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Abstract: In this paper, we present a three-step sixth-order class of iterative schemes to estimate
the solutions of a nonlinear system of equations. This procedure is designed by means of a weight
function technique. We apply this procedure for predicting the shear strength of a reinforced concrete
beam. The values for the parameters of the nonlinear system describing this problem were randomly
selected inside the prescribed ranges by technical standards for structural concrete. Moreover, some
of these parameters were fixed taking into consideration the solvability region of the adopted steel
constitutive model. The effectiveness of the new class is also compared with other current schemes
in terms of the computational efficiency and numerical performance, with very good results. The
advantages of this new class come from the low computational cost, due to the existence of an only
inverse operator.
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1. Introduction

Reinforced and prestressed concrete beams represent a structural type that resists
internal stresses in a relatively complex manner due to their constitutive nature. Prior to the
cracking of the concrete, the shear loads are carried by a set of diagonal compressive stresses
complemented by another set of diagonal tensile stresses acting perpendicular to the first
ones. Once the concrete tensile strength is reached, cracks form in the direction normal to
the diagonal tensile stresses while pre-existing cracks spread and change inclination. Then,
the ability of concrete to transmit diagonal tensile stresses is significantly reduced and the
appropriate reinforcement is necessary to create a new system of internal stresses that carry
the shear acting on the beam after cracking.

Between 1899 and 1902, Ritter [1] and Mörsch [2] proposed a truss model for explaining
the field of forces in a cracked reinforced concrete beam, with the principal compressive
stresses acting as diagonal members at 45º and the stirrups acting as vertical tension
members. This model neglected the tensile stresses in the cracked concrete. In 1910, the
first ACI Code modified Mörsch’s 45º truss model through the addition of concrete in order
to compensate for the conservatism of the model and to account for the fact that the crack
angle is usually less than 45º [3]. Between 1904 and 1922, Talbot and Withey demonstrated
that the stirrup stresses were lower than those predicted by the 45º truss model [4].

Thus, before using the equilibrium equations, the inclination of the diagonal compres-
sive struts should be known. In 1929, Wagner [5] treated a similar problem by studying
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the post-buckling shear response of thin metal girders, and he assumed that the angle
of inclination of the diagonal tensile stresses coincided with the corresponding value of
the diagonal tensile strains. Between 1974 and 1978, Collins and Mitchell developed a
shear design model for reinforced concrete that, based on Wagner’s assumption, predicted
the inclination of the compressive struts by considering the strains in the transverse and
longitudinal reinforcement, and in the diagonally stressed concrete [6,7]; this last approach
became known as the Compression Field Theory (CFT).

In 1982, Vecchio and Collins found that the principal compressive stress in the concrete
is a function not only of the principal compressive strain, but also of the coexisting principal
tensile strain [8]. In 1986, they published, as a further development of the CFT, the so-called
Modified Compression Field Theory (MCFT) [9], which accounts for the influence of the
tensile stresses in the cracked concrete. This theory assumes a bilinear constitutive model
for the steel and requires the checking of the local bar stresses at the cracks, ensuring thus
that the smeared steel stresses between adjacent cracks are lower than the yield value.

Since the MCFT, other alternative approaches have been also developed due to the
consideration given to other strength mechanisms, such as the dowel action of the reinforce-
ment intersecting the cracks or the friction between the crack faces [10]. Likewise, different
procedures have been proposed to treat the shear response of a reinforced concrete member
in a continuum mechanics context (i.e., to account for tensile stresses in the diagonally
cracked concrete), such as the developments of Hsu and his co-workers at the Univer-
sity of Houston [11,12], in the framework of the so-called Rotating-Angle Softened Truss
Model (RA-STM). The RA-STM proposes a constitutive relationship for the reinforcement
as stiffened by the concrete (i.e., the embedded model bar); due to this alternative concept,
the steel stress does not exceed the yielding point and the local checking of cracks is no
longer necessary. The last contribution in this line is the so-called Refined Compression
Field Theory (RCFT) [13,14], where the embedded bar stress–strain relationship is obtained
from the concrete tension stiffening model considered in the MCFT, so the crack check
is avoided and a new formulation with respect to the traditional MCFT one is no longer
needed. Moreover, the numerical results obtained from the RCFT lead to a better fitting of
the experimental results, particularly in the region near the peak point in the shear–strain re-
sponse, where MCFT significantly deviates from the experimental data. This last approach
to the constitutive modeling of the steel reinforcement is the one considered in this work.

As it is justified in Section 2, CFT mechanical models involve several types of non-
linearities, among other reasons, due to the constitutive relationships of the reinforced
concrete. These models usually require in their implementation the application of iterative
fixed-point methods to solve the nonlinear systems that appear. In fact, the most efficient
way to solve a nonlinear problem is usually to choose between accuracy and computational
cost [15]. Moreover, in this work, the previous determination of a solvability region using
algebraic procedures is also necessary in order to improve the efficiency of the numerical
solver, as indicated in Section 2.

Solving systems of nonlinear equations is an important problem in science and engi-
neering, as has been previously described. The objective is to find the roots of the nonlinear
system F(x) = 0, F being a multidimensional function, F : D ⊆ Rn → Rn, on D convex
set, of size n × n, F(x) = ( f1(x), f2(x), . . . , fn(x))T being fi, i = 1, 2, . . . , n, the functional
coordinates of F.

One of the most commonly used methods is the classical Newton’s method, which
has a quadratic order of convergence and iterative expression:

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, 2, . . . , (1)

where F′(x(k)) is the Jacobian matrix of F at k-th iteration.
Several Newton-type procedures, by using different techniques, have been published

in the last few years, some introductory texts to this area are [16–20]. Their main aim
is accelerating their convergence or increasing their efficiency with differently designed
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techniques used by numerous authors in the literature (see, for example, [21–26]). In what
follows, we are going to recall some of them for comparison purposes.

All the schemes we are going to mention use, in their iterative expression, the Jacobian
matrix of function F and have, under the usual conditions, a convergence order 6. We will
compare these methods, from the point of view of the results of the convergence order and
computational efficiency, with the methods proposed in this paper that also have an order
of 6 and only use [F′(x)]−1 in their expressions.

In [27], by using the weight function procedure, the authors designed a Jarratt-type
method for solving nonlinear systems, denoted by M26, the iterative expression of which is

y(k) = x(k) − 2
3 [F

′(x(k))]−1F(x(k)), k = 0, 1, . . . ,
z(k) = x(k) −

(
5
8 I + 3

8 ([F
′(y(k))]−1F′(x(k)))2

)
[F′(x(k))]−1F(x(k)),

x(k+1) = z(k) −
(
−9
4 I − 15

8 [F′(x(k))]−1F′(y(k)) + 11
8 [F′(y(k))]−1F′(x(k))

)
[F′(y(k))]−1F(z(k)),

(2)

where I denotes the identity matrix of size n × n. This method aims to evaluate the Jacobian
matrix in two points and uses two inverse operators. These elements increase the number
of operations per iteration.

In order to reduce the number of inverse operators, Narang et al. in [28], from a
Chebyshev–Halley-type family, constructed a class of iterative schemes of the sixth order.
One of its members, denoted by M6,2(1/2, 0), has the following iterative expression:

y(k) = x(k) − 2
3 [F

′(x(k))]−1F(x(k)),
z(k) = x(k) −

(
1
2 G(x(k))

)
H(G(x(k)))[F′(x(k))]−1F(x(k)),

x(k+1) = z(k) −
(

I + 3
2 G(x(k))

)
[F′(x(k))]−1F(z(k)), k = 0, 1, . . . ,

(3)

where G(x(k)) = I − [F′(x(k))]−1F′(y(k)) and H(G(x(k))) = I − 1
4 G(x(k)) + 11

8 (G(x(k)))2.
Behl et al. in [29], using the indeterminate parameter procedure, designed a family

of iterative sixth-order methods for solving systems of nonlinear equations. One of its
members, denoted by PM1, has the following iterative expression:

y(k) = x(k) − 2
3 [F

′(x(k))]−1F(x(k)),
z(k) = y(k) −

(
4I − 3[F′(x(k))]−1F′(y(k)) + 9

8 ([F
′(x(k))]−1F′(y(k)))−2

)
[F′(x(k))]−1F(x(k)),

x(k+1) = z(k) −
(

5
2 I − 3

2 [F
′(x(k))]−1F′(y(k))

)
[F′(x(k))]−1F(z(k)), k = 0, 1, . . .

(4)

Finally, Yaseen and Zafar presented in [30] a Jarratt-type scheme of three steps for
solving nonlinear systems, denoted by FS6, with sixth-order convergence and iterative
expression:

y(k) = x(k) − 2
3 [F

′(x(k))]−1F(x(k)),
z(k) = x(k) −

( 5
8 [Uk]

−1 + 3
8 Uk

)
[F′(y(k))]−1F(x(k)),

x(k+1) = z(k) −
(
−13

2 I + 9
2 [Vk]

−1 + 3Vk

)
[F′(x(k))]−1F(z(k)), k = 0, 1, . . . ,

(5)

where Uk = [F′(y(k))]−1F′(x(k)) and Vk = [F′(x(k))]−1F′(y(k)).
The rest of the paper is organized as follows. In Section 2, we describe the nonlinear

system obtained for predicting the shear strength of a reinforced concrete beam. The effi-
cient method for estimating its solution is presented in Section 3, as well as its convergence
order. Section 4 is devoted to the efficiency analysis. The numerical performance of our
proposed methods are studied on academical problems and on the nonlinear shear model
described in Section 2. Finally, some conclusions are exposed.
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2. Problem Statement

In [3], the authors proposed this stress–strain relationship for concrete cracked in tension:

σ1 =


Ecε1, ε1 ≤ εct,

α fct

1 +
√

500ε1
, ε1 > εct,

(6)

where σ1 represents the contribution of tensile stresses in the concrete between the cracks or
tension stiffening effect, ε1 is the principal tensile strain, Ec being the modulus of elasticity
of the concrete, εct the strain related to the strength of the tensile, fct. Coefficient α is equal
to 1.0 in cases of fast and non-cyclic loads and for deformed bars.

Regarding the concrete behaviour in compression, Vecchio and Collins formulated
in [9], using the Modified Compression Field Theory (MCFT), the following relationship
between diagonal compressive strain, ε2, and the diagonal (or principal) compressive
stress, σ2:

σ2 = f2max

[
2
(

ε2
εc

)
−
(

ε2
εc

)2
]

,

with f2max = fc
0.8+170ε1

≤ fc,
(7)

where εc is the compressive stress related to the compressive strength of concrete in a
cylindrical test fc, f2max is the maximum compressive stress in a diagonally cracked web
and ε1 is the coexisting principal tensile stress.

