
Citation: Song, J.; Kumar, P.; Kim, Y.;

Kim, H.S. A Fault Detection System

for Wiring Harness Manufacturing

Using Artificial Intelligence.

Mathematics 2024, 12, 537. https://

doi.org/10.3390/math12040537

Academic Editors: Muhammad

Syafrudin and Norma Latif Fitriyani

Received: 14 January 2024

Revised: 4 February 2024

Accepted: 7 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fault Detection System for Wiring Harness Manufacturing
Using Artificial Intelligence
Jinwoo Song 1, Prashant Kumar 1 , Yonghawn Kim 2 and Heung Soo Kim 1,*

1 Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul,
Seoul 04620, Republic of Korea; jwsong0620@dgu.edu (J.S.); prashantkumar@dgu.edu (P.K.)

2 R&D Center, SUNG CHANG Co., Busan 46707, Republic of Korea; scs0115@lgesuppliers.com
* Correspondence: heungsoo@dgu.edu; Tel.: +82-2260-8577; Fax: +82-2-2263-9379

Abstract: Due to its simplicity, accuracy, and adaptability, Crimp Force Monitoring (CFM) has long
been the standard for fault detection in wiring harness manufacturing. However, it necessitates
frequent reconfigurations based on the variability in materials, dependency on operator skill, and
high costs of implementation, and thus reconfiguration presents significant challenges. To solve these
problems, this paper introduces a fault detection system that employs an Artificial Intelligence (AI)
classification model to enhance the performance and cost-efficiency of the quality control process
of wiring harness manufacturing. Since there are no labeled data to train the classification model at
the onset of manufacturing, a small number of normal data from each production run are manually
extracted to train the model. To address the constraint of the limited available data, the system
generates synthetic data from normal data, simulating potential defects by using Regional Selective
Data Scaling (RSDS). This innovative method performs upscaling or downscaling on specific regions
of the original data to produce synthetic abnormal data, which enables the fault detection system to
efficiently train its classification model with a dataset consisting solely of normal operation data.

Keywords: Artificial Intelligence; anomaly detection; synthetic data; data augmentation; wiring
harness; manufacturing system

MSC: 68T01

1. Introduction

For many years, the concept of a fault detection system has been a fundamental
element in the quality control of manufacturing systems. Systematically ensuring the
quality and reliability of the manufacturing process has been studied, as any defects can
have significant financial and reputational implications [1]. One of the most widely used
fault detection techniques for this purpose in wiring harness manufacturing systems is
Crimp Force Monitoring (CFM) [2], which monitors the signals generated during the
crimping termination process to enable instant determination of crimp quality [3]. CFM
analyzes crimp quality by using piezoelectric sensors to measure machine pressure.

A fundamental approach of the CFMis the comparison of the peak of the pressure
data. A commonly employed CFM method is the aligning of each crimping datum with
reference data. These reference data are manually collected and known to be of good
quality, and the difference between the measured and reference data is then calculated
using a specified metric, wherein discrepancies around the peaks of the data are given
more weight. Quality requirements are met only if the difference is within an allowable
tolerance range. This simple, albeit rigid methodology makes CFM a highly trusted tool in
the manufacturing sector [4]. Despite its simplicity and accuracy, CFM presents significant
challenges. One of the challenges is its dependency on high-cost dedicated-equipment
installation, necessitating substantial investment for each production line. This financial
burden is further compounded by the frequent need for maintenance of the equipment.
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Furthermore, for high accuracy in fault detection, CFM requires a predefined tolerance
range and the collection of reference data. Such a system demands considerable time
to recalibrate with every change in the manufacturing process, while depending on the
skills of the operators, increasing the scope for human error, and necessitating constant
human involvement. The scalability of CFM is also a notable challenge. If production
volumes and variety increase, the system may struggle to maintain efficiency and accuracy.
This limitation hinders flexibility in manufacturing operations, especially in facilities that
produce a wide range of products.

