conducting
elementary manipulations, Equation (80) can be further simplified to

Erad(x, t) =2Re

{
(−1)

2i
e+iω0tF1

E,rad(x)
}

+ 2Re

{ N

∑
n=1

n

∑
l=1

e+ilω0tan 1
2i

dl+1,nD(n)
ez [F l

E,rad(x)]
}

− 2Re

{ N

∑
n=1

n

∑
l=1

e+ilω0tan 1
2i

dl−1,nD(n)
ez [F l

E,rad(x)]
}

+ 2Re

{ ∞

∑
l=1

e+ilω0t 1
(N + 1)!

∫
[−a,a]

(z′)N+1 ȷT
l (z

′)
aω0

D(N+1)
ez [F l

Erad(x − sz′ez)]dz′
}

. (81)

The methodology applied to the Erad(x, t) field can be similarly employed for the Eint(x, t),
Bint(x, t), and Brad(x, t) fields. This is achieved by considering the following functions:

F l
E,int(x) :=

qaω0

4πϵ0
e−ilk0r

[
(ez × x)× x

cr4 +
(ez · x)

cr4 x
]

, (82)

F l
B,int(x) :=

qaω0µ0

4π
e−ilk0r ez × x

r3 , (83)

F l
B,rad(x) :=

qaω0µ0

4π
e−ilk0rilω0

ez × x
cr2 . (84)

By adopting these formulations, we achieve a more lucid representation of the electromag-
netic field generated by an oscillating charge. This approach enhances our understanding
of the field’s representation as derived in this work as well as of the multipole expansion
method. In the following subsection, we demonstrate how the point dipole approximation
is inherently encompassed within our more general expression.

Retrieving the Oscillating Point Dipole: Taking N ≤ 1

Our aim here is to derive the classical time-dependent point dipole expressions found
in standard texts such as [33], specifically under the context of harmonic motion. Addi-
tionally, we provide expressions of the truncation error for both the electric and magnetic
fields. To illustrate our approach, let us start with the electric field Ec(x, t) as described
in Equation (75), focusing on the case where the truncation term N is set to 1. This choice
simplifies our analysis and allows us to directly compare our results with the established
point dipole model.
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Ec(x, t) =F0
E,c(x)d0,0 +

1

∑
n=1

and0,nD(n)
ez [F0

E,c(x)] + 2Re

{ 1

∑
n=1

n

∑
l=1

eilω0tandl,nD(n)
ez [F l

E,c(x)]
}

+ 2Re

{
1
2!

∞

∑
l=1

eilω0t
∫
[−a,a]

(z′)2ϱT
l (z

′)D(2)
ez [F l

Ec(x − sz′ez)]dz′
}

,

=F0
E,c(x) + 2Re

{
eiω0t a

2
D(1)

ez [F1
E,c(x)]

}
+Re

{ ∞

∑
l=1

eilω0t
∫
[−a,a]

(z′)2ϱT
l (z

′)D(2)
ez [F l

Ec(x − sz′ez)]dz′
}

.

For this last equality, we have applied the selection rule as outlined in Equation (74),
particularly focusing on its specific cases where d0,0 = 1 and d1,1 = 1

2 . Remembering that
F0

E,c(x) is defined in Equation (71), we have

Ec(x, t) =
q

4πϵ0

x
r3 +

qa
4πϵ0

Re

{
eiω0tD(1)

ez [eik0r x
r3 ]

}
+ V (2)

E,c ,

where

V (2)
E,c = Re

{ ∞

∑
l=1

eilω0t q
4πϵ0

∫
[−a,a]

(z′)2ϱT
l (z

′)D(2)
ez

[
e−ilk0R̃ R̃

R̃3

]
dz′

}
(85)

is the truncation error. Next, we apply the differential operator Dez , as defined in Equation (A45):

D(1)
ez [e−ik0r x

r3 ] =ez × (∇× x
r3 e−ik0r) +∇(−ez ·

x
r3 e−ik0r),

=∇(−ez ·
x
r3 e−ik0r),

=e−ik0r
(

3n(n · ez)− ez

r3

)
+ iω0e−ik0r n(n · ez)

cr2 ,

with n = x
r . Substituting this result into Equation (85), after some elementary manipulations

we obtain

Ec(x, t) =
q

4πϵ0

x
r3 + cos(ω0[t − r/c])

1
4πϵ0

3n(n · pz)− pz
r3

− ω0 sin(ω0[t − r/c])
1

4πϵ0

n(n · pz)

cr2 + V (2)
E,c , (86)

where pz = qaez. For the Erad(x, t) field, considering a truncation with N = 0, Equation (81)
simplifies to

Erad(x, t) =Re

{
ie+iω0tF1

E,rad(x)
}

+ 2Re

{ ∞

∑
l=1

e+ilω0t
∫
[−a,a]

z′
ȷT
l (z

′)
aω0

D(1)
ez [F l

Erad(x − sz′ez)]dz′
}

.

It is important to note that the double sums in Equation (81) vanish due to our choice to set
N = 0. Recalling the definition of F1

Erad in Equation (77), we obtain

Erad(x, t) = −ω2
0 cos(ω0[t − r/c])

1
4πϵ0

(pz × n)× n
c2r

+ V (1)
E,rad, (87)
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where

V (1)
E,rad = 2Re

{ ∞

∑
l=1

e+ilω0t qiω0

4πϵ0c2

∫
[−a,a]

z′ ȷT
l (z

′)D(1)
ez

[
e−ik0R̃ (ez × R̃)× R̃

R̃3 dz′
]}

. (88)

Applying the same methodology to the Eint(x, t), Bint(x, t), and Brad(x, t) fields and setting
the truncation term to N = 0 leads us to derive the following concise representations of
these fields:

Eint(x, t) =− ω0 sin(ω0[t − r/c])
1

4πϵ0

2n(n · pz)− pz
cr2 + V (1)