In CFT procedures, a perfect bond between concrete and steel is assumed; in conse-
quence, any deformation developed by the reinforcement is identical to the one experienced
by the surrounding concrete in the same direction; thus, a single average strain tensor of
the composite material is adopted. The following relationship is considered regarding the
compatibility of the strains in the reinforcement and the diagonally stressed concrete:

tan2 θ =
εx − ε2

εt − ε2
=

ε1 − εt

ε1 − εx
, (8)

where εx is the mean longitudinal strain and εt is the mean transversal strain on the web of
a beam oriented according to the orthogonal x − t direction (see Figure 1). The strain ε2 is
aligned in the direction of the compressive struts, at angle θ to the longitudinal axis (x) of
the beam. Moreover, due to strain tensor, the main tensile strain is

ε1 = εx + εt + ε2. (9)

Figure 1. Strain compatibility between diagonally stressed concrete and the reinforcement in the
cracked web of a reinforced concrete beam.
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On the other hand, in CFT models, the equilibrium between the external loads and the
internal forces is governed by the following equations:

σ2 =
ν

bwz
(tan θ + cot θ)− σ1, (10)

2Astσst = (σ2 sin2 θ − σ1 cos2 θ)bws, (11)

4Asxσsx + Apσp = (σ2 cos2 θ − σ1 sin2 θ)bwz =
ν

tan θ
− σ1bwz, (12)

where θ is the angle of the main tensile stress, z is the flexural lever arm, s is the stirrup
spacing, ν is the internal shear force, and bw is the web width; Asx, Ast and Ap are the cross-
section surfaces for the longitudinal bars, the stirrup legs, and the prestressed reinforcement,
respectively, and σsx, σst and σp are the related mean tensile stresses. The angles of the
inclination of the principal strains coincide with the angles of the inclination of the principal
stresses; this is known as EPA assumption or as Wagner’s hypothesis [31].

Regarding the stress–strain relationship of the steel reinforcement, beyond the type of
steel to consider (such as, for example, mild steel or stainless steel), CFT methods mainly
differ in terms of the treatment of the steel behavior [9,11,13]. In this work, one of the
most recent approaches to steel behaviour is adopted: the RCFT, previously introduced in
Section 1, which is based on the concept of an embedded bar model that takes into account
the concrete tension stiffening effect between cracks. The latter theory allows us to apply,
in the most general case, the following mean stress–strain model for each type of steel
reinforcement of the beam (i.e., longitudinal reinforcement and transverse stirrups):

σs,i =

{
fy,i −

λi Ac,i
As,i

fct

1+
√

3.6Miεs,i
if εs,i ≥ εmax,i

Esεs,i if εs,i < εmax,i

i = {x, t}
in which

εmax,i =
fy,i
Es

−
λi Ac,i fct

1+
√

3.6Mi εmax,i
Es As,i

Mi =
λi Ac,i
∑ πϕi

,

(13)

where the subscripts x and t refer to the longitudinal and the transverse reinforcement,
respectively (then, (13) actually involves two equations); fy is the steel yield stress, Es is
the elastic modulus of the steel, σs,av is the average tensile stress in the steel, εs,av is the
average strain in the reinforcing bar, εmax,i is the apparent yield strain (cf. [13]), M is the
joint parameter, As is the cross-section of the steel bars (longitudinal or transverse), Ac
is the area of concrete attached to the bar that participates in the tensile stiffening effect;
this is usually considered equal to the rectangular area surrounding the bar of diameter
ϕ and over a distance no greater than 7.5ϕ from the center of the bar, and finally, λi is the
coefficient for fixing the numerical solvability of the steel constitutive model.

In the case of prestressed concrete members, the following two additional equations
are required:

εp = εx + ∆εp, (14)

σp =

 Epεp , εp ≤ fpy
Ep

,

fpy , εp >
fpy
Ep

,
(15)

where (14) represents the strain compatibility, ∆εp and εp being the strain imposed by the
prestressing system and the strain of the prestressing strand, respectively, and Equation (15)
represents the stress–strain relationship for the prestressing steel, fpy and Ep being its yield
stress and elastic modulus, respectively.
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Equation (13) is based on the concept of force equilibrium between a general section
(or non-cracked section, where both the steel and the surrounding concrete contribute)
and a cracked section (where only the reinforcement resists the internal forces; please see
Figure 2). The greatest value of the area Ac in order to preserve the solvability of the
embedded steel constitutive model proposed by the RCFT (i.e., in order to preserve the
internal equilibrium of forces, in such a way that as the concrete participation increases, the
steel stress diminishes) is obtained by the application of the following coefficient [32]:

Figure 2. Average stress profiles (σct,av and σst,av) for an embedded reinforcement constitutive model
including several cracks.

λmax,i =
As · fy

Ac · fct
·

2
3
+

√(
1 + 10.8 · M · ϵy

)3

48.6 · M · ϵy

, (16)

where the coefficient λmax,i represents the boundary of the solvability region for the embed-
ded steel constitutive model in the i-direction (i.e., the maximum value of the coefficient λ
in the i-direction in order to preserve the solvability), and ϵy is the strain corresponding to
the steel yield stress (i.e., ϵy = fy/Es). For certain design cases, the previous boundary may
lay within the design range prescribed by technical codes for the tension stiffening area, Ac.

In summary, for a given value of tensile principal strain in concrete, ε1, where such
strain works as an input parameter, the shear model to predict the load–deformation
response of a prestressed concrete beam is derived from the nonlinear system defined by
(7)–(15), containing up to 10 equations (notice that (13) is actually two equations in turn) in
the 10 unknowns (θ, εx, εt, ν, ε2, σ2, σs,x, σs,t, εp, and σp).

Two thousand solutions obtained from solving the nonlinear system of Equations
(7)–(15) has been obtained from a set of input vectors uniformly generated. The range
of the input parameters considered to this aim are presented in Table 1. These solutions
were obtained using Newton’s method and considering the same initial approximation of
all the cases.

Table 1. Ranges for input parameters of the nonlinear system of Equations (7)–(15), with Ep =
190,000 MPa and fpy = 1674 MPa.

Input Range

Es(MPa) [195,000, 205,000]
fy(MPa) [350, 500]
ϕx(mm) [6, 40]
ϕt(mm) [6, 40]
∆εp(−)

[
0.10 fpy/Ep, 0.90 fpy/Ep

]
fc
(
mm2) [25, 50]

bw(mm) [100, 1000]
s(mm) [15ϕt, 600]

Ap
(
mm2) [300, 1200]

λx(mm) [0.1λmax,x, 0.9λmax,x]
λt(mm) [0.1λmax,t, 0.9λmax,t]

ε1(−) [0.0001, 0.01]
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3. Development and Convergence of the Method

By using the weight matrix function procedure, we present a class of three-step
iterative methods with the following iterative expression:

y(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = y(k) − G(µ(k))b[F′(x(k))]−1F(y(k))), (17)

x(k+1) = z(k) − G(µ(k))[F′(x(k))]−1(iF(z(k)) + hF(y(k))
)
, k = 0, 1, 2, . . . ,

where µ = [F′(x)]−1F(y) is the variable of the weight function G, and b, i, and h are free
parameters.

On the other hand, with F being a sufficiently differentiable Fréchet function, we
can regard ξ + m ∈ Rn as being in the neighbourhood of the zero of F, ξ. Using Taylor
developments and F′(ξ) being nonsingular,

F(ξ + m) = F′(ξ)

[
h +

p−1

∑
q=2

Cqmq

]
+ O(mp), (18)

where Cq =
1
q!
[F′(ξ)]−1F(q)(ξ) for q ≥ 2. Also, Cqhq ∈ Rn, as F(q)(ξ) ∈ L(Rn × · · · ×

Rn,Rn) and [F′(ξ)]−1 ∈ L(Rn). Therefore,

F(ξ + m) = F′(ξ)

[
I +

p−1

∑
q=2

qCqmq−1

]
+ O(mp−1), (19)

being qCqmq−1 ∈ L(Rn). For more details of this notation, see [33].
Indeed, following the notation introduced by Artidiello et al. in [34], the matrix

function G : X → X can be defined in such a way that its Fréchet derivatives holds

(a) G′(u)(v) = G1uv, being G′ : X → L(X), G1 ∈ R
(b) G′′(u, v)(w) = G2uvw, being G2 : X × X → L(X), G2 ∈ R

when X = Rn×n is the Banach space of real n × n matrices, and L(X) is the set of linear
operators defined in X.

In the next result, we present the convergence of the family (17).

Theorem 1. Let F : D ⊆ Rn → Rn be a sufficiently differential Fréchet function defined on a
convex neighborhood D of ξ ∈ Rn, and a zero of F. Also, let G : Rn×n → Rn×n be a sufficiently
differentiable matrix function. Suppose that F′(ξ) is nonsingular, and that x(0) is a seed sufficiently
close to ξ. Therefore, the sequence {x(k)}k≥0 from (17) converges to ξ with an order of convergence

six if b =
1

G0
, h = 0, i =

1
G0

, G1 = −G0, and |G2| < ∞, G0 = G(I) and I being the identity

matrix of size n × n. In this case, the error equation is

e(k+1) =

(
24C5

2 − 4G2(37C5
2 − 6C3 − 6C2C3C2

2C3C2 + 3C3C2C3)
1

G0

+4G2(32C5
2G0 + C5

2G2 − 6G0C3C3
2 − 6G0C2C3C2

2 − 6G0C2
2C3C2 + 3G0C3C2C3)

(
1

G0

)2

+2C5
2G2

0(3G0 − G2)

(
1

G0

)3
)

e(k)
6
+ O(e(k)

7
),

where e(k) = x(k) − ξ and Cq =
1
q!
[F′(ξ)]−1F(q)(ξ), q = 2, 3, . . .
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Proof. By means of the Taylor expansion of F(x(k)) and F′(x(k)) about ξ, we obtain

F(x(k)) = F′(ξ)
[
e(k) +

6

∑
i=2

Cie(k)
i]
+O(e(k)

7
),

and

F′(x(k)) = F′(ξ)
[

I ++
5

∑
i=2

iCie(k)
i−1]

+O(e(k)
6
).

We can deduce that

[F′(x(k))]−1 =
[

I ++
5

∑
i=2

Xie(k)
i−1]

[F′(ξ)]−1 +O(e(k)
6
),

where X2 = −2C2, X3 = −3C3 + 4C2
2 , X4 = −4C4 + 6C2C3 + 6C3C2 − 8C3

2 and

X5 = −5C5 + 8C2C4 − 12C2
2C3 + 9C2

3 + 8C4C2 − 12C2C3C2 + 16C4
2 − 12C3C2

2 ,

X6 = −6C6 + 10C2C5 + 12C4C3 − 18C2C2
3 − 18C3C2C3 + 24C3

2C3 + 12C3C4

− 16C2
2C4 + 10C5C2 − 16C2C4C2 − 18C2

3C2 + 24C2
2C3C2 − 16C4C2

2

+ 24C2C3C2
2 + 24C3C3

2 − 32C5
2 .

Then,

y(k) − ξ = C2e(k)
2
− 2(C2

2 − C3)e(k)
3

− (4C2C3 + 3C3C2 − 4C3
2 − 3C4)e(k)

4

− (−4C5 + 6C2C4 − 8C2
2C3 + 6C2

3 + 4C4C2 − 6C2C3C2 + 8C4
2 − 6C3C2

2)e
(k)5

+O(e(k)
6
),

and
(y(k) − ξ)2 = C2

2e(k)
4
+ (2C2C3 + 2C3C2 − 4C3

2)e
(k)5

+O(e(k)
6
).

Moreover,

F(y(k)) = F′(ξ)
[
C2e(k)

2
+ 2(C3 − C2

2)e
(k)3

+ (3C4 + 5C3
2 − 3C3C2 − 4C2C3)e(k)

4
+

(−12C4
2 − 6C2

3 + 4C5 − 6C2C4 + 10C2
2C3 + 6C3C2

2 − 4C4C2 + 8C2C3C2)e(k)
5]

+O(e(k)
6
).

So,

F′(y(k)) = F′(ξ)
[

I + 2C2
2e(k)

2
+ 4(C2C3 − 4C3

2)e
(k)3

+ (6C2C4 + 8C2
2C3 + 3C3C2

2)e
(k)4]

+O(e(k)
5
),



Mathematics 2024, 12, 499 9 of 16

and the expansion of the variable µ(k) is

µ(k) = −2C2e(k) + (6C2
2 − 3C3)e(k)

2
+ (−16C3

2 − 4C4 + 10C2C3 + 6C3C2)e(k)
3

+ (40C4
2 + 9C2

3 − 5C5 + 14C2C4 − 28C2
2C3 − 15C3C2

2 + 8C4C2 − 18C2C3C2)e(k)
4

+ (−96C5
2 − 6C6 − 30C2C2

3 + 18C2C5 − 40C2
2C4 + 72C3

2C3 + 36C3C3
2 + 12C3C4

− 12C2
3C2 − 24C4C2

2 + 12C4C3 + 10C5C2 + 42C2C3C2
2

− 24C2C4C2 + 48C2
2C3C2 − 24C3C2C3)e(k)

5
+O(e(k)

6
).

For the weight function G, we set

G(µ(k)) = G(I) + G1(µ
(k) − I) +

1
2

G2(µ
(k) − I)2 +O(µ(k) − I)3,

that is,

G(µ(k)) = G(I)− 2C2G1e(k) + (6C2
2G1 − 3C3G1 + 2C2

2G2)e(k)
2

+ (−16C3
2G1 − 4C4G1 − 12C3

2G2 + 10G1C2C3 + 3G2C2C3 + 6G1C3C2

+ 3G2C3C2)e(k)
3
+O(e(k)

4
).

We denote that S = [F′(x(k))]−1F(y(k)). So, its Taylor development can be expressed as

S = C2e(k)
2
+ (−4C2

2 + 2C3)e(k)
3
+ (13C3

2 + 3C4 − 8C2C3 − 6C3C2)e(k)
4

+ (−38C4
2 − 12C2

3 + 4C5 − 12C2C4 + 26C2
2C3 + 18C3C2

2 − 8C4C2 + 20C2C3C2)e(k)
5

+O(e(k)
6
).

So,

z(k) = (C2 − bC2G0e(k)
2
+ (−2C2

2 + 2C3 + 4bC3G0)e(k)
3

+ (4C3
2 + 3G0 − 13bC3

2G0 − 3bC4G0 − 14bC3
2G2 − 2bC3

2G2 − 4C2C3

+ 8bGC2C3 + 4bG1C2C3 − 3C3C2 + 6bG0C2 + 3bG1C3C2)e(k)
4

+ (−8C4
2 − 6C2

3 + 38bC4
2G0 + 12bC2

3G0 + 66bC4
2G1 + 6bC2

3G1 + 20bC4
2G2

+ 4C5 − 4bG0C5 − 6C2C4 + 12bG0C2C4 + 6bG1C2C4 + 8C2
2C3 − 26bG0C2

2C3

− 28bG1C2
2C3 − 4bG2C2

2C3 + 6C3C2
2 − 18bG0C3C2

2 − 18bG1C3C2
2 − 3bG2C3C2

2

− 4C4C2 + 8bG0C4C2 + 4bG1C4C2 + 6C2C3C2 − 20bG0C2C3C2 − 22bG1C2C3C2

− 3bG2C2C3C2)e(k)
5
+O(e(k)

6
),

and

F(z(k)) = (C2 − bC2G0)e(k)
2
+ (−2C2

2 + 2C3 + 4bC2G0 − 2bC3G0 − 2bC2
2G1)e(k)

3

+ (5C3
2 + 3C4 − 15bC3

2G0 − 3bC4G0 + b2c3
2G2

0 − 14bC3
2G1 − 2bC3

2G2 − 4C2C3

+ 8bG0C2C3 + 4bG1C2C3 − 3C3C2 + 6bG0C3C2 + 3bG1C3C2)e(k)
4

+ (−8C4
2 − 6C2

3 + 38bC4
2G0 + 12bC2

3G0 + 66bC4
2G1 + 6bC2

3G1 + 20bC4
2G2 + 4C5

− 4bG0C5 − 6C2C4 + 12bG0C2C4 + 6bG1C2C4 + 8C2
2C3 − 26bG0C2

2C3

− 28bG1C2
2C3 − 4bG2C2

2C3 + 6C3C2
2 − 18bG0C3C2

2 − 18bG1C3C2
2 − 3bG2C3C2

2

− 4C4C2 + 8bG0C4C2 + 4bG1C4C2 + 6C2C3C2 − 20bG0C3C2 − 22bG1C2C3C2

− 3bG2C2C3C2)e(k)
5
+O(e(k)

6
).
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Now, we denote Sc = [F′(x(k))]−1F(z(k)). Therefore, its Taylor expansion is

Sc = (C2 − bC2G0)e(k)
2
+ (−4C2

2 + 2C3 + 6bC2
2G0 − 2bC3G0 + 2bC2

2G1)e(k)
3

+ (13C3
2 + 3C4 − 27bC3

2G0 − 3bC4G0 + b2C3
2G2

0 − 18bC3
2G1 − 2bC3

2G2 − 8C2C3

+ 12bG0C2C3 + 4bG1C2C3 − 6C3C2 + 9bGC3C2 + 9bG0C3C2 + 3bG1C3C2)e(k)
4

+ (−34C4
2 − 12C2

3 + 92bC4
2G + 18bC2

3G0 − 2b2C4
2G2

0 + 102bC4
2G1 + 6bC2

3G1

+ 24bC4
2G2 + 4C5 − 4bG0C5 − 12C2C4 + 18bG0C2C4 + 6bG1C2C4 + 24C2

2C3

− 50bG0C2
2C3 − 36bG1C2

2C3 − 4bG2C2
2C3 + 18C3C2

2 − 36bG0C3C2
2 − 24bG1C3C2

2

− 3bG2C3C2
2 − 8C4C2 + 12bG0C4C2 + 4bG1C4C2 + 18C2C3C2 − 38bG0C2C3

− 28bG1C2C3C2 − 3bG2C2C3C2)e(k)
5
+O(e(k)

6
).

If Ss = i · Sc + h · S, then it is expanded as

Ss = (C2h + C2i − bC2Gi)e(k)
2

+ (−4C2
2h + 2C3h − 4C2

2 i + 2C3i + 6bC2
2G0i − 2bC3G0i + 2bC2

2G1i)e(k)
3

+ (13C3
2h + 3C4h + 13C3

2 i + 3C4i − 27bC3
2G0i − 3bC4G0i + b2C3

2G2
0 i − 18bC3

2G0i

− 2bC3
2G2i − 8hC2C3 − 8iC2C3 + 12bG0iC2C3 + 4bG1iC2C3 − 6hC3C2 − 6iC3C2

+ 9bG0iC3 + 3bG1iC3C2)e(k)
4

+ (−38C4
2h − 12C3h − 34C4

2 i − 12C2
3 i + 92bC4

2G0i + 18bC2
3G0i − 2bC4

2G2
0 i + 102bC4

2G0i

+ 6bC2
3G0i + 24bC4

2G2i + 4hC5 + 4iC5 − 4bGiiC5 − 12hC2C4 − 12iC2C4 + 18bGiC2C4

+ 6bG1iC2C4 + 26hC2C3 + 24iC2
2C3 − 50bG0iC2

2C3 − 36bG1iC2
2C3 − 4bG2iC2

2C3

+ 18G0C3C2
2 + 18iC3C2

2 − 36bGiC3C2
2 − 24bG1iC3C2

2 − 3bG2iC3C2
2 − 8hC4C2 − 8iC4C2

+ 12bG0iC4C2 + 4bG1iC4C2 + 20hC2C3C2 + 18iC2C3C2 − 38bGiC2C3C2 − 28bG0iC2C3C2

− 3bG2iC2C3C2)e(k)
5
+O(e(k)

6
).

Then, the error equation is

e(k+1) = (C2 − bC2G0 − C2G0h − C2G0i + bC2G2
0 i)e(k)

2

+ (−2C2
2 + 2d + 4bC2

2G0 − 2bdG0 + 2bC2
2G0 + 4C2

2G0h − 2dG0h

+ 2C2
2G0h + 4C2

2G0i − 2dG0i − 6bC2
2G2

0 i + 2bdG2
0 i + 2C2

2G1i − 4bC2
2G0G1i)e(k)

3

+ (4C3
2 + 3C4 − 13bC3

2G0 − 3bC4G0 − 14bC3
2G1 − 2bC3

2G2 − 13C3
2G0h − 3C4G0h

− 14C3
2G1h − 2C3

2G2h − 13C3
2Gi − 3C4G0i + 27bC3

2G2
0 i + 3bC4G2

0 i − b2C3
2G3

0 i

− 14C3
2G1i + 36bC3

2G0G1i + 4bC3
2G2

1 i − 2C3
2G2ii + 4bC3

2G0G2ii − 4C2C3 + 8bG0C2C3

+ 4bG1C2C3 + 8G0hC2C3 + 4G1hC2C3 + 8G0iC2C3 − 12bG2
0 iC2C3 + 4G1iC2C3

− 8bG0G1iC2C3 − 3C3C2 + 6bG0C3C2 + 3bG1C3 + 6G0hC3C2 + 3G1hC3C2

+ 6G0iC3C2 − 9bG2
0 iC3C2 + G1iC3C2 − 6bG0G1iC3C2)e(k)

4
+ M5e(k)

5

+ M6e(k)
6
+O(e(k)

7
).
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By fixing b =
1

G0
, h = 0, i =

1
G0

, and G1 = −G0, the error equation becomes

e(k+1) =

(
24C5

2 − 4G2(37C5
2 − 6C3 − 6C2C3C2

2C3C2 + 3C3C2C3)
1

G0

+ 4G2(32C5
2G0 + C5

2G2 − 6G0C3C3
2 − 6G0C2C3C2

2 − 6G0C2
2C3C2

+ 3G0C3C2C3)

(
1

G0

)2
+2C5

2G2
0(3G0 − G2)

(
1

G0

)3
)

e(k)
6
+O(e(k)

7
).

With this, the proof is finished.

Let us notice that the order of convergence of this class of iterative methods can be
increased up to 7 for specific values of G2, depending on G0 also being free. However, in
order to reduce the computational cost, we set G2 = 0, G0 = I, and therefore the matrix
weight function to be used in the iterative expression is

G(µ(k)) = 2I − µ(k) = 2I − [F′(x(k))]−1F′(y(k)).

Therefore, the family is reduced to an iterative method of only order 6, denoted by O6,
the iterative expression of which is

y(k) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, 2, . . . ,

z(k) = y(k) −
[
2I − [F′(x(k))]−1F′(y(k))

]
[F′(x(k))]−1F(y(k)),

x(k+1) = z(k) −
[
2I − [F′(x(k))]−1F′(y(k))

]
[F′(x(k))]−1F(z(k)).

Let us remark that this scheme has especially good properties, due to the existence of
only one inverse operator. This yields that all the linear systems to be solved per iteration
have the same coefficient matrix and therefore, the computational cost can be reduced by
its LU factorization and the solution of several triangular linear systems. This is discussed
in depth in the next section, in comparison with the introduced known procedures.

4. Efficiency Indices

To compare the iterative methods used, we use the computational efficiency index, CI,
defined as [35]

CI = ρ

1
d + op ,

where d is the number of functional evaluations and op is the number of products/quotients
per iteration.

In each iteration, five linear systems are solved with the same coefficient matrix, there
are two matrix–vector products and, with respect to functional evaluations, we have two
evaluations of Jacobian matrices and three of functions. The computational cost of method
O6 is

1
3

n3 + 9n2 +
8
9

n, (20)

In Table 2, the rest of the CI corresponding to the comparison methods are exposed.
The way in which they have been calculated is similar to that of the O6 method.
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Table 2. Comparisons of CI.

Method CI

Newton 2
1

1
3 n3+2n2+ 2

3 n

O6 6
1

1
3 n3+9n2+ 8

9 n

PM1 6
1

2
3 n3+11n2+ 4

3 n

M2,6 6
1

2
3 n3+10n2+ 4

3 n

M6,2(1/2, 0) 6
1

1
3 n3+12n2+ 5

3 n

FS6 6
1

2
3 n3+10n2+ 4

3 n

The results are represented in the semi-logarithmic scale; see Figure 3 for a better
visualization of the differences between the indices (CI) for the methods used and several
sizes (n) of the systems.

(a) Sizes from 2 to 10 (b) Sizes from 10 to 50 with a step of 10

Figure 3. Computational efficiency indices.

In Figure 3a, we can observe that, for 2 ≤ n ≤ 7, the best CI index corresponds to the
Newton method, O6 being the best for n ≥ 8. In Figure 3b, we can check that for bigger
systems, n ≥ 10; the best CI remains as O6.

5. Numerical Performance

We analyze the performance of the methods described above to check their efficiency
and compare it with other known methods. The results from Tables 3–6 correspond to
the calculations made with Matlab R2022b, by using variable precision arithmetics with
1200 digits of mantissa, on a PC equipped with an Intel Core™i5-5200U CPU 2.20GHz. In all
the tables, we show the residual errors ∥x(k+1) − x(k)∥ and ∥F(x(k+1))∥ of the last iteration
satisfying the stopping criterium ∥x(k+1) − x(k)∥ < 10−300 or ∥F(x(k+1))∥ < 10−300, and
the CPU time obtained as the mean of 20 executions (e-time). Moreover, a computational
estimation of the order of convergence is obtained by the means of ACOC, introduced as

ρ ≈ ACOC =
ln ∥x(k+1)−x(k)∥

∥x(k)−x(k−1)∥

ln ∥x(k)−x(k−1)∥
∥x(k−1)−x(k−2)∥

. (21)
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5.1. Example

We consider the nonlinear system, F1(x) = ( f1(x), f2(x), . . . , fn(x))T = 0, such that

fi(x) = xi − cos

(
2xi −

4

∑
j=1

xj − xi

)
, i = 1, 2, 3, 4 . . . , 20, (22)

with seed x(0) = (0.75, 0.75, . . . , 0.75)T , and in this case, α ≈ (0.519, 0.519, . . . , 0.519)T .

Table 3. Numerical results for Example 5.1.

Method Iteration ∥x(k+1) − x(k)∥ ∥F(x(k+1))∥ ρ e-Time

Newton 8 3.1586 × 10−160 2.297 × 10−320 2.0 0.98
O6 4 3.4133 × 10−217 0.0 6.0 0.99
FS6 4 1.682 × 10−201 1.614 × 10−1207 6.0 1.02
PM1 4 6.0584 × 10−186 4.036 × 10−1115 6.0 0.99
M26 4 4.7636 × 10−127 1.891 × 10−635 5.0 1.00

M6,2(1/2, 0) 4 1.4631 × 10−189 4.603 × 10−1137 6.0 1.02

In Table 3, it can be observed that the number of iterations of all the sixth-order
schemes are equal and the time is very similar in all of the methods; however, the best
residual is obtained by the proposed scheme, O6. The ACOC estimates the theoretical order
of the convergence accurately in all the cases.

5.2. Example

The second example is given by F2(x) = (g1(x), g2(x), . . . , gn(x))T = 0, such that

gi(x) = xi − 2 ln

(
1 +

n

∑
j=1

xj − xi

)
, i = 1, 2, . . . , 20, (23)

with seed x(0) = (1, 1, . . . , 1)T and α ≈ (9.376, 9.376, . . . , 9.376)T .

Table 4. Numerical results for Example 5.2.

Method Iterations ∥x(k+1) − x(k)∥ ∥F(x(k+1))∥ ρ
e-Time
(Sec)

Newton 11 1.1642 × 10−199 3.409 × 10−401 2.0 9.99
O6 5 3.3111 × 10−100 1.032 × 10−608 6.0 10.24
FS6 5 5.1171 × 10−73 1.310 × 10−445 6.0 11.00
PM1 6 2.169 × 10−291 3.749 × 10−1755 6.0 10.58
M26 6 5.3026 × 10−198 4.327 × 10−996 6.0 11.07

M6,2(1/2, 0) 6 6.2633 × 10−289 1.325 × 10−1206 6.0 10.79

5.3. Example

Let us define now the nonlinear system F3(x) = (h1(x), h2(x), . . . , hn(x))T = 0, such
that

hi(x) = arctan(xi) + 1 − 2

(
n

∑
j=1

x2
j − x2

i

)
, i = 1, 2, . . . , n, (24)

with seed x(0) = (0.5, 0.5, . . . , 0.5)T , n = 20, and α ≈ (0.1758, 0.1758, . . . , 0.1758)T .
Of note, in Table 5, O6 and FS6 provide a solution satisfying the stopping criterium

in a lower or equal number of iterations than the rest of the schemes. Indeed, the value of
the residual errors in O6 and FS6 highly improve that of Newton’s. This is the reason why
their residuals are not as close to zero as those of the other schemes.
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Table 5. Numerical results for Example 5.3.

Method Iterations ∥x(k+1) − x(k)∥ ∥F(x(k+1))∥ ρ e-Time (Sec)

Newton 10 1.2449 × 10−154 1.322 × 10−307 2.0 1.22
O6 5 1.3563 × 10−218 2.414 × 10−1207 6.0 1.24
FS6 4 4.4455 × 10−58 4.283 × 10−344 6.0 1.20
PM1 5 1.2252 × 10−218 8.687 × 10−1208 6.0 1.27
M26 5 6.2256 × 10−173 5.016 × 10−861 5.0 1.39

M6,2(1/2, 0) 5 2.5983 × 10−252 3.704 × 10−1208 6.0 1.39

Regarding the applied problem described in Section 2, the underlying data of the
nonlinear shear model of a reinforced concrete beam are provided by random values
with few digits inside the prescribed ranges by technical standards for structural concrete;
moreover, some of these parameters were fixed taking into consideration the solvability
region of the adopted steel constitutive model. The stopping criterium is ∥x(k+1) − x(k)∥ <
10−6 or ∥F(x(k+1))∥ < 10−6. The initial estimation used is θ = 34, εx = 0.0001, εt = 200, 000,
ν = 0.0001, ε2 = 0.0001, σ2 = 0.0001, σs,x = 200, σs,t = 7, εp = 200 and σp = 100. The
results provided by the new and existing schemes appear in Table 6. The ACOC does not
appear in this table, as it yields to unstable data in all cases.

Table 6. Problem statement Section 2.

Method Iterations ∥x(k+1) − x(k)∥ ∥F(x(k+1))∥ e-Time (Sec)

Newton 5 0.0342 2.448 × 10−10 18.3242
O6 3 9.0862 2.253 × 10−29 21.6703
FS6 3 218.18 4.071 × 10−16 22.1258
PM1 4 3.8554 3.138 × 10−28 21.9594
M26 4 7.3926 9.621 × 10−21 28.0727

M6,2(1/2, 0) 3 0.0423 3.710 × 10−31 22.4797

However, the best methods in terms of the number of iteration are O6, FS6, and
M6,2(1/2, 0), all with three iterations. Among the sixth-order methods, the lowest e-time
corresponds to our proposed scheme, O6. Although with this initial estimation, the e-time
of Newton’s method is the best, small changes in some of the coordinates of the seed yields
to better results of O6 than Newton’s scheme. This good performance allows us to assure
the reliance and robustness of our proposed procedure.

6. Conclusions

In this article, we have developed a vectorial parametric family of numerical methods
of the sixth order to solve nonlinear systems. In particular, it is applied on a constitutive
equation of reinforced concrete (6). The order of the convergence of the new class (O6)
is proven, and a particular member of the family is selected with better computational
properties, as only one inverse operator is needed. Its efficiency is compared to other
existing methods with the same order of convergence, and also with Newton’s scheme, in
terms of the computational efficiency index. For the size of the system n ≥ 8, the proposed
method, O6, gives the best results. In the numerical tests, all the comparison procedures
need the same or more iterations and achieve lower precision results in the same or shorter
execution time to achieve the required tolerance. This confirms the accuracy, robustness,
and applicability of the proposed scheme.
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