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Abstract: The prevalence of intelligent transportation systems in alleviating traffic congestion and
reducing the number of traffic accidents has risen in recent years owing to the rapid advancement of
information and communication technology (ICT). Nevertheless, the increase in Internet of Vehicles (IoV)
users has led to massive data transmission, resulting in significant delays and network instability during
vehicle operation due to limited bandwidth resources. This poses serious security risks to the traffic
system and endangers the safety of IoV users. To alleviate the computational load on the core network
and provide more timely, effective, and secure data services to proximate users, this paper proposes
the deployment of edge servers utilizing edge computing technologies. The massive image data of
users are processed using an image compression algorithm, revealing a positive correlation between
the compression quality factor and the image’s spatial occupancy. A performance analysis model for
the ADHOC MAC (ADHOC Medium Access Control) protocol is established, elucidating a positive
correlation between the frame length and the number of service users, and a negative correlation
between the service user rate and the compression quality factor. The optimal service user rate, within
the constraints of compression that does not compromise detection accuracy, is determined by using the
target detection result as a criterion for effective compression. The simulation results demonstrate that
the proposed scheme satisfies the object detection accuracy requirements in the IoV context. It enables
the number of successfully connected users to approach the total user count, and increases the service
rate by up to 34%, thereby enhancing driving safety, stability, and efficiency.

Keywords: Internet of Vehicles; mobile edge computing; object detection; image compression

MSC: 94A08

1. Introduction

Recently, the application of intelligent transportation systems has increasingly gained
prominence. Consequently, the provision of real-time and secure intelligent services to users
with constrained computing resources (including bicyclists, pedestrians, and wheelchair
users) has emerged as a significant area of research.

The intelligent connected vehicle (ICV), which encapsulates both Internet of Vehicles
(IoV) and autonomous driving technologies, connects with sensor devices such as Road Side
Units (RSUs) and edge servers. This enables it to analyze and process information about
road conditions and other relevant data for controlling the vehicle’s driving behavior [1].
Owing to their capability to effectively navigate complex urban road conditions, intelligent
vehicles are increasingly becoming prevalent. Consequently, ensuring safe navigation
within the IoV system is gaining paramount importance, with its primary objective being
the perception of the surrounding environment and the extraction of critical information [2].
Target detection constitutes a fundamental perception challenge in autonomous driving
systems. The literature [3] delves into and contrasts several cutting-edge algorithms in
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target detection, including Faster R-CNN, Mask R-CNN, and Yolo v4, thereby underscoring
the necessity of efficient and precise target detection algorithms within the IoV context.
In autonomous driving systems, the paramount concern of object detection technology is
the swift and accurate identification of road vehicles, crucial for enhancing driving safety
and efficiency.

Vision provides the most critical information while driving, and cameras serve as
sensors closely mimicking the human eye. The widespread availability of high-performance
on-board cameras today enables users to effortlessly acquire detailed, high-resolution
image data of the real-world environment, rich in information [4]. Owing to the swift
advancements in image processing technology, it is now possible to identify specific objects
within raw image data using algorithms. For instance, on-board cameras facilitate vehicular
navigation by identifying target vehicles ahead. It is important to acknowledge that higher-
quality image data not only occupy more space but also lead to increased processing delays
and transmission burdens, thereby escalating the security risks associated with autonomous
driving applications. As the number of users in the IoV continues to grow, the demands
on Intelligent Transportation Systems (ITS) become increasingly stringent. These include
the need for rapid and accurate target detection, the alleviation of data growth pressures,
the enhancement of user service rates, and ensuring application security. Consequently,
this necessitates substantial computational power in the IoV to cater to the expanding
user requirements.

Presently, mobile edge computing (MEC), emerging as a novel computing paradigm,
has come into focus for its ability to enhance computing efficiency and conserve com-
putational resources. The advancement of 5G and 6G communication technologies has
significantly facilitated the Internet of Things (IoT), albeit generating substantial data
traffic [5]. As the user base within the IoV expands, there is an escalated demand for ad-
vanced object detection algorithms and enhanced security in intelligent transportation
systems. To swiftly process the voluminous data necessitated for transmission in the IoV,
MEC addresses the stringent demands of 5G and superior communication environments.
This is achieved through the deployment of servers endowed with computing and storage
capabilities at the network’s edge, facilitating data processing proximate to the user and in-
tegrating technologies like compression and caching to expedite data flow [6]. Hui et al. [7]
examined the average energy efficiency associated with computational offloading in both
MEC and non-MEC networked vehicles. The findings reveal that MEC-integrated net-
worked vehicles are capable of optimally selecting task sizes and transmission intervals,
thereby maximizing energy efficiency, which is at least tenfold higher compared to non-
MEC networked vehicles. However, current research often overlooks further processing
of image data required for network transmission, relying instead on direct usage of high-
definition images obtained by vehicle units. This approach results in an excessive data load
and processing burden on these units. Currently, JPEG image compression technology is
recognized as one of the most prevalent image compression methods globally, due to its
significant capacity to reduce file sizes [8]. Therefore, this paper integrates MEC for image
data processing, simultaneously ensuring accuracy in target detection. This approach
aims to enhance data transmission efficiency, expand the user base of vehicle networking
services, and consequently mitigate traffic congestion.