To address these challenges, fault detection systems can be integrated with Artificial
Intelligence (AI). AI continually learns and adapts from real-time data, allowing it to adjust
to a broad range of manufacturing processes and external conditions. This adaptability
significantly decreases the need for frequent system recalibration [5,6]. Also, an AI-based
system does not necessitate deep understanding and expertise in data processing, mak-
ing it more accessible. AI can also enhance the scalability of manufacturing operations
by efficiently managing data from multiple production lines and adapting to changes in
product types without the need for extensive reconfiguration. This flexibility supports
manufacturers in responding quickly to market demands and product diversification,
maintaining high levels of efficiency and accuracy across diverse manufacturing scenarios.
Clearly, the integration of AI has been used as a tool to optimize fault detection processes in
various manufacturing industries, ranging from textiles to automobiles [7–9]. Nevertheless,
before introducing AI into real-world crimping manufacturing systems, there are several
challenges that must be addressed. First, changes in the crimping manufacturing process
can make existing AI models obsolete due to variations in data scales across diverse manu-
facturing settings. For example, changing the wire type, which varies in thickness, can alter
the overall data scale, rendering previously established models ineffective. Furthermore, in
real-world manufacturing systems, labeled defective data for AI model training are unavail-
able, because unpredictable defects can occur. The constraint of a limited training dataset
significantly reduces the performance of AI models, and this issue is particularly noticeable
with advanced machine learning algorithms, such as deep learning, which require substan-
tial data and computational resources. Anomaly detection algorithms such as Isolation
Forest that can be trained solely on normal data to detect unseen defects are available. But
this may not guarantee sufficient detection accuracy for all potential faults, and such a
limited performance makes such algorithms less applicable in real-world manufacturing
quality control practice.

In response to these challenges, this paper proposes a fault detection system that
employs AI with Regional Selective Data Scaling (RSDS). RSDS generates synthetic ab-
normal data from the reference data by performing upscaling or downscaling on specific
regions of the reference data. This allows the fault detection system to efficiently train
its AI model with a dataset comprised exclusively of normal operational data and still
achieve high accuracy in detecting faults. In this study, a multilayer perceptron (MLP)
classification model was trained exclusively on normal data and was able to effectively
distinguish between normal and abnormal conditions. To validate the system, fifteen
unique raw datasets from a real-world industrial facility were collected and tested with
four anomaly detection algorithms: Isolation Forest, one-class Autoencoders, k-means, and
a Histogram-Based Outlier Score (HBOS). In summary, this paper makes several significant
contributions, including the following:

• The development of the RSDS, which augments AI training by generating synthetic
anomaly data, enriching the training dataset and model robustness.

• A methodology for efficient model training that overcomes the challenges posed by
the limited availability of reference data, ensuring comprehensive learning.

• The implementation and validation of high-accuracy anomaly detection, employing
an MLP trained only on data representing normal operational conditions.

• An extensive validation of the proposed system using real-world industrial datasets,
demonstrating its applicability and effectiveness in practical scenarios.
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• A comparative analysis that shows the superior performance of the proposed anomaly
detection system against traditional anomaly detection methods, highlighting its
potential to revolutionize industrial monitoring.

The rest of this paper is organized into the following sections: The Background section
recaps notable studies on AI-based fault detection in manufacturing, while the Methodol-
ogy section outlines the presented approach, focusing on anomaly detection and RSDS. The
Results section then evaluates the proposed model’s performance in detecting faults and
generating synthetic abnormal data. Finally, the Discussion and Conclusion sections encap-
sulate the key findings and implications and hint at potential future research directions.

2. Background and Related Works

Supervised learning has been utilized to detect faults in different industrial processes.
Its ability to learn from labeled data and predict outcomes makes it a powerful tool for
fault detection and classification, particularly in complex manufacturing processes [10].
This approach has been used in sectors like semiconductor manufacturing, where the early
detection of faults can offer significant time and cost savings [5,11]. The advantages of
supervised learning extend to various applications within the manufacturing sector. For
example, it has been used to monitor the condition of widely used industrial machines,
such as industrial machines, by identifying faults at an early stage [12]. Supervised learning
has been employed in electric motor manufacturing to optimize processes such as hairpin
winding, enhancing the quality of the final product [13]. Moreover, the effectiveness of
supervised learning has been demonstrated in the detection and classification of faults
in rotating machinery. Techniques such as the Shapley Additive Explanation (SHAP)
have been used to identify the most important features for fault detection, enhancing the
interpretability of the model outcomes [14]. Nevertheless, supervised learning demands a
significant number of labeled data for training models, while the process of collecting and
labeling data is both time-consuming and costly.

To handle such issues, unsupervised learning and outlier analysis methods can be
considered. These methods can extract meaningful features from raw data and efficiently
process large volumes of unlabeled data [15]. They are useful for addressing the com-
plexities of manufacturing environments, providing effective diagnostic tools without
predefined labels [16]. However, the utility of these unsupervised learning methods is not
without limitations. Generally, the feature selection process may include noise or irrelevant
features, impacting the diagnostic accuracy [17]; it also demands a substantial volume of
unlabeled data to achieve a satisfactory level of classification performance [18].

To complement such drawbacks, semi-supervised learning techniques, which combine
the strengths of both supervised and unsupervised learning by selectively incorporating
labeled data from an uncertain unlabeled data pool into the training process, can be
used [19]. This approach effectively optimizes learning from limited data while further
strengthening the fault diagnosis by integrating various classifiers, which can help mitigate
the risk of incorporating noise or irrelevant features. This can increase the diversity and
robustness of the learning process [20]. Despite these advances, a critical challenge remains
in the training model process. For fault detection, these models require data from both
normal and abnormal classes for effective training. However, in real-world manufacturing
processes, obtaining abnormal data is a significant challenge due to the unpredictable
nature of defects [21].

Anomaly detection algorithms can address the above issues by training models with
only the normal class. Numerous anomaly detection techniques have been proposed to
classify outliers within normal data [22]. Typically, existing machine learning algorithms are
employed for outlier detection. For example, Decision Trees offer a straightforward, rule-
based approach to identifying anomalies by detecting deviations from typical patterns [23].
These algorithms enable one-class training by learning the boundaries and characteristics
of the normal class from a predominantly normal dataset. Neural networks can also be
used for anomaly detection due to their ability to comprehend complex relationships. For
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example, Autoencoders can effectively utilize their reconstruction errors to differentiate
abnormal status from normal data [24]. Clustering techniques remain powerful for anomaly
detection, such as k-means, which groups similar data and highlights outliers in less
populated clusters [25].

3. Proposed Methodology

Manufacturing sectors have extensively utilized supervised learning for fault detection
and classification, given its efficacy in predicting outcomes from labeled data. While its
capabilities are advanced, supervised learning poses challenges, such as the need for exten-
sive labeled data, whose acquisition is a time-intensive and costly process. Unsupervised
learning methods can mitigate some of these challenges by processing large volumes of
unlabeled data. Semi-supervised learning presents a solution by combining the strengths
of both techniques, but due to the unpredictable nature of defects, its utility is also limited
by the challenge of acquiring abnormal data. To address the problem, anomaly detection
algorithms are proposed to train models using only one-class data. However, in real-world
manufacturing practice, there are only a few available reference data for training an AI
model. Therefore, it is likely that the models trained solely on a small number of normal
data will show low performance against diverse and previously unseen anomalies. Addi-
tionally, these algorithms can be subject to overfitting, especially when the available normal
data are not comprehensive or representative of all possible normal behaviors. Setting
up an appropriate threshold to classify anomalies is another challenge. Achieving high
accuracy in fault detection requires a careful balance between a model’s sensitivity and
specificity. Conclusively, even as anomaly detection provides a feasible solution, these
challenges emphasize the need for a different paradigm for the AI model for fault detection.
The proposed methodology is outlined in the following sequence: Section 3.1 details the
acquisition of raw data, setting the foundation for our analysis, while Section 3.2 presents
the architecture of the overall system, with a particular emphasis on the AI model. This
section also covers the creation of synthetic abnormal data, integrating aspects of data
augmentation to enhance the model’s robustness and accuracy.

3.1. Raw Data Acquisition and Analysis

To develop a practical fault detection system, it is essential to collect raw data from
the actual manufacturing process, instead of mere theoretical simulation. For this research,
raw data were collected from a wire harness crimping machine, specifically the JYP-P700
model, currently in operation at a real-world industrial facility.

The machine operates in multi-shift cycles and is dedicated to producing wire har-
nesses for a range of electronic components. The CFM system was used to collect the data
due to the need for legitimately labeled data for AI training and testing. The CFM utilizes a
piezoelectric sensor, attached to the side of the machine, to accurately measure the pressure
during the crimping process, as shown in Figure 1.

Fifteen distinct datasets were collected between 19 April and 8 May 2023, documenting
daily recordings of each crimping operation from the integrated CFM system. The data
collection process was thoroughly monitored by an operator for the research perforce, and
it is assumed that all crimping operations were accurately labeled. This comprehensive
collection resulted in a total of 23,383 individual crimp records over the period of study.
The CFM system provides a timestamp, binary quality labels for crimping (categorized as
“Good” or “Bad”), and 200 data points associated with each crimp. A total of 200 data points
were collected at a frequency of 200 Hz, with a data point collected every 5 milliseconds.
According to the classifications provided by the system, 23,286 entries were marked as
“Good”, with the remaining 97 labeled as “Bad”. The “Bad” were mostly attributed to
issues such as damaged insulation, which leads to exposed wires, and improper crimping
resulting in weak electrical connections that can compromise the overall functionality of
the wire harness. Table 1 provides the details for each dataset with statistical information.
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Figure 1. Raw data collection setup: (a) crimping machine; (b) piezoelectric sensor; (c) CFM system.

Table 1. Details of the raw data.

Date
Label Statistics

Good Bad Total Min. Max Mean SD (σ)

19 April 2023 1628 20 1648 18 26,238 8594 508
19 April 2023 402 1 403 15 13,426 5517 145
20 April 2023 1499 20 1519 24 15,490 5157 552
22 April 2023 2601 2 2603 0 35,044 15,053 412
25 April 2023 1152 8 1160 0 26,314 10,111 639
26 April 2023 1600 1 1601 0 37,300 16,206 399
26 April 2023 1484 22 1506 0 31,170 11,873 455
28 April 2023 2946 12 2958 0 35,203 11,668 635
28 April 2023 1024 2 1026 0 36,846 15,718 523
2 May 2023 894 4 898 0 32,581 11,494 614
3 May 2023 2599 5 2604 0 25,283 9623 411
4 May 2023 1592 3 1595 0 51,310 22,359 470
4 May 2023 1199 8 1207 0 25,613 8861 362
5 May 2023 804 4 808 0 16,704 5395 167
8 May 2023 1862 5 1867 0 27,746 5295 230

Table 1 demonstrates the variable nature of the raw datasets. The scales of the datasets,
even those collected on the same day, are significantly different, which poses a substantial
challenge to the development of a generalized AI model for defect detection. Data collected
on 19 April, 26 April, and 4 May display clear discrepancies between the two occasions.
This inconsistency is not just due to the variability in products but also arises from issues
with sensor sensitivity and fluctuations in environmental conditions. Given these variable
and inconsistent scales, it is crucial to reset the AI model for each unique manufacturing
setup, ensuring accurate defect detection under these diverse and variable conditions.

3.2. Proposed Fault Detection System

Considering the constraints of traditional CFM and recognizing the complex chal-
lenges posed by conventional AI integration into fault detection, this paper presents a new
paradigm: a fault detection system based on AI with RSDS. This paradigm offers a solution
to challenges caused by unpredictable defects in the manufacturing process and limited
training data for real-time fault detection by using an anomaly-detection-based algorithm.

The above Figure 2 illustrates the process of using an AI model for fault detection in
wiring harness crimping operation. Initially, reference data are manually collected by an
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operator. Then, RSDS is applied to the reference data to generate synthetic abnormal data
by performing upscaling or downscaling on specific regions of the reference data. The data
are then augmented using Laplace distribution to increase the volume of the dataset and
improve the training robustness of the model. Afterward, an augmented dataset is used to
train the AI model of the system, which utilizes a multilayer perceptron (MLP). An MLP
consists of three layers: the input layer receives the initial data, the hidden layers process
and transform these data through various computations, and the output layer provides the
final result or prediction based on the processed information. Once the model is trained, it
begins detecting faults in the remaining upcoming crimping data.
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Figure 2. The proposed fault detection system based on AI using RSDS.

The following subsections briefly introduce the raw data used in this research and
demonstrate how we preprocessed the data. They next present the analysis of the dataset,
highlighting the unique challenges for fault detection in a wire harness crimping manu-
facturing process. They then detail RSDS’s unique method of training the AI model and
conclude with an overview of the classification model used.

3.2.1. Artificial Intelligence Model

In practical manufacturing scenarios, fault detection systems often classify defects
without prior knowledge of defective instances. For example, current CFM systems can
conduct accurate fault detection using only thirty reference data from normal manufactur-
ing operations, without any defect data. However, training any AI model with only thirty
reference data is challenging. The primary reason for this is overfitting, where the model
becomes excessively tailored to the limited training data, reducing its ability to detect
unseen defects. Moreover, the absence of abnormal data in the initial set might hinder the
AI’s ability to recognize and differentiate anomalous patterns from standard ones.

Considering these challenges, an MLP is a suitable and technically sound choice for
several reasons. Firstly, due to its multifaceted approach, MLPs demonstrate high adapt-
ability against diverse data patterns by modeling both linear and non-linear relationships
through its structured layers of neurons. Each neuron in these layers processes input data
with the calculation

a[l]i = σ
(
∑j

(
w[l]

ij ·a
[l−1]
j

)
+ b[l]i

)
, (1)
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where a[l]i is the activation of the i-th neuron in the l-th layer, σ is an activation function

capable of capturing non-linearities, and w[l]
ij and b[l]i represent the weights and biases,

respectively, which are fine-tuned during training [26]. The scalable architecture of the
MLP allows for adjustable model complexity, ensuring a balance between accuracy and
computational efficiency in its learning process. The MLP is trained by adjusting these
weights and biases to minimize the cost function

J(W, b) =
1
m

m

∑
i=1

L(ŷi, yi), (2)

using the backpropagation algorithm to compute the gradients ∂J
∂W[l] and ∂J

∂b[l]
. These

gradients inform how the weights W [l] and biases b[l] are updated, by

W [l] = W [l] − α
∂J

∂W [l]
and b[l] = b[l] − α

∂J
∂b[l]

, (3)

where α is the learning rate [27]. Adjusting the number of layers and neurons allows the
MLP to be more suited to particular manufacturing scenarios. Furthermore, the MLP can be
easily integrated into other systems within the manufacturing setup, allowing it to function
alongside other processes, provided that the data are appropriately preprocessed. This
integration can enhance the overall efficiency of fault detection systems, leading to more
reliable and timely identification of potential defectives.

3.2.2. Synthetic Abnormal Data Development

The MLP necessitates at least two classes for training, thus requiring the creation of
synthetic abnormal data to effectively train the model. Generating and integrating synthetic
abnormal data can introduce additional complexities and potential biases into the training
process, demanding a careful and strategic approach to ensure genuine and meaningful
learning. A feasible approach might involve up/downscaling of the original data to
create synthetic fault data. Implementing up/downscaling randomly on the original data
seems like a feasible solution for detecting unexpected defects. However, this technique
can complicate the model by necessitating the integration of numerous fault data classes.
This increases the model’s structural complexity while prolonging the training duration,
potentially delaying deployment in practical manufacturing settings.

In contrast, uniformly applying scaling adjusts the entire dataset consistently, poten-
tially simulating various defect scenarios by systematically deviating from the original
“normal” manufacturing data. However, uniform scaling across the entire dataset might
impede classification performance, as it counters the MLP’s intrinsic learning mechanism.
Given that MLPs learn primarily by adjusting weights during the backpropagation process,
uniform scaling, which inherently reduces differences in the data, could adversely impact
the model’s ability to effectively differentiate and adjust weights, possibly compromising
its predictive accuracy and classification ability. This can be explained through the weight
adjustment equation

∆ wi = η (t − o)xi, (4)

where ∆ wi is the weight adjustment, η is the learning rate, t and o are the target and output
values, respectively, and xi represents the input value. The complication arising from
uniformly incrementing input values (i.e., input values subjected to uniform scaling) is that
since all inputs exhibit identical patterns of change, the MLP might struggle to determine
how to independently adjust the weights for each input. Specifically, when xi values ascend
at a consistent rate, all weight adjustments ∆wi would likewise manifest identical patterns,
which could hinder the MLP from learning each feature independently. Consequently,
this uniform increment could adversely impact the MLP’s classification performance and
predictive accuracy by distorting the relative disparities among each input feature.
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3.2.3. Regional Selective Data Scaling

Figure 3 shows the RSDS that this paper introduces to address these complexities as a
strategy for generating synthetic abnormal data. The generated synthetic abnormal data
can help to generalize AI models with few reference data. Rather than uniformly scaling
the entire region, this approach divides the region into smaller sections and then selectively
applies scaling. In this way, this approach addresses the challenges related to uniform
scaling while also allowing for a more systematic simulation of various defect scenarios.
RSDS plays a crucial role in creating synthetic abnormal data, allowing models to learn and
adapt to different defect types, even when actual defective data are initially unavailable. In
the context of wiring harness manufacturing, this approach involves strategically dividing
the original dataset into three distinct regions, each representing a different phase in the
data pattern: R1 (Pre-Peak), R2 (Peak), and R3 (Post-Peak). Positive and negative scalings
are then applied to the regions based on the standard deviation of the normal dataset,
yielding six distinct synthetic fault datasets and enriching the model’s learning spectrum.
Using the standard deviation of normal data to scale synthetic faults ensures that they
are distinct yet realistic enough for effective anomaly detection. The algorithm below
delineates the specific implementation of this approach:
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Figure 3. Overview of the generated synthetic fault data.

An algorithm designated for Regional Synthetic Fault Data Generation was developed
to fabricate synthetic data and labels corresponding to the original dataset D, which has
standard deviation σD. The Scaler S is initialized to the range [−k·σD, k·σD], serving as a
modifier to create defectives in the dataset. Introducing a multiplicative factor k allows
for the adjustment of this scaling to tailor the model’s sensitivity to the specificities of the
manufacturing process. The algorithm partitions the data into three distinct regions, R,
based on the maximum index M, each with a specific range. It systematically traverses
each scaler si in S and each region rj in R, adjusting the data within the specified region by
si and accumulating the altered datasets and corresponding labels in Dsynthetic and Lsynthetic,
respectively. Each synthetic label, L′, is calculated as 2(j − 1) + i, representing specific
fault types, and is paired with its corresponding synthetic data instance in the final output.
The algorithm returns a synthetic abnormal dataset with labels, which can enhance the
robustness of subsequent analyses and models (Algorithm 1).
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Algorithm 1. Regional Selective Data Scaling
Require : input dataset D, standard deviation σD of D
01 : Define Scaler S ⇐ [−k·σD, k·σD]
02 : Compute M ⇐ max(D)
03 : Define Region R = [(0, M − δ), (M − δ, M + δ), (M + δ, 200)]
04 : Initialize : Dsynthetic
05 : Initialize : Lsynthetic
06 : for si ∈ S do
07 : for rj ∈ R do
08 : Let D′ ⇐ D //Create a copy D
09 : Update D′

(
rj

)
⇐ D′

(
rj

)
+ si //Scale the data

10 : Append D′ to DSynthetic
11 : Compute L′ ⇐ 2(j − 1) + i //Create the label
12 : Append L′ to Lsynthetic
13: end for
14: end for
15 : return Dsynthetic, Lsynthetic

3.2.4. Data Augmentation

Given the outlined strategy for synthetic abnormal data generation, addressing the
intrinsic data imbalance, notably with respect to abnormal data, is paramount. Merely
replicating synthetic abnormal data might expand the dataset size but does not introduce
the necessary variability for the MLP learning process. This could potentially disrupt
the model’s learning during training as, due to the homogeneity of the presented data,
the gradient descent might find itself trapped in local minima. Thus, complexity must
be imposed upon the training dataset, ensuring quantity, quality, and diversity in the
data to facilitate a more sophisticated learning mechanism. To meet this requirement,
a data augmentation technique is implemented by introducing noise from the Laplace
distribution:

f (x|µ, b) =
1
2b

e−
|x−µ|

b , (5)

where µ and b denote the location and scale parameters, respectively, offering an effective
approach to data augmentation due to its unique double-exponential nature. In contrast to
the Gaussian distribution, the chosen Laplace distribution has sharper peaks and heavier
tails, resulting in noise that is both localized and extreme. This generates a wider range
of diverse and challenging samples. In the experimental setup, we set the location and
scale parameters to 0 and 1.0, respectively. This location choice aligns the peak of the
Laplace distribution with the mean of the original data, while the scale parameter ensures a
balanced dispersion of the generated noise. This balance maintains the fundamental shape
of the original data.

4. Results and Discussion
4.1. Results and Analysis

To validate the proposed fault detection system, a total of fifteen datasets, obtained
from the manufacturing process of wiring harness crimping, were subjected to testing. The
datasets utilized in this study were obtained from an actual manufacturing facility and
were collected over a period spanning from 19 April to 8 May 2023. Within the dataset,
there are a total of 24,249 entries, with 24,152 entries classified as “Good” and 97 entries
classified as “Bad”. The CFM system facilitated the labeling process, thereby eliminating the
requirement for labor-intensive and expensive manual labeling. It is important to highlight
that while our AI model’s findings were not directly compared to the results of the CFM,
the data annotated by the CFM proved to be extremely valuable for the purpose of testing
our AI model. The CFM system exhibits a commendable level of accuracy; however, it is
not exempt from potential errors. The labels obtained from CFM can be considered reliable
with a confidence level of 99%, allowing for a minimal 1% possibility of inconsistencies.
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The experiments were conducted in a specific scenario to simulate real-world manu-
facturing. Figure 4 depicts the manufacturing process, where the fault detection system
analyzes each dataset sequentially. At the start, the system begins the process with the
initial dataset and assesses the availability of at least ten reference data. It is assumed
that the collection and assessment of reference data is performed manually by an operator.
However, in the experimental setup, the first ten data from the normal label are utilized to
simplify the experimental processes. After generating synthetic abnormal data from the
reference data, an AI model is established in the following stage. If the system processes all
the remaining data, it resets the AI model and moves on to the next dataset, until it pro-
cesses the last dataset. This approach ensures that each dataset is paired with a dedicated
AI model that is carefully calibrated to match its unique characteristics.
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In the experiments conducted, the Python programming language was utilized along
with the MLPclassifier library from sklearn to establish the AI model and evaluate the data.
As seen in Figure 5 above, a total of 60 datasets were generated from the ten reference
data. These datasets were subsequently expanded to 700 datasets using data augmentation
techniques. From the creation of six defective types, seven classes of labels were accordingly
established, including the normal class. The training data consisted of a total of 770 fully
labeled datasets, each classified into one of the seven classes. It is worth noting that only
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10 out of the 770 datasets were original reference data. To maintain consistency in nor-
malization, the MinMax scaler was employed. After scaling, the data were used to train a
multilayer perceptron (MLP) model with 200 input neurons and two hidden layers consist-
ing of 64 and 32 neurons, respectively. The model utilized the ReLU activation function and
the “adam” optimization algorithm. An “adaptive” learning rate was employed, with the
maximum iteration set at 500. For the evaluation, we chose accuracy and the True-Negative
Rate (TNR) as the main metrics. Accuracy provides a comprehensive assessment of the
model’s performance, whereas the TNR specifically evaluates the system’s proficiency
in identifying defective items, a critical aspect in the domain of manufacturing quality
control. The equations for accuracy and the TNR are as follow, where True-Positive is TP,
True-Negative is TN, False-Positive is FP, and False-Negative is FN:

Accuracy =
TP + TN

TP + TN + FP + FN
, TNR =

TN
FP + TN

. (6)
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Figure 5. RSDS and data augmentation results.

For comparative analysis, we utilized four well-known anomaly detection algorithms
to evaluate their effectiveness in detecting defects: Isolation Forest, Autoencoder, k-means,
and the Histogram-Based Outlier Score (HBOS). The Isolation Forest algorithm utilizes
tree structures to effectively identify anomalies by focusing on shorter paths in comparison
to normal instances. To optimize the performance of the Isolation Forest algorithm, we
conducted a grid search to determine the most suitable hyperparameters. The k-means clus-
tering algorithm, a commonly used unsupervised method in data analysis, was employed
to partition the dataset into distinct clusters. In this approach, data points were flagged
as anomalies if their distance to the cluster center exceeded a predetermined threshold set
at the 95th percentile. Additionally, we implemented an Autoencoder, a neural network
architecture that is renowned for its ability to perform dimensionality reduction. Anomalies
were detected by assessing reconstruction errors that were significantly higher than the
threshold set at the 95th percentile of training errors. Finally, the study utilized the HBOS,
a convenient unsupervised technique that calculates outlier scores based on data distri-
butions in a multi-dimensional space. Our selection comprised a range of methodologies,
selected for their widespread use, effectiveness, and inclusion of diverse anomaly detection
techniques. To maintain a controlled environment, the first ten data with a normal label
were used as reference data for all algorithms. The table below shows the results.
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4.2. Discussion

Table 2 and Figure 6 provide the performance details of the five fault detection algo-
rithms. The proposed system is notable for its exceptional average accuracy of 99.95%. Its
TNR stood at 85.72%, demonstrating its high sensitivity in detecting anomalies. The HBOS
demonstrated an impressive accuracy rate of 99.56%. However, the TNR of 0% across all
datasets indicates potential overfitting and a lack of effectiveness in detecting anomalies.
The k-means algorithm, with 95.39% accuracy and 93.44% TNR, presents concerns in man-
ufacturing contexts. Although its accuracy is close to the proposed system’s accuracy of
99.95%, in a test set of 24,152 normal data, this difference implies a substantial number of
misclassifications, which is critical in terms of manufacturing practices. Moreover, while the
k-means’ TNR seems better than the proposed system’s TNR of 85.72%, the small sample
size of true and false negatives (only 97) suggests that the apparent advantage may not
be significant. The results for the Isolation Forest and Autoencoder algorithms indicate a
case of anti-fitting. Specifically, the Isolation Forest showed an average accuracy of 40.42%
paired with a TNR of 96.0%, while the Autoencoder achieved an average accuracy of 68.92%
with a TNR of 100.00%. In summary, the proposed system’s performance demonstrates
impressive accuracy and high TNR value. A visualization of prediction results was pre-
pared to help us understand how RSDS enables the establishment of models with only ten
training data.

Table 2. Fault detection results.

Date

Isolation Forest Autoencoder k-Means HBOS Proposed System

Accuracy
(%) TNR (%) Accuracy

(%) TNR (%) Accuracy
(%) TNR (%) Accuracy

(%) TNR (%) Accuracy
(%) TNR (%)

19 April 2023 1.53 100.00 98.98 100.00 95.17 100.00 99.75 0.00 100.00 100.00
19 April 2023 67.09 40.00 67.46 100.00 96.21 100.00 98.77 0.00 100.00 100.00
20 April 2023 4.31 100.00 79.32 100.00 96.29 100.00 98.67 0.00 100.00 100.00
22 April 2023 4.17 100.00 98.03 100.00 95.06 100.00 99.92 0.00 100.00 100.00
25 April 2023 6.43 100.00 95.48 100.00 95.65 100.00 99.30 0.00 100.00 100.00
26 April 2023 78.06 100.00 87.81 100.00 95.03 100.00 99.94 0.00 99.93 50.00
26 April 2023 19.85 100.00 77.51 100.00 94.99 50.00 99.86 0.00 100.00 100.00
28 April 2023 74.70 100.00 12.80 100.00 95.18 100.00 99.80 0.00 100.00 100.00
28 April 2023 5.19 100.00 96.57 100.00 95.32 91.67 99.59 0.00 99.93 83.33
2 May 2023 87.16 100.00 0.79 100.00 95.38 100.00 99.55 0.00 99.89 75.00
3 May 2023 19.31 100.00 92.14 100.00 95.18 100.00 99.81 0.00 100.00 100.00
4 May 2023 46.53 100.00 55.47 100.00 95.66 100.00 99.33 0.00 99.75 62.50
4 May 2023 71.99 100.00 99.24 100.00 95.14 100.00 99.81 0.00 100.00 100.00
5 May 2023 18.05 100.00 92.86 100.00 95.49 100.00 99.50 0.00 99.87 75.00
8 May 2023 58.54 100.00 23.96 100.00 95.05 60.00 99.73 0.00 99.84 40.00

Average 37.53 96.00 71.89 100.00 95.39 93.44 99.56 0.00 99.95 85.72

Figure 7 displays six representative prediction results, all accurately classified. The
model accurately identified defects of different sizes and shapes. This effectiveness comes
from an AI model that was calibrated using ten standard samples. The representativeness
of the initial ten samples was a matter of concern; if they did not adequately capture
the diversity of the dataset, it could compromise the classification. This challenge was
addressed by incorporating synthetic abnormal data into the MinMax scaler. With this
integration, normal data tend to converge toward a midpoint value of 0.5, because the
synthetic abnormal data are intentionally scaled to always exceed the magnitude of the
normal data. Consequently, the range of reference data are expanded, making them more
representative. It is important to mention that when excluding defective data from the
MinMax scaler, the scaler’s inherent constraints can amplify its deviant attributes. To ensure
comprehensive defect detection, it is crucial to establish a synthetic scaling threshold for
RSDS that slightly exceeds normal data.
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Our analysis of fifteen datasets displays six cases of FP, as can be seen in Figure 8. A
consistent trend was observed, with these FPs (orange color) often found in the intermediate
range between normal data (green color) and synthetic abnormal data (blue color). The
presence of this overlap suggests a potential ambiguity in the model’s perception, which
could be attributed to the inadequate differentiation between synthetic and authentic
data. To enhance the accuracy of our AI-based fault detection system in future research,
the following key points can be considered: First, it is important to meticulously refine
the RSDS process, especially in the context of its potential expansion or adaptation for
broader manufacturing settings. Second, exploring more advanced methodologies may
mitigate the occurrence of FP. A reassessment of our methodologies for extracting features
could potentially offer a clearer distinction between different categories of data. In this
case, we can also compare our model’s performance with CFM. Lastly, the integration of
continual learning mechanisms has the potential to enhance the adaptability of the model
and improve the realism of our synthetic data generation.
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5. Conclusions

Our study presents a concrete and systematic approach to improving quality control
in wiring harness crimping manufacturing by integrating RSDS with AI. This approach
utilizes the distinctive capability of RSDS to generate synthetic abnormal data, effectively
addressing the challenge of having only limited labeled datasets available for robust AI
training. The experimentation conducted on authentic industrial datasets demonstrated
both a promising alternative to CFM and its advantage over traditional anomaly detection
algorithms. Additionally, the practical implications of this system in a real production
environment are significant, offering enhanced quality control and efficient integration into
existing manufacturing processes. This suggests that the integration of AI can help improve
manufacturing quality control. Based on the compelling findings of this study, there is
significant potential for further exploration in this field. Adopting these methodologies
may facilitate deeper insights, promoting the development of more efficient, adaptable,
and accurate quality control systems. However, a limitation of this research is its reliance
on specific conditions and datasets, which may not fully represent the diverse scenarios
encountered in broader manufacturing contexts. Therefore, future research could further
refine this approach by exploring the scalability of RSDS in larger manufacturing contexts
or examining its compatibility with other emerging AI techniques.
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