E,int, (89)

Bint(x, t) =− ω0 sin(ω0[t − r/c])
µ0

4π

pz × n
r2 + V (1)

B,int, (90)

Brad(x, t) =− ω2
0 cos(ω0[t − r/c])

µ0

4π

pz × n
cr

+ V (1)
B,rad, (91)

with the corresponding truncation errors:

V (1)
E,int =2Re

{ ∞

∑
l=1

e+ilω0t q
4πϵ0c

∫
[−a,a]

z′ ȷT
l (z

′)D(1)
ez

[
e−ik0R̃ (ez × R̃)× R̃ + (ez · R̃)R̃

R̃4 dz′
]}

, (92)

V (1)
B,int =2Re

{ ∞

∑
l=1

e+ilω0t qµ0

4π

∫
[−a,a]

z′ ȷT
l (z

′)D(1)
ez

[
e−ik0R̃ ez × R̃

R̃3 dz′
]}

, (93)

V (1)
B,rad =2Re

{ ∞

∑
l=1

e+ilω0t qiω0µ0

4πc

∫
[−a,a]

z′ ȷT
l (z

′)D(1)
ez

[
e−ik0R̃ ez × R̃

R̃2 dz′
]}

. (94)

Synthesizing our findings, we can express the electric and magnetic fields with truncation
term set to N ≤ 1 as follows:

E(x, t) =
q

4πϵ0

x
r3 + cos(ω0[t − r/c])

1
4πϵ0

3n(n · pz)− pz
r3 + V (2)

E,c

− ω0 sin(ω0[t − r/c])
1

4πϵ0

3n(n · pz)− pz
cr2 + V (1)

E,int

− ω2
0 cos(ω0[t − r/c])

1
4πϵ0

(pz × n)× n
c2r

+ V (1)
E,rad, (95)

and

B(x, t) =− ω0 sin(ω0[t − r/c])
µ0

4π

pz × n
r2 + V (1)

B,int

− ω2
0 cos(ω0[t − r/c])

µ0

4π

pz × n
cr

+ V (1)
B,rad. (96)

The expressions derived here may be familiar to the reader as those corresponding to
a point oscillating dipole [10,33]; however, it is important to note the inclusion of an
additional term representing the Coulomb field of a static point charge located at the
origin. This inclusion aligns with our expectations, considering that the zeroth order in
the Taylor expansion of qδ(x − a cos(ω0t)ez) is qδ(x), a component already encompassed
within our polyharmonic representation of the electromagnetic field. Furthermore, our
approach allows us to articulate the truncation error associated with the point oscillating
dipole approximation. This highlights the comprehensive nature of the polyharmonic
representation of electromagnetic fields developed in this work.
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3.5. Obtaining the Diffracted Field

After all this work, we find that the fields E0 and B0 of the system of Equations (1)–(4)
can be regarded as a superposition of waves in the form of Equations (52) and (53). Even
more, the analysis of the radiated energy from the previous subsection shows that it is
possible to retrieve the classical results from our expressions of E0 and B0 when the non-
relativistic far field approximations are considered. The second part of this work, which
is going to be considerably shorter that the first part, can be tackled in straightforward
fashion. First, the sources in Equation (9) can be easily retrieved by noting that

[ϵr,ξ − 2πδ] ∗ E0 =
1

2π

∫
τ∈R

[ϵr,ξ(τ)− 2πδ(τ)] ∑
l∈Z

e+ilω0(t−τ)E0
l (x)dτ,

= ∑
l∈Z

e+ilω0tE0
l (x)

1
2π

∫
τ∈R

[ϵr,ξ(τ)− 2πδ(τ)]e−ilω0τdτ,

= ∑
l∈Z

e+ilω0tE0
l (x)[ϵ̂r,ξ(lω0)− 1].

It is important to notice that ϵ̂r,ξ(lω0) is the complex conjugate of the Fourier transform of
ϵr,ξ(t); thus,

ρ0
ξ =− ϵ0 ∑

l∈Z
[ϵ̂r,ξ(lω0)− 1]e+ilω0t∇ · E0

l (x),

ȷ0
ξ =ϵ0 ∑

l∈Z
ilω0[ϵ̂r,ξ(lω0)− 1]e+ilω0tE0

l (x).

It is then natural to propose the following as solutions of the system (1)–(4):

Eξ(x, t) = ∑
l∈Z

e+ilω0tEξ,l(x),

Bξ(x, t) = ∑
l∈Z

e+ilω0tBξ,l(x),

Plugging these solutions into Equations (5)–(8) and recalling that E1
ξ,l := Eξ,l − E0, we

arrive at the following system which must be satisfied for each l ∈ Z:

∇× E1
ξ,l = −ilω0B1

ξ,l,

∇× B1
ξ,l =

ilω0

c2 ϵ̂r,ξ(lω0)E1
ξ,l +

ilω0

c2 [ϵ̂r,ξ(lω0)− 1]E0
l (x),

∇ · E1
ξ,l = − [ϵ̂r,ξ(lω0)− 1]

ϵ̂r,ξ(lω0)
∇ · E0

l (x),

∇ · B1
ξ,l = 0.

Taking the curl on Faraday’s Law, we obtain

∇×∇× E1
ξ,l −

(
lω0

c

)2

ϵ̂r,ξ(lω0)E1
ξ,l =

(
lω0

c

)2

[ϵ̂r,ξ(lω0)− 1]E0
l , (97)

where the right-hand side of this expression is a source term. Moreover, the equation can
be solved, for instance, using the Finite Element Method, as explained in [34,35].



Mathematics 2024, 12, 321 29 of 46

3.6. Numerical Illustration

In order to illustrate the above discussion, we present the following numerical results
for the case of an oscillating charged particle close to a sphere (this method can be readily
applied to more complicated geometries, as finite elements are used). For the purposes of
this example, we consider that the particle oscillates at an angular frequency ω0 = 2πc/λ0
with λ0 = 900 nm. The particle oscillates between points of the coordinates (0, 0,−a)
and (0, 0,−a) with a = λ0/7. The radius of the sphere is λ0/6 and its center is located at
(0, λ0/5, a). The relative permittivity of the sphere is set to 9 + i. It is important to note that
for the sake of simplicity we have used a non-dispersive sphere here; however, it would
have been simple to consider temporal dispersion with the proposed method. Finally, all
geometries and conformal meshes were obtained using Gmsh software [31], and all finite
element formulations in this article were implemented thanks to the flexibility of the GetDP
finite element software [30]. Perfectly Matched Layers (PMLs) [36] were used to truncate
the surrounding free space. The incident field was hard-coded in GetDP as well, as detailed
in Section 2.4.1.

The mesh size (see Figure 6) was set to λ0/20, which is very fine at ω0 and reasonably
coarse at ω4 = 4ω0 ↔ λ4 = λ0/4. The 3D scattering problem uses high order Webb hierar-
chical edge elements [14,37,38] with twenty unknowns per tetrahedron (two unknowns
per edge, two unknowns per face). The direct problem corresponding to Equation (97)
was solved using the MUMPS direct solver [39], which natively interfaces with GetDP.
The number of unknowns of the final discrete system in this example is about 1.8 million,
which uses 130 Gb of RAM memory for a resolution time of 20 min per harmonic l on
a workstation equipped with of Intel Xeon Platinum processors (2.50 GHz) and with a
multithreaded version of MUMPS v5.5.1 running on 32 threads.

(a) (b)
Figure 6. (a) Mesh showing the different regions of integration and (b) zoom enclosing the sphere
and the region where the particle oscillates.

Figure 7 shows the harmonic components of the diffracted field E1
l for l = 1, 2, 3, 4.

Notice that this field was obtained as a numerical solution of (97) using FEM. Moreover,
due to the fact that the support of the source term on the right-hand side of Equation (97) is
within the sphere, the possible singularity of E0

l does not affect our numerical results.
Figure 8 shows the total electric field (El = E1

l + E0) and its interaction with the sphere,
whereas the total Poynting vector has been computed as Sl =

1
2µ0

El × Bl and can be seen
in Figure 9 for l = 1, 2, 3, 4. It is important in the case of the Poynting vector to see how this
is somewhat pulled by the sphere. This is due to the passivity of the material; remember
that the permittivity of the sphere is 9 + i.
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Figure 7. Harmonic components of the imaginary part of the diffracted electric field (in V/m) E1
l

for l = 1, 2, 3, 4 (cut in the plane x = 0). For clarity, data in close vicinity to the particle trajectory
(elongated rectangle below the sphere) are not displayed.

Figure 8. Harmonic components of the imaginary part of the total electric field (in V/m) El for
l = 1, 2, 3, 4 (cut in the plane x = 0). for clarity, data in close vicinity to the particle trajectory
(elongated rectangle below the sphere) are not displayed.
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Figure 9. Harmonic components of the real part of the total Poynting vector field (in W/m2) Sl

for l = 1, 2, 3, 4 (cut in the plane x = 0). For clarity, data in close vicinity to the particle trajectory
(elongated rectangle below the sphere) are not displayed.

Finally, all of our results have been corroborated by considering an energy balance
that measures the total energy flux that crosses a pill-box that surrounds the sphere. This is
shown in Figure 5.

4. Conclusions

In this study, the electromagnetic field generated by an oscillating point charge has
been thoroughly examined. We have explored and analyzed the methodologies of Liénard-
Wiechert, Landau, and Raimond, discussing their respective merits and limitations. Our
proposed Fourier representation of the sources has led to the development of a polyhar-
monic framework for constructing electromagnetic (EM) fields. This approach offers an
analytical and practical representation of the EM fields, effectively circumventing the
complexities inherent in the previously discussed methods.

Our polyharmonic technique is applicable to both relativistic and non-relativistic
scenarios, yielding more comprehensive formulas for the radiated power. Under specific
simplifying conditions, these formulas align with the well-known far-field time-dependent
dipole radiation power equations frequently referenced in the literature. Furthermore, our
multipolar decomposition demonstrates that our solution includes both the Coulomb field
and the oscillating point dipole fields, which are typically employed to represent the EM
field of an oscillating charge. We elucidate why such approximations fail to capture the
more intricate polyharmonic fields with angular frequencies.

The polyharmonic representation is particularly advantageous for studying the interac-
tion between a stiff oscillating charge and a dispersive bulk in the time domain. To illustrate
this, we have chosen to focus on a dispersive nanosphere, employing the Finite Element
Method (FEM) for our numerical solutions. This choice is justified by the flexibility and
adaptability of FEM, which accommodates dispersive bulks with more complex geometries.
Our results are validated through an energy balance, ensuring their accuracy and reliability.
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It is important to note, however, that our approach has certain limitations. For instance,
the impact of the diffracted field on the charge trajectory and the Abraham–Lorentz force
are not considered in this study. Future work will address these limitations, along with
exploring different configurations of materials, oscillation frequencies, and geometries.
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Appendix A

In this appendix, we set the Fourier transform convention (in the classical sense) for
this work as follows:

f̂ (ω) :=
1

2π

∫
t∈R

f (t)e+iωtdt,

f (t) :=
∫

ω∈R
f̂ (ω)e−iωt dω.

If we want to extend these definitions to a wider family of mathematical objects (e.g.,
δs, unit steps, ramps, sines, cosines, etc.), it is necessary to consider the definition of the
Fourier transform in the sense of distributions, as per [40–42]:

⟨Ft→ω{ f (t)}(ω), φ(ω)⟩ω∈R := ⟨ f (t), φ̂(t)⟩t∈R .

Accordingly, the inverse Fourier transform is defined as follows:

⟨F−1
ω→t{ f̂ (ω)}(t), φ̂(t)⟩t∈R := ⟨ f̂ (ω), φ(ω)⟩ω∈R ,

where the brackets denote integration in the whole real line when dealing with regular
distributions and ϕ(ω) is a Gaussian test function, as explained in [40].

Appendix B

In this appendix, we show how to obtain the polyharmonic representation of the
sources. For this, the distribution ϱ(z, t) has to be considered as a δ-distribution of a
function f (t) := z − a cos(ω0t). Using the expansion provided in [10,29], we obtain

ϱ(z, t) = δ( f (t)) = ∑
l∈Z

1
| ḟ (tl)|

δ(t − tl),
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where tl are the zeros of the function f (t), i.e.,

cos(ω0t) =
z
a

.

In light of the fact that the absolute value of the cosine is bounded by 1, there are only two
solutions within the range [−a, a]. Then, by considering the principal branch of the arc
cosine function and denoting t0(z) := 1

ω0
arccos( z

a ), these zeros are

t+l (z) = t0(z) + 2lπ/ω0,

t−l (z) = −t0(z) + 2lπ/ω0.

In addition, it turns out that for every tl (t+l or t−l ) we have | ḟ (t)| = ω0
√

a2 − z2, and the
δ-distribution reads

ϱ(z, t) = δ( f (t)) =
1

ω0
√

a2 − z2
(W+(t) + W−(t))χ[−a,a](z), (A1)

where W±(t, z) = ∑l∈Z δ(t − t±(z)) and χ[−a,a](z) is a characteristic function. These last
two series of distributions (Dirac’s combs) are expandable in a Fourier series, as follows [41]:

W±(t, z) = ∑
l∈Z

δ

(
t ∓ t0(z)−

2πl
ω0

)
= ∑

m∈Z
Φ±

mei 2mπ
T0

t,

with T0 = 2π
ω0

. Making the change of variables t = τ ± t0(z), we obtain

∑
l∈Z

δ(τ − lT0) = ∑
m∈Z

Φ±
mei 2mπ

T0
(τ±t0(z)). (A2)

After multiplying this equation by e−i 2nπ
T0

(τ±t0(z)), taking the integral from −T0/2 to T/2,
and performing the change of variables σ = τ − lT0, Equation (A2) can be rewritten as

∑
l∈Z

∫ −(2l+1)T0/2

−(2l−1)T0/2
δ(σ)e−2im πσ

T0 e∓2imπ
t0(z)

T0 dσ = T0Φ±
m ,

or in a more illuminating way, as

e∓2imπ
t0(z)

T0

∫ +∞

−∞
δ(σ)e−2imπ σ

T0 dσ = T0Φ±
m ,

which implies that

Φ±
m =

1
T0

e∓2imπ
t0(z)

T0 =
ω0

2π
e∓imπω0t0(z).

Then,
W±(t, z) =

ω0

2π ∑
m∈Z

e∓imω0t0(z)eimω0t,

and naturally (recovering the l index),

W+(t, z) + W−(t, z) =
ω0

2π ∑
l∈Z

[
eilω0t0(z) + e−ilω0t0(z)

]
eimω0t,

=
ω0

π ∑
l∈Z

cos(lω0t0(z))eilω0t.
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Remembering the definition of t0, we obtain

cos(lω0t0) = cos
(

l arccos
(

z
a

))
= Tl

(
z
a

)
,

where Tl represents the Chebyshev polynomials of the first kind; therefore,

W+(t, z) + W−(t, z) =
ω0

π ∑
l∈Z

Tl

(
z
a

)
e+ilω0t.

After plugging this equation into Equation (A1) and defining the function

w(z) :=
1

π
√

a2 − z2
χ[−a,a](z), (A3)

the function ϱ reads

ϱ(z, t) = ∑
l∈Z

w(z)Tl

(
z
a

)
e+ilω0t. (A4)

As a consequence of this, the function ȷ is provided by

ȷ(z, t) = −aω0 sin(ω0t)∑
lZ

w(z)Tl

(
z
a

)
e+ilω0t.

In short, ϱ and ȷ are in the following form:

ϱ(z, t) = ∑
l∈Z

ϱF
l (z, t), ȷ(z, t) = ∑

l∈Z
ȷF
l (z, t),

with

ϱF
l (z, t) = w(z)Tl

(
z
a

)
e+ilω0t,

ȷF
l (z, t) = −aω0 sin(ω0t)w(z)Tl

(
z
a

)
e+ilω0t.

On the other hand, the Fourier transform ϱ(z, t) := δ(z − a cos(ω0t)) can be derived by
considering the convention

ϱ̂(k, t) = Fz→k{δ(z − a cos(ω0t))}

=
1

2π

∫
z∈R

δ(z − a cos(ω0t))e+izkdz .

After a suitable change of variable (σ = z − a cos(ω0t)), we find that

ϱ̂(k, t) =
1

2π
e+ia cos(ω0t)k =

1
2π ∑

l∈Z
il Jl(ka)e+ilω0t,

where the last equality comes from the generating function of the Bessel’s functions [42–44].
Taking the Fourier transform of Equation (A4) and keeping in mind that these two Fourier
series are equal term-by-term, we arrive at this beautiful and unexpected expression:

Fz→k

{
w(z)Tl

(
z
a

)}
=

il

2π
Jl(ka) , (A5)

which is used in Section 3.1.
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Appendix C

This appendix is devoted to the deduction of the Liénard-Wiechert fields. In order
to fix the main ideas, we are going to deal only with Bint in Equation (33). At first sight,
it would be tempting to simply evaluate everything at x′ = u; however, it is important to
remember that u and n are functions of the retarded time tr, which is defined as

tr = t − |x − u(tr)|
c

. (A6)

Thus, a change of strategy is necessary. Instead of asking, as in Equation (33), which x′

makes x′ − u = 0 for each tr, we ask which tr satisfies the transcendental Equation (A6) for
each t, the present time, and the given trajectory u [21]. Mathematically, the space integral
in (33) is equivalent to

Bint = q
cµ0

4π

∫
R

δ

(
tr − t +

|x − u(tr)|
c

)
β × n

R2 dtr. (A7)

The next step in evaluating this integral is to perform a change of variable with respect to
the argument of the delta distribution:

τ = tr − t +
|x − u(tr)|

c
.

Then, the differential dτ is provided by

dτ = dtr

[
1 +

1
c

d
dtr

|x − u(tr)|
]

.

The derivative of |x − u(tr)| with respect to the retarded time can be easily computed by
remembering that

d
dtr

|x − u(tr)|2 =
d

dtr
(x − u(tr)) · (x − u(tr)).

Taking the derivative from both sides, we have

2|x − u(tr)|
d

dtr
|x − u(tr)| = −2v(tr) · (x − u(tr)),

which after some elementary manipulation provides us with

d
dtr

|x − u(tr)| = −v(tr) · n(tr).

By defining K := 1 − β(tr) · n(tr), we finally obtain

dτ = dtr
[
1 − β(tr) · n(tr)

]
= dtrK.

Thus, the intermediate magnetic induction field is

Bint = q
cµ0

4π

∫
R

δ(τ)
β × n
KR2 dτ =

cµ0

4π

β × n
KR2

∣∣∣∣
τ=0

where, due to the fact that τ = 0, the retarded time is defined implicitly as in Equation (A7).
Mutatis mutandis, this procedure can be repeated for the other fields in Equations (34)–(37);
then, the total electric and magnetic induction fields read

B =
qcµ0

4π

[(
β × n
KR2

)∣∣∣∣
tr

+ ∂t

(
β × n
cKR

)∣∣∣∣
tr

]
, (A8)
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E =
q

4πϵ0

[(
(β × n)

KR2 × n
)∣∣∣∣

tr

+ ∂t

(
(β × n)

cKR
× n

)∣∣∣∣
tr

]
+

q
4πϵ0

(
n

1 + n · β

KR2

)∣∣∣∣
tr

. (A9)

Now, it is necessary to compute the derivatives with respect to the present time t. Assuming
the convention that the doted quantities denote partial derivation with respect to time t,
the following identities will be useful:

Ṙ = ∂t(x − u(tr)) = −∂tr

∂t
v(tr) = −c

∂tr

∂t
β(tr),

.
R = ∂t(

√
R · R) =

1
R

R ·
.

R = −c(n · β)
∂tr

∂t
, (A10)

= c∂t(t − tr) = c
(

1 − ∂tr

∂t

)
. (A11)

From Equations (A10) and (A11), we can solve for

∂tr

∂t
=

1
1 − n · β

=
1
K

, (A12)

and upon substitution of Equation (A12) into Equations (A10) and (A11) we obtain

.
R = − c

K
β

Ṙ = − c
K
(n · β)

= c
(

1 − 1
K

)
.

From the expression Rn = R, we can perform derivation with respect to t; after some
manipulations, we obtain

.n =
1
R
[ .
R − Ṙn

]
=

1
R

[
− c

K
β − c

(
1 − 1

K

)
n
]

= − c
KR

[
(K − 1)n + β

]
.

In addition, we have
.

β = ∂t

(
v(tr)

c

)
=

.v(tr)

c
∂tr

∂t
=

a
Kc

,

where a =
.v denotes the particle acceleration. Finally,

.
K =− ∂t(β · n) = −

.
β · n − β · .n

=− a · n
Kc

+
c

KR
[
(K − 1)β · n + β2]

=− a · n
Kc

+
c

KR
[
β2 − (K − 1)2].

Using these identities, we first deal with B in Equation (A8):

B =
qcµ0

4π

[
M
R

+

.
M
c

]
, (A13)
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where we have defined
M :=

β × n
KR

. (A14)

It is then necessary to calculate the derivative of M :

.
M =

1
KR

[
∂t(β × n)− M∂t(KR)

]
. (A15)

The first derivative in the right-hand side of Equation (A15) is

∂t(β × n) =
.

β × n + β × .n,

=
a × n

Kc
− c

KR
[
(K − 1)β × n + β × β

]
,

=
a × n

Kc
− c(K − 1)M , (A16)

and the second one is provided by

∂t(KR) =
.

KR +
.
RK,

=− a · n
Kc

R +
c
K
[
β2 − (K − 1)2]+ c(K − 1),

− a · n
Kc

R +
c
K
[
β2 − 1] + c. (A17)

Plugging Equation (A16) and Equation (A17) into Equation (A15), we obtain

.
M =

[
a × n
K2Rc

− c
M
R

+ M
a · n
cK2 +

c
K2R

[
1 − β2]M

]
, (A18)

and substituting Equation (A18) into Equation (A13), we obtain the Liénard-Wiechert
magnetic field:

B =
qcµ0

4π

[
a × n
K2Rc2 +

a · n(β × n)
c2K3R

+
(1 − β2)(β × n)

K3R2

]
tr

. (A19)

For the case of the electric field, we start again by expressing Equation (A9) in terms
of Equation (A14):

E =
q

4πϵ0

[(
M
R

+

.
M
c

)
× n +

M
c

× .n +
2 − K
KR2 n

]
tr

. (A20)

Then, we consider the second term in the right-hand side of (A20):

M
c

× .n =
−
[
(K − 1)(β × n)× n + (β × n)× β

]
K2R2 ,

=
−
[
(K − 1)(n(β · n)− β)− (β(β · n)− β2n)

]
K2R2 ,

and, using 1 − K = β · n,

M
c

× .n =
−
[
(K − 1)(n(1 − K)− β)− (β(1 − K)− β2n)

]
K2R2 ,

=
−n

K2R2 (β2 − (K − 1)2),

= −2 − K
KR2 n +

n
K2R2 (1 − β2). (A21)
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Notice that the first term in Equation (A21) cancels with the third term in Equation (A20).
Thus, we can focus our attention on the first term of Equation (A20):(

M
R

+

.
M
c

)
× n. =

[
a × n
K2Rc2 +

a · n(β × n)
c2K3R

+
(1 − β2)(β × n)

K3R2

]
× n (A22)

Let us work with the first two terms of Equation (A22):[
a × n
K2Rc2 +

a · n(β × n)
c2K3R

]
× n =

[
K(a × n) + a · n(β × n)

]
c2K3R

× n,

=

[
(1 − β · n)(a × n) + a · n(β × n)

]
c2K3R

× n.

Now, by means of the vector identity A · (B × C)D = (A · D)(B × C) + (B · D)(C × A) +
(C · D)(A × B) [18], letting A = a, B = β and C = D = n, we have[

a × n
K2Rc2 +

a · n(β × n)
c2K3R

]
× n =

[a × n − β × n + a · (β × n)n]
c2K3R

× n,

=
[a × (n − β)]× n

c2K3R
. (A23)

On the other hand, the third term on Equation (A22) can be written as

(1 − β2)(β × n)
K3R2 × n =

(1 − β2)(n(1 − K)− β)

K3R2 ,

=
(1 − β2)(n − β)

K3R2 − (1 − β2)n
K2R2 . (A24)

Putting Equations (A23) and (A24) into Equation (A22) and then plugging this result and
Equation (A21) into Equation (A20), we finally obtain the electric Liénard-Wiechert field:

E =
q

4πϵ0

[
(1 − β2)(n − β)

K3R2 +
[a × (n − β)]× n

c2K3R

]
tr

. (A25)

It can be seen that, along with Equation (A19), these are the same results as were obtained
by Griffiths [11] and by Heald and Marion [21].

Appendix D

Here, the goal is to express Pl with the minimum of ad hoc special functions. For this
reason, we derive the integrals used in Section 3.1. As we know, Bessel functions of the first
kind are non-diverging solutions at the origin of the differential equation [42,43,45]

r2 d2

dr2 Jl(r) + r
d
dr

Jl(r) + Jl(r)
(

r2 − l2
)
= 0 (A26)

which satisfy the identities [29,32,42]

Jl−1(r) + Jl+1(r) =
2l
r

Jl(r), (A27)

Jl−1(r)− Jl+1(r) = 2
d
dr

Jl(r). (A28)

Equipped with these tools, our first goal is to compute the integral

IS
l (A) =

∫ A

0

J2
l

r2 dr. (A29)
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In order to do this, we can consider Equation (A26) and divide it over r. After some
elementary manipulations, this equation reads

d
dr

[
r

dJl
dr

]
+ Jl

(
r − l2

r

)
= 0; (A30)

analogously, for Jk we have

d
dr

[
r

dJk
dr

]
+ Jk

(
r − k2

r

)
= 0. (A31)

Multiplying Equation (A30) by Jk and Equation (A31) by Jl , then taking the difference, we
obtain

Jk
d
dr

[
r

dJl
dr

]
− Jl

d
dr

[
r

dJk
dr

]
+ (k2 − l2)

1
r

Jk Jl = 0.

Next, we take the integral from 0 to A to obtain

Jkr
dJl
dr

∣∣∣∣A

0
− Jlr

dJk
dr

∣∣∣∣A

0
= (l2 − k2)

∫ A

0

1
r

Jk Jldr,

then, ∫ A

0

1
r

Jk Jldr =
A

(l2 − k2)

[
Jk

dJl
dr

− Jl
dJk
dr

]
A

. (A32)

Now, by means of the identity in (A27), it is easy to see Equation (A29) as

∫ A

0

1
r2 J2

l dr =
1
2l

[ ∫ A

0

1
r

Jl−1 Jldr +
∫ A

0

1
r

Jl+1 Jldr
]

. (A33)

The last two integrals in the right-hand side of Equation (A33) can be easily obtained via
(A32); finally,

IS
l (A) =

A
2l

[ Jl J′l+1 − Jl+1 J′l
1 + 2l

+
Jl J′l−1 − Jl−1 J′l

1 − 2l

]
A

. (A34)

The second goal is to compute the integral

IR
l (A) =

∫ A

0
J2
l dr. (A35)

Despite its harmless appearence, this integral poses a challenge for integration, lacking a
direct analytical expression in terms of Bessel functions, as highlighted in [46]. To address
this, we introduce a recursive method that facilitates the effective computation of this
integral.

We starting by assuming l > 1, taking the product of Equations (A27) and (A28), and
integrating this resulting equation from 0 to A to obtain∫ A

0
J2
l−1dr −

∫ A

0
J2
l+1dr = 4l

∫ A

0

1
r

Jl
dJl
dr

dr.

After performing integration by parts in the right-hand side of this equation, we arrive at
the following expression:

IR
l+1(A) = IR

l−1(A)− 2l
A

J2
l (A)− 2lIS

l (A). (A36)

Notice that the last integral in the right-hand side of Equation (A36) is provided by (A34).
This establishes a two-step recurrence relation between the integrals IR

l+1(A) and IR
l−1(A)
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as defined in Equation (A35). Next, we obtain an expression for IR
1 (A) by considering

Equation (A30) with l = 0,
d
dr

[
r

d
dr

J0

]
+ J0r = 0.

Remembering that d
dr J0 = −J1, we obtain

− d
dr

[
rJ1

]
+ J0r = 0,

and after multiplying by dJ0
dr = −J1, we have

J1
d
dr

[
rJ1

]
+

dJ0

dr
J0r = 0,

which implies

J2
1 +

1
2

d
dr

[J2
1 + J2

0 ]r = 0.

After integration by parts, we have∫ A

0
J2
1 dr −

∫ A

0
J2
0 dr + A[J2

1 + J2
0 ]A = 0.

This expression can be arranged in a more illuminating way:

IR
1 (A) = IR

0 (A)− A[J2
1 − J2

0 ]A.

Therefore, at the end Equation (A35) depends only on

IR
0 (A) =

∫ A

0
J2
0 dr. (A37)

An analytical expression for this integral is provided in Section 2.1.3 of [46], as follows:

∫ x

0
J2
0 (t)dt = 2

∞

∑
k=0

(−1)k(2k)!
(2k + 1)(k!)4

(
x
2

)2k+1

where x = A in this case. Alternatively, this integral can be accurately evaluated numeri-
cally using the periodisation method detailed in [47].

Appendix E

This appendix is devoted to obtaining the Taylor expansion of a vector field F : R3 →
R3. We start by componentwise consideration of the Cartesian F (x − x′),

F (x − x′) =
3

∑
i=1

eiFi(x − x′). (A38)

Assuming that each Fi(x − x′) admits a Taylor expansion and that |x| > |x′|, we have

Fi(x − x′) =
N

∑
n=0

[−x′ · ∇]n

n!
Fi(x) + VN+1

Fi
(x; x′), (A39)
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where [−x′ · ∇]n denotes the n-th application of the operator [−x′ · ∇] and VN+1
Fi

(x; x′) is
the Lagrange remainder [48] provided by

VN+1
Fi

(x; x′) =
[−x′ · ∇]N+1

(N + 1)!
Fi(x − sx′),

where s is an unknown number in the interval [0, 1]. Substituting Equation (A39) into
Equation (A38), we obtain

F (x − x′) =
3

∑
i=1

ei

[ N

∑
n=0

[−x′ · ∇]n

n!
Fi(x) + VN+1

Fi
(x; x′)

]
,

=
3

∑
i=1

N

∑
n=0

ei
[−x′ · ∇]n

n!
Fi(x) + V N+1

F (x; x′),

=
N

∑
n=0

3

∑
i=1

ei
[−x′ · ∇]n

n!
Fi(x) + V N+1

F (x; x′). (A40)

By defining the vector

Gn(x; x′) :=
3

∑
i=1

eiGn,i(x; x′)

with entries

Gn,i(x; x′) =
[−x′ · ∇]n

n!
Fi(x), (A41)

it is possible write Equation (A40) as

F (x − x′) =
N

∑
n=0

Gn(x; x′) + V N+1
F (x; x′). (A42)

Next, we study the vector Gn(x; x′). We start by taking n = 0, meaning that we have

G0(x; x′) =
3

∑
i=1

eiFi(x) = F (x).

For n = 1,

G1(x; x′) =
3

∑
i=1

(−1)(x′ · ∇Fi(x))ei,

=
3

∑
i=1

{x′ × (∇Fi(x)× ei)−∇Fi(x)(x′ · ei)},

=
3

∑
i=1

{x′ ×∇× (Fi(x)ei)−∇(Fi(x)x′i)},

= x′ × (∇× F (x)) +∇(−x′ · F (x)).

This last equality suggest that we should define the following differential operators:

DCurl,x′ [F (x)] := x′ × (∇× F (x)), (A43)

DGrad,x′ [F (x)] := ∇(−x′ · F (x)), (A44)

Dx′ [F (x)] := DCurl,x′ [F (x)] +DGrad,x′ [F (x)]. (A45)

Using these definitions, it is easy to see that

G1(x; x′) = Dx′ [F (x)] =
1
1!
D(1)

x′ [F (x)].
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For the case of n ≥ 2, we can show that

Gn(x; x′) =
1
n!
D(n)

x′ [F (x)].

Because we already have the inductive basis and hypothesis, it only remains to perform
the inductive step, that is,

Gn+1(x; x′) =
3

∑
i=1

ei
[−x′ · ∇](n+1)

(n + 1)!
Fi(x),

=
3

∑
i=1

1
n + 1

ei(−1)x′ · ∇
{
[−x′ · ∇]n

n!
Fi(x)

}
,

=
1

n + 1

3

∑
i=1

ei[−x′ · ∇Gn,i],

=
1

n + 1
(x′ × (∇× Gn(x)) +∇(−x′ · Gn(x))),

=
1

n + 1
Dx′ [Gn(x)],

=
1

(n + 1)!
Dx′ [D

(n)
x′ [F (x)]] (using inductive hypothesis),

=
1

(n + 1)!
D(n+1)

x′ [F (x)].

Thus, Equation (A42) is rewritten as

F (x − x′) = F (x) +
N

∑
n=1

1
n!
D(n)

x′ [F (x)] + V N+1
F (x; x′). (A46)

In order to obtain a more tractable expression of Equation (A46) from the practical point of
view, we can show that

D(n)
x′ [F (x)] = D(n)

Curl,x′ [F (x)] +D(n)
Grad,x′ [F (x)]. (A47)

The inductive basis and hypothesis are provided by Equations (A45) and (A47), respectively.
Therefore, the only missing piece is the inductive step for n ≥ 1, which proceeds as follows:

D(n+1)
x′ [F (x)] =D(1)

x′ [D
(n)
x′ [F (x)]],

=x′ × (∇×D(n)
x′ [F (x)]) +∇(−x′ · D(n)

x′ [F (x)]),

=x′ × (∇× {D(n)
Curl,x′ [F (x)] +D(n)

Grad,x′ [F (x)]})

+∇(−x′ · {D(n)
Curl,x′ [F (x)] +D(n)

Grad,x′ [F (x)]}),

=x′ × (∇×D(n)
Curl,x′ [F (x)]) +∇(−x′ · D(n)

Grad,x′ [F (x)]),

=D(n+1)
Curl,x′ [F (x)] +D(n+1)

Grad,x′ [F (x)].

With this last result, Equation (A46) takes the following form:

F (x − x′) = F (x) +
N

∑
n=1

1
n!

(
D(n)

Curl,x′ [F (x)] +D(n)
Grad,x′ [F (x)]

)
+ V N+1

F (x; x′). (A48)
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Appendix F

This appendix focuses on analyzing integrals of two specific types. The first type,
referred to as Type 1, is defined by the integral

I1 =
∫
[−a,a]

ϱT
l (z

′)F1(x − z′ez)dz′, (A49)

while the second type, known as Type 2, is represented by

I2 =
∫
[−a,a]

1
aω0

ȷT
l (z

′)F2(x − z′ez)dz′. (A50)

Considering the condition |x| > |z′|, the functions F1(x − z′ez) and F2(x − z′ez) can be
expanded using a vector Taylor series, as shown in Equation (A46):

Fη(x − z′ez) = Fη(x) +
N

∑
n=1

1
n!
D(n)

z′ez
[Fη(x)] + V N+1

Fη
(x; z′ez) η = 1, 2. (A51)

It is important to note that

D(n)
z′ez

[Fη(x)] = (z′)nD(n)
ez [Fη(x)];

therefore, Equation (A51) can be rewritten as

Fη(x − z′ez) = Fη(x) +
N

∑
n=1

(z′)n

n!
D(n)

ez [Fη(x)] +
(z′)N+1

(N + 1)!
D(N+1)

ez [Fη(x − sz′ez)] η = 1, 2, (A52)

where s ∈ [0, 1]. To analyze the Type 1 integral, we can substitute Equation (A52) into
Equation (A49), leading to

I1 =
∫
[−a,a]

ϱT
l (z

′)
[

F1(x) +
N

∑
n=1

(z′)n

n!
D(n)

ez [F1(x)] +
(z′)N+1

(N + 1)!
D(N+1)

ez [Fη(x − sz′ez)]

]
dz′

=

{ ∫
[−a,a]

(z′)0ϱT
l (z

′)dz′
}

F1(x) +
N

∑
n=1

1
n!

{ ∫
[−a,a]

(z′)nϱT
l (z

′)dz′
}
D(n)

ez [F1(x)]

+
1

(N + 1)!

∫
[−a,a]

(z′)N+1ϱT
l (z

′)D(N+1)
ez [F1(x − sz′ez)]dz′. (A53)

All terms not involving the truncation error depend on an integral Il,n of the form

Il,n =
∫
[−a,a]

(z′)nϱT
l (z

′)dz′. (A54)

Recalling the definition of ϱT
l in Equation (49) and substituting it into Equation (A54),

we obtain

Il,n =
∫
[−a,a]

w(z′)Tl
( z′

a
)
(z′)ndz′,

=
1
π

∫
[−a,a]

Tl
( z′

a
)
(z′)n

√
a2 − z′2

dz′, (making z′ → ay)

=
an

π

∫
[−1,1]

Tl(y)yn√
1 − y2

dy. (A55)



Mathematics 2024, 12, 321 44 of 46

This last integral is listed in [29] as

∫
[−1,1]

Tl(y)yn√
1 − y2

dy =

{
π n!

(n−l)!
(n−l−1)!!
(n+l)!! if n ≥ l and n + l is even,

0 otherwise.
(A56)

Considering that n + l (and consequently n − l) is an even number and that n − l − 1 is odd,
Equation (A54) can be rewritten as

Il,n = ann!dl,n, (A57)

where dl,n is provided by

dl,n =

{[
2n( n+l

2
)
!
]−1 if n ≥ l and n + l is even,

0 otherwise.

Consequently, the Type 1 integral expressed in Equation (A53) can be reformulated as

I1 =F1(x)dl,0 +
N

∑
n=1

andl,nD(n)
ez [F1(x)]

+
1

(N + 1)!

∫
[−a,a]

(z′)N+1ϱT
l (z

′)D(N+1)
ez [F1(x − sz′ez)]dz′. (A58)

For Type 2 integrals, the approach mirrors that of Type 1. We start by considering

I2 =

{ ∫
[−a,a]

(z′)0 ȷT
l (z

′)
aω0

dz′
}

F2(x) +
N

∑
n=1

1
n!

{ ∫
[−a,a]

(z′)n ȷT
l (z

′)
aω0

dz′
}
D(n)

ez [F2(x)]

+
1

(N + 1)!

∫
[−a,a]

(z′)N+1 ȷT
l (z

′)
aω0

D(N+1)
ez [F2(x − sz′ez)]dz′. (A59)

This relies on an integral Kl,n defined as

Kl,n =
∫
[−a,a]

(z′)n ȷT
l (z

′)
aω0

dz′, (A60)

which can be straightforwardly calculated considering Equations (48), (A54), and (A57):

Kl,n =
aω0

2i

∫
[−a,a]

1
aω0

(z′)n[ϱT
l+1(z

′)− ϱT
l−1(z

′)]dz′,

=
1
2i

{ ∫
[−a,a]

(z′)nϱT
l+1(z

′)dz′ −
∫
[−a,a]

(z′)nϱT
l−1(z

′)]dz′
}

,

=
1
2i
[Il+1,n − Il−1,n],

=ann!
1
2i
[dl+1,n − dl−1,n]. (A61)

Therefore, Equation (A59) can be expressed as follows:

I2 =
1
2i
[dl+1,0 − dl−1,0]F2(x) +

N

∑
n=1

an 1
2i
[dl+1,n − dl−1,n]D(n)

ez [F2(x)]

+
1

(N + 1)!

∫
[−a,a]

(z′)N+1 ȷT
l (z

′)
aω0

D(N+1)
ez [F2(x − sz′ez)]dz′. (A62)

This equation, along with Equation (A58), is instrumental in studying the multipolar
expansion of the EM fields generated by the oscillating charge.
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