Autonomous driving technology, through its perception of the surrounding environ-
ment and subsequent data processing, not only facilitates convenience for drivers but also
significantly enhances traffic safety [9]. It is evident that precision and rapidity in vehicle
detection technology, coupled with a high user service rate, are imperative for driving
safety. In this context, within the IoV environment and leveraging edge computing, the
present study develops an ADHOC MAC (ADHOC Medium Access Control) protocol
access performance analysis model. This model explores the mathematical correlations
between frame length N, the number of service users, the compression quality factor, and
the user service rate. A Yolov5 vehicle object detection model has been developed to facili-
tate complete target recognition in all image data, establishing a benchmark for recognition
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accuracy. Furthermore, the JPEG compression algorithm is employed for optimization,
examining the compression threshold and its associated user service rate in relation to
accuracy requirements. Ultimately, the results of the system optimization are simulated
and analyzed.

This paper is structured as follows: Section 2 analyzes the current state of research
on resource optimization technologies in edge computing for IoV. Section 3 details the
establishment of the system architecture and performance analysis model, along with
theoretical derivation. Section 4 introduces the object detection and compression module
for system optimization. Section 5 presents the final simulation results and evaluates
the optimization outcomes. Finally, Section 6 provides a comprehensive summary of the
entire paper.

2. Related Works

In this section, we present the current state of research in object detection, edge com-
puting, and image processing technology within the context of the IoV, thereby establishing
a foundation for the subsequent research work of this paper.

2.1. Object Detection Technology

In the evolution of intelligent transportation systems, vision-based driver assistance
systems have become prevalent within the IoV context [10]. Early object detection tech-
niques primarily concentrated on specific objects characterized by simplistic appearances
and minimal variations, such as roads. However, while effective in certain scenarios, these
techniques exhibit numerous limitations in practical vehicular applications, including the
need for precise templates and rapid, accurate recognition. With the advancement of
machine learning, a multitude of object detection algorithms have surfaced, achieving
significant advancements. Dai et al. [11] focused primarily on the transmission delays
induced by the copious amounts of redundant data within driver assistance systems. An
enhanced Haar-like feature classification algorithm was utilized for object detection, and
redundant video frames were eliminated to augment the transmission speed. The results
demonstrated an approximate 84-fold increase in transmission speed following the filtra-
tion of 40% of similar frames. However, this methodology, while substantially enhancing
the data transmission rate, compromises the accuracy of object detection. In autonomous
driving systems, ensuring safety is paramount, necessitating the assurance of accurate
vehicle target detection.

Following advancements in deep learning, the YOLO object detection algorithm has
gained widespread adoption since its inception. This is attributed to its faster processing
speed coupled with significant improvements in detection accuracy; for instance, YOLO
processes approximately 300 times faster than Fast-RCNN while maintaining comparable
accuracy [12]. Zineb et al. [13] presented an optimization of the YOLOv4 object detec-
tion model, enabling it to swiftly and accurately identify objects even amidst significant
interference in road scene image data. A consistent public dataset was employed for test-
ing, facilitating a comparison of the detection accuracies between the Faster-RCNN and
EfficientDet models. Ultimately, the enhanced YOLOv4 detection model demonstrated
marginally superior detection accuracy compared to the other two models. While the
YOLOv4 model exhibits stable detection accuracy, it demands high-end configuration and
deployment environments, resulting in limited flexibility. In contrast, YOLOv5s boasts the
smallest network size, fastest processing speed, and ease of deployment, with its detection
accuracy for large targets being on par with that of YOLOv4. Therefore, this paper se-
lects the lightweight, easily deployable, and rapid YOLOv5s model as the object detection
module for vehicle identification in image data.

2.2. Image Compression Technology

High-definition cameras in contemporary intelligent vehicles generate substantial
volumes of high-definition image data, resulting in excessive data processing loads in
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the cloud and strained computing resources. Consequently, research has intensified in
visual data compression technology to mitigate storage and bandwidth resource con-
sumption and enhance data transmission rates, focusing primarily on lossy and lossless
compression methods [14]. Compared to lossless compression, lossy compression is less
effective at removing redundant image information but offers a more pronounced compres-
sion effect, making it more suitable for enhancing data transmission efficiency in the IoV.
Pantwa et al. [15] explored a machine learning-based method for visual data compression,
employing an autoencoder for the image compression process. The results indicated that
this approach preserved essential semantic features for tasks like image classification and
detection, with a compression effect surpassing that of the DeepSIC method. While this
research achieves bit rate reduction, it employs a simple uniform quantization approach
in coding, resulting in the loss of significant information and a compromise in accuracy.
Jalilian et al. [16] investigated the deep learning-based lossy compression of iris image
data, revealing that, while the model exhibits high compression efficacy, it adversely af-
fects recognition performance. Furthermore, the application of deep learning algorithms
increases computational demands, particularly in IoV context, leading to an augmented
computational load. Consequently, this paper utilizes the JPEG compression algorithm
to process image data, effectively achieving a high compression ratio while ensuring the
speed and accuracy of image detection tasks.

2.3. Mobile Edge Computing Technology

MEC-enabled vehicular networks offer advantages such as reduced response times,
diversified services, the alleviation of substantial bandwidth pressures caused by big data,
and proximity-based storage and services [17]. Consequently, edge computing technology
has seen widespread application in the IoV domain in recent years. Executing object detec-
tion tasks on edge devices has been shown to enhance resource utilization more effectively.
In [18], the authors employed the YOLOv3 model for detecting autonomous vehicles within
an edge computing framework, demonstrating the technology’s efficacy in conserving
computational resources; however, there were shortcomings in detection accuracy. In [19],
the authors juxtaposed the traditional autonomous driving environment detection meth-
ods with a novel approach, integrating the Collaborative Vehicle Infrastructure System
(CVIS) and autonomous driving technology to propose a scalable 5G MEC-driven vehicle
infrastructure collaborative system. The findings indicate that the detection accuracy of the
fusion scheme exhibits an approximate 10% improvement over single viewpoint perception.
Furthermore, collaborative systems facilitate the connection of distributed sensors, thereby
enhancing the efficiency of autonomous driving. However, the vehicle detection image data
utilized in this study were captured using fixed-angle cameras, without any subsequent
processing of the image data. Given the dynamic nature of driving environments and
the need for high flexibility, reliance on fixed cameras to capture road conditions could
significantly compromise the real-time performance and safety of autonomous driving
systems. Xiao et al. [20] introduced STAC, a deep neural network-driven compression
scheme designed for edge-assisted semantic video segmentation, and proposed a spatiotem-
poral adaptive scheme to address the challenges related to varying spatial sensitivities and
substantial bandwidth consumption. The results demonstrate that STAC, in comparison
to leading-edge algorithms, can conserve up to 20.95% of bandwidth while maintaining
accuracy. The adaptive compression strategy outlined in this paper, applied within an edge
computing environment, demonstrates a commendable performance. However, in practice,
this strategy continuously adjusts in response to changes in each video frame, leading
to the issue of frequent strategy reconfigurations, inadvertently escalating computational
power consumption.

Therefore, in synergy with edge computing, this paper utilizes vehicle-mounted
cameras to capture road environment imagery, subsequently offloading tasks like target de-
tection to edge servers, and thereby optimizing computational power usage and enhancing
data transmission efficiency.
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3. System Model
3.1. System Architecture

The ongoing evolution of vehicle applications has resulted in an immense influx
of data, exerting significant pressure on network capacity and bandwidth. While cloud
computing addresses the issue of limited vehicle resources, its deployment over long
distances results in considerable latency and increased bandwidth burden [21]. Therefore,
the system architecture under edge computing is built by deploying edge servers, as shown
in Figure 1. Offloading the object detection task from the autonomous driving system to the
MEC server, coupled with the integration of the JPEG compression algorithm prior to the
transmission of image data, mitigates issues like delayed data processing and the excessive
latency inherent in cloud computing.

Figure 1. System network topology under MEC.

Figure 2 illustrates the flowchart of the entire system, encompassing image compres-
sion, the AD HOC MAC protocol, and the object detection module. Initially, image data
reflecting road conditions are compressed by users within the IoV, thereby optimizing
data storage and reducing transmission bandwidth requirements. Subsequently, the AD
HOC MAC protocol is developed, and its performance evaluation model is established,
leveraging a Markov chain approach. The processed data are then transmitted to the edge
server to facilitate the object detection task. Ultimately, the resultant identification data are
stored ready for subsequent dissemination.

Figure 2. System structure.

Throughout the process, the principal components encompass the mathematical model
analysis pertaining to the user service rate η of the system, the adjustment of the parameter
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Q in the compression module (notably, the compression quality factor Q is an integer
ranging from 0 to 100), and the formulation of standards for the target detection accuracy
Acc. These components are further delineated in the subsequent sections of this article.

3.2. Ad Hoc MAC Protocol Performance Analysis Model

The AD HOC MAC protocol serves as a reliable broadcast MAC protocol specifically
designed for vehicular ad hoc networks. This protocol is applicable in both single-hop
and multi-hop communication environments [22]. To streamline the analysis, a multi-user
network operating within a single-hop communication environment has been constructed,
with each user gaining access to the network via a wireless link that connects to an AP
(Access Point), as depicted in Figure 3. Given that the AD HOC MAC protocol adopts a
time-division structure in real-world spatial networking applications, wherein multiple
time slots collectively form time frames, N represents the number of available time slots in
a frame (N > 0), and M denotes the number of vehicles in the network (M > 0).

Figure 3. Single-hop communication environment.

For the sake of analytical simplicity, it is posited that, at the conclusion of each frame,
every vehicle is able to discern whether a given time slot within the frame is occupied, and
determines whether its attempt to acquire a time slot in that frame has been successful.
Subsequently, any vehicle that fails in this attempt randomly selects a time slot from the
remaining ones and endeavors to occupy it in the subsequent frame.

Define k as the number of vehicles when all users have successfully obtained a time
slot, k = min{M, N}. i represents the number of vehicles that successfully obtain a time
slot in the initial frame, while j denotes the number of vehicles that successfully acquire a
time slot by the end of the second frame. Under these conditions, the transition probability
from state i to state j is denoted as P(j|i), resulting in the formation of a stationary discrete
Markov chain, as illustrated in Figure 4.

Figure 4. Markov chain state transition diagram.
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3.2.1. State Transition Probability P(j|i)
Based on the aforementioned assumptions, at the conclusion of the first frame, N − i

time slots remain available for M − i vehicles to attempt acquisition in the second frame.
Given that a total of j vehicles successfully acquire a time slot by the conclusion of the
second frame, it follows that j − i vehicles will have successfully occupied a time slot by
the end of the second frame.

Therefore, the state transition probability P(j|i) can be defined as the probability that
a j − i vehicle successfully occupies a time slot when an M − i vehicle randomly attempts
to obtain one of the N − i time slots.

Let W(j − i, M − i, N − i) represent the number of cases in which j − i vehicles suc-
cessfully occupy a time slot when M − i vehicles randomly try to obtain one of N − i time
slots, then the transfer probability P(j|i) is defined as follows:

P(j|i) = W(j − i, M − i, N − i)

(N − i)M−i , j ≤ k (1)

Firstly, the derivation is carried out in the case of M ≤ N. Since there are Cj−i
M−i ways

to successfully obtain time slots by selecting j − i cars from M − i vehicles, there are Cj−i
N−i

ways to select j − i time slots from N − i time slots, and there are (j − i)! ways to align the
remaining time slots. Therefore, it is not difficult to obtain a mathematical expression for
W(j − i, M − i, N − i):

W(j − i, M − i, N − i) =


Cj−i

M−i A
j−i
N−i[(N − j)M−j −

M−j
∑

l=1
W(l, M − j, N − j)], 0 ≤ j < M

Aj−i
N−i, j = M

0, j > M

(2)

Similarly, the mathematical expression of W(j − i, M − i, N − i) in the case of M > N
can be calculated:

W(j − i, M − i, N − i) =

 Cj−i
M−i A

j−i
N−i[(N − j)M−j −

N−j
∑

l=1
W(l, M − j, N − j)], 0 ≤ j < N

0, j ≥ N
(3)

The state transition probability is P(j|i) when M ≤ N and M > N can be obtained
from Equation (1), Equation (2), and Equation (3), respectively. In order to simplify the
derivation, the case of M ≤ N is discussed first.

By substituting Equation (2) into Equation (1), the state transition probability P(j|i)
for M ≤ N can be obtained. The calculation formula is as follows:

P(j|i) =



Cj−i
M−i Aj−i

N−i

(N−i)M−i [(N − j)M−j −
M−j
∑

l=1
W(l, M − j, N − j)], 0 ≤ j < M

Aj−i
N−i

(N−i)M−i , j = M

0, j > M

(4)

In order to find out the general term of state transition probability, the relationship
between P(j|i) and P(j|j) is first studied, and the following relationship can be found:

P(j|i) =
Cj−i

M−i A
j−i
N−i(N − j)M−j

(N − i)M−i P(j|j) (5)
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According to the properties of Markov chains

M

∑
m=j

P(m|j) = 1 (6)

P(j|j) is obtained from Equation (6) and substituted into Equation (5). The calculation
formula as follows:

P(j|i) =
Cj−i

M−i A
j−i
N−i(N − j)M−j

(N − i)M−i [1 −
M

∑
m=j+1

P(m|j)] (7)

By expanding and simplifying the summation series in Equation (7), we obtain the
formula is as follows:

P(j|i) =
Cj−i

M−i A
j−i
N−i(N − j)M−j

(N − i)M−i



1 −
C1

M−j A
1
N−j [N−(j+1)]M−(j+1)

(N−j)M−j

+
C1

M−j A
1
N−j [N−(j+1)]M−(j+1)

(N−j)M−j

M
∑

s1=j+2
P(s1|j + 1)

−
C2

M−j A
2
N−j [N−(j+2)]M−(j+2)

(N−j)M−j [1 −
M
∑

s2=j+3
P(s2|j + 2)]

−
C3

M−j A
3
N−j [N−(j+3)]M−(j+3)

(N−j)M−j [1 −
M
∑

s3=j+4
P(s3|j + 3)]

− · · · −
CM−j

M−j AM−j
N−j (N−M)M−M

(N−j)M−j



(8)

From Equation (7), we obtain the formula as follows:

P(s1|j + 1) =
Cs1−(j+1)

M−(j+1)As1−(j+1)
N−(j+1)(N − s1)

M−s1

[N − (j + 1)]M−(j+1)
[1 −

M

∑
s=s1+1

P(s|s1)] (9)

By substituting Equation (9) into Equation (8), Equation (10) is simplified as follows:

P(j|i) =
Cj−i

M−i A
j−i
N−i(N − j)M−j

(N − i)M−i



1 −
C1

M−j A
1
N−j [N−(j+1)]M−(j+1)

(N−j)M−j

+
C2

M−j A
2
N−j [N−(j+2)]M−(j+2)

(N−j)M−j

−
C2

M−j A
2
N−j [N−(j+2)]M−(j+2)

(N−j)M−j

M
∑

s2=j+3
P(s2|j + 2)

+{
C1

2C3
M−j A

3
N−j [N−(j+3)]M−(j+3)

(N−j)M−j }[1 −
M
∑

s3=j+4
P(s3|j + 3)]

+ · · ·+
C1

M−jC
M−j
M−j AM−j

N−j (N−M)M−M

(N−j)M−j



(10)

After iterating the above derivation process for M − j times, the general term expres-
sion of P(j|i), when M ≤ N, can be obtained using the following formula:

P(j|i) =
Cj−i

M−i A
j−i
N−i

(N − i)M−i

M−j

∑
l=0

(−1)lCl
M−j A

l
N−j[N − (j + l)]M−(j+l) (11)
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Similarly, it is not difficult to derive the general term expression of P(j|i) when M > N:

P(j|i) =
Cj−i

M−i A
j−i
N−i

(N − i)M−i

N−j

∑
l=0

(−1)lCl
M−j A

l
N−j[N − (j + l)]M−(j+l) (12)

3.2.2. Number of Successful Service Users Nv and Service Rate η in the First Frame

Assume that, at the end of the first frame, there are j vehicles successfully occupying a
time slot, and no vehicles initially occupy the time slot. Therefore, the transition probability
P(j|0) can be obtained as follows:

Nv =
M

∑
j=0

jP(j|0) (13)

By combining Equations (11) and (12), the mathematical expression of Nv can be
obtained using the following formula:

Nv =


M
∑

j=0

M−j
∑

l=0

(−1)l jCj
MCl

M−j A
j+l
N [N−(j+l)]M−(j+l)

NM , M ≤ N

N
∑

j=0

N−j
∑

l=0

(−1)l jCj
MCl

M−j A
j+l
N [N−(j+l)]M−(j+l)

NM , M < N
(14)

To simplify the computation of Equation (14), set c = j + l to obtain the following
formula:

Nv =


M
∑

c=0

c
∑

l=0

(−1)l(c−l)Cc−l
M Cl

M−(c−l)Ac
N(N−c)M−c

NM , M ≤ N

N
∑

c=0

c
∑

l=0

(−1)l(c−l)Cc−l
M Cl

M−(c−l)Ac
N(N−c)M−c

NM , M < N
(15)

Next, the summation series in Nv is discussed in detail, and the cases when c = 0,
c = 1, and c > 1 are calculated, respectively. After calculation, the mathematical expression
of Nv can be derived as follows:

Nv =
M(N − 1)M−1

NM−1 , M ≥ 1, N ≥ 1 (16)

The metric Nv derived above can be used to intuitively assess the change in average
access users based on the number of users in the vehicular network. With the ongoing
advancement in communication technology, the user service rate, particularly from the
perspective of data transmission, has become a vital metric in evaluating the performance
of the IoV. Considering the intuitive meaning of the user service rate, its calculation method
can be expressed as follows:

User Service Rate η =
Number of users successfully served

(served + not served) Total number of users
(17)

From the perspective of information transmission within the IoV, a user being suc-
cessfully serviced implies that the data intended for transmission by the user have been
successfully sent. Consequently, the calculation method for the user service rate can be
transformed into the ratio of data transmission time to total time.

When the user transmits data, information collision may occur after data are sent,
so the user will wait for a period of time and retransmit the data several times until the
transmission is successful. Therefore, the total time for successfully sending a frame of
data includes the frame sending time T0, propagation delay t, and collision waiting time
Ct. Assume that the data transmission rate is Ts, the channel bandwidth is Bw the size of
the data to be transmitted is S (that is, the space occupied by the image), and the average
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duration for each user to be successfully served is 2 s. Therefore, the user service rate is
defined as the ratio of the data transmission time T0 of the successfully served user end to
the total transmission time. The formula is as follows:

η=
T0/2

(t + Ct + T0)/2
=

T0

t + Ct + T0
(18)

T0, t, and Ct are calculated as follows:

T0 =
N
Ts

(19)

t =
S

Bw
(20)

Ct = 2nt (21)

where n is the number of contention periods when a collision occurs and N is the frame length.

4. Optimization Analysis

In this section, an extensive optimization analysis of the system is undertaken. Follow-
ing the construction of the system model, we commence with the optimization problem
aimed at maximizing the user service rate. Additionally, an image compression algorithm
is introduced for further optimization, tailored to meet the requirements of object detection
accuracy, Acc. Utilizing theoretical analysis and simulation verification, the effectiveness
of the optimization is substantiated through a comparative analysis of results pre- and
post-optimization.

4.1. Optimization Problem

According to the theoretical derivation of user service rate η in Section 3.2.2, we
substituted Equation (18) into Equation (21) to obtain the formula as follows:

η =
N
Ts

S
Bw

+ 2n S
Bw

+ N
Ts

(22)

Therefore, in order to maximize the user service rate, it is necessary to make the
numerator of the fraction in Equation (22) as large as possible and the denominator as small
as possible. However, the parameters of sending rate Ts, bandwidth Bw, and frame length
N correspond to the communication technology and resources in the network, so these are
difficult to optimize and adjust. Thus, it can be concluded that the controllable parameter
is the transmitted data size S. In order to obtain ηmax, we need to minimize S.

Based on the aforementioned succinct analysis, the optimization problem addressed
in this paper can be formulated as follows:

max
Qmin

η

s.t.Accmax Q ≤ Accoriginal + 0.3

Accmin Q ≥ Accoriginal − 0.3

(23)

Due to the rapid development of vision devices, the quality of images obtained by
users in the IoV is becoming higher and higher, so the image compression algorithm is
introduced to minimize the size of the transmitted image data. However, for the object
detection module, high image compression may lead to a reduction in detection accuracy
and an increase in the recognition error rate. If the object detection requirements cannot
be met, the driving safety will be seriously affected. Therefore, while optimizing based
on the image compression algorithm, it is still necessary to meet the detection accuracy
requirements as the benchmark, not only to achieve a significant compression effect to
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maximize the user service rate, but also to meet the object detection requirements to ensure
traffic safety.

4.2. Optimization Analysis Based on JPEG Image Compression Technology

The JPEG compression algorithm is employed to compress image data, thereby saving
space and facilitating the faster transmission of a greater volume of image or video data
per unit time [23]. The compression ratio achieved by the JPEG compression algorithm
is unrivaled by other traditional compression algorithms. Furthermore, the resultant
image file size is significantly reduced, thereby greatly minimizing the volume of data
that require processing. This algorithm primarily consists of four steps: preprocessing,
image segmentation and discrete cosine transform (DCT), followed by quantization and
coding [24]. The detailed algorithmic flowchart is depicted in Figure 5.

Figure 5. JPEG compression steps.

Upon the transformation of the image into 8 × 8 pixel blocks, these blocks typically
exhibit low spatial frequency, indicating that the pixel values undergo gradual changes.
Consequently, the application of the DCT results in the concentration of energy in these pixel
blocks into specific low-frequency components. This approach not only eliminates data
redundancy but also enables more efficient compression processing. DCT implementation
is calculated as follows:

F(u, v) =
1
4

C(u)C(v)[
7

∑
x=0

7

∑
y=0

f (x, y) cos
(2x + 1)uπ

16
cos

(2x + 1)vπ

16
] (24)

where x, y, u, ν = 0, 1, · · · , 7,C(u), C(v) =

{
1√
2
, u, v = 0

1, else
.

Because the high-frequency component of the image is the detailed part of the image,
it has little effect on the whole. Therefore, quantization cannot only discard the information
in the image that does not affect the visual effect, but can also ensure image quality. In
this paper, the compression algorithm uses uniform quantization, according to the JPEG
brightness quantization table and chroma quantization table, and the transformed DCT
coefficients are divided by the corresponding compression quality factor, so as to achieve
the purpose of compression. The quantization formula is as follows:

F′
uv =

[
Fuv

Q

]
(25)

where F′
uν and Fuν are the DCT coefficients before and after quantization, Q is the compres-

sion mass factor (Q is an integer value between 0 and 100), and [·] represents rounding.
After this, the low frequency component is retained for Huffman coding, and the high
frequency component is removed to finally output the compressed result.
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Because the corresponding quantization table is different under different Q values,
the larger Q is, the smaller the quantization value is, that is, the smaller the loss is, and
the correspondingly compressed image occupies more space. Therefore, the nonlinear
mapping relationship between Q and the size of the image-occupied space can be obtained
as follows:

S ∝ f (Q) (26)

Taking the real test image dorms.jpg as an example, a comparison between the original
image and the image under different compression quality factors is shown in Figure 6. To
compare image quality more closely, we zoom in on the red-framed area of the image. It
can be seen that the image with a compression quality factor Q of 5 has obvious distortion
and independent pixel blocks compared with the original image. However, when the
compression quality factor Q is 50, there is almost no error between the image and the
original image, and high image quality is maintained.

Figure 6. dorm.jpg original and compressed image comparison.

The test images utilized in this paper are presented in Figure 7. Following compre-
hensive testing across the entire range of compression quality factors, the relationship
between the compression quality factor Q and the compression ratio r (where r represents
the ratio of the original image size to the compressed image size) is illustrated in Figure 8.
Furthermore, the results corroborate the validity of the positive nonlinear correlation as
delineated in Equation (26).

Figure 7. (a) dorm.jpg. (b) test1.jpg. (c) test2.jpg.

In the object detection module, this paper employs the Yolov5 object detection al-
gorithm, noted for its high precision, rapid processing speed, and broad applicability, to
accomplish precise vehicle identification, utilizing both public datasets and a specially
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selected test set for evaluation purposes. Yolov5s, a variant within the Yolov5 series, is
a single-stage target detection algorithm characterized by minimal network parameters,
while concurrently being optimized for speed and accuracy, making its detection speed
particularly well-suited for vehicle target detection scenarios [25].

Figure 8. Compression quality factor Q and compression ratio r relationship.

The schematic diagram of the Yolov5s object detection principle is shown in Figure 9,
and it mainly consists of three network layers: the backbone, neck, and head. The backbone
network layer is the main part of the convolutional neural network, used for extracting
image features; the neck layer is the module for feature fusion and dimension reduction;
and the head layer is the module used for predicting object categories and locations.

In this paper, the Yolov5s object detection framework is carried out in Python envi-
ronment, and network training and testing are deployed in the CPU environment. Thirty
street-view images in the training set are selected from the public data set, CBCL StreeScenes
Challenge Images. The test set is self-selected image data. In the performance evaluation
metrics for the Yolov5s object detection model, the most critical ones include precision,
recall, mAP@0.5, and mAP@0.5:0.95. Precision reflects the rate of false positives, with
higher precision indicating fewer false detections; recall reflects the rate of false negatives,
with higher recall indicating fewer missed detections; and mAP@0.5 and mAP@0.5:0.95
reflect the accuracy of detection under the Intersection over Union (IoU) thresholds. The
performance of the model after the final training is shown in Figure 10. It can be seen that,
after 150 iterations of the network, the indicators change slowly, and the average accuracy
mAP is 0.95, which basically meets the accuracy requirements for object detection and
recognition in this paper.

The trained model is used to detect and recognize the images of the test set, and the
resulting graph is the output. The detection accuracy of the original image is used as the
standard for subsequent judgment. The test set consists of three images, two of which are
randomly selected from the public data set, CBCL StreeScenes Challenge Images, and the
other is the image data of real scene shooting. The test results are shown in Figure 11.
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Figure 9. Yolov5s network schematic.

Figure 10. Yolo object detection model performance graph.

Figure 11. (a) dorm.jpg uncompressed test result. (b) test1.jpg uncompressed test result. (c) test2.jpg
uncompressed test result.

Consequently, provided that the detection accuracy remains unaffected, a higher
compression ratio proves increasingly beneficial for enhancing data transmission efficiency
and user service rates within the IoV. Subsequently, the study will focus on determining
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the maximum compression limit that does not compromise detection accuracy. Initially, the
recognition accuracy of all compressed image data is evaluated, employing different serial
numbers to distinguish various target vehicles in the test set images, as shown in Figure 12.
And observing and charting the relationship between the detection accuracy value Acc and
the compression quality factor Q, as shown in Figure 13.

Figure 12. (a) dorm.jpg vehicle serial number marking. (b) test1.jpg vehicle serial number marking.
(c) test2.jpg vehicle serial number marking.

Figure 13. (a) dorm.jpg Acc-Q diagram. (b) test1.jpg Acc-Q diagram. (c) test2.jpg Acc-Q diagram.

The results of the Acc-Q relationship chart were analyzed, and the red horizontal
line in each graph was the detection accuracy of the target vehicle in the original graph,
which was used as the benchmark for further analysis. On the whole, when the compressed
quality factor Q > 20, the detection accuracy of the vehicle basically fluctuates around
the detection accuracy of the original image. Compared with the data, it can be seen that
the floating range does not exceed 0.03 when the detection accuracy of the original image
is not reached. When the compressed quality factor Q < 20, the detection accuracy of
the target vehicle begins to decrease, and the phenomenon that the original target vehicle
cannot be identified appears, which cannot meet the basic needs of target detection. Under
different compression mass factors, the recognition accuracy of some target vehicles will be
improved compared with the original figure, as shown in Figure 13a. This is because JPEG
compression will eliminate the spatial redundancy information of the image, so that the
frequency information of the detection target is relatively prominent; thus, the detection
accuracy will be improved. Therefore, it can be determined that the compression limit
meeting the requirement of target detection accuracy is Q = 20.

Based on the above analysis, the optimization algorithm can be summarized as follows
(Algorithm 1).

Building upon the aforementioned analysis and the verification of simulation results,
the efficacy of integrating a compression module is thoroughly demonstrated. Subsequently,
Section 5 will present the simulation results and an analysis of the system optimization.
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Algorithm 1: User service rate maximization algorithm based on image com-
pression in IoV

Input: Input RGB image data image.jpg and the compression quality factor Q
Output: Output compression limit Qmin, maximum user service rate ηmax
% Detection and recognition of image target vehicle based on Yolo model
Detect (image.jpg);
Acc1 = results; % Save the detection accuracy results of the uncompressed image
Q = 0; % Initializes the compression quality factor
while(Q ≤ 100)
{
compression (‘image.jpg’, Q); %Compressed image corresponding to Q value
% Store the detection result under the corresponding Q value
Acc Q = results(image.jpg);
% Set the floating range of detection accuracy
If((Acc1 − 0.3) ≤ Acc[Q]||(Acc1 + 0.3) > Acc[Q])
{Q++;}
else
{Qmin=Q;
I = imfinfo (‘image.jpg’);% Read the image data under the compression limit
S = I.FileSize;
ηmax(S);% The maximum user service rate is calculated }
end
}

5. Simulation Results

Owing to the above analysis, the performance of the proposed optimization scheme is
further evaluated through simulation.

Based on Equation (16) in Section 3.2, when M is constant, we can conclude that
Nv ∝ N. Next, we assume that each time slot is used to transmit data of the same size. We
can establish the mathematical relationship as follows: E = N × S, where E represents the
total transmitted volume. We can therefore derive the mathematical relationship between
Nv and S as follows:

Nv = M
(

1 − S
E

)M−1
(27)

Based on Equation (26), the relationship between Nv and Q can be obtained as follows:

Nv α
1

f (Q)
(28)

By setting the total transmitted data amount E = 1 Mb, we can obtain the simulation
results shown in Figure 14. An analysis of the results presented in Figure 14 reveals that a
reduction in the compression quality factor, effectively increasing the compression ratio,
results in a higher average number of vehicles.

Based on the analysis of service rate in Section 3.2, JPEG compression algorithm is
added to optimize the user service rate. The optimization algorithm is shown in Algorithm 1.
According to Equation (22), set the transmission rate Ts = 80 Mbps and Bw = 100 Mbps;
the service rate of transmitting uncompressed original image data and sending compressed
image data can be compared, as shown in Figure 15, which mainly compares the service
rate when the compression quality factor is 20, 50, and 80. It can be seen from the results
that different Q values have different degrees of influence on the service rate. Since Q value
is proportional to the occupied space of the image, the smaller the Q value is, the smaller
the occupied space of the compressed image data is, and the more obvious the service rate
improvement is. Among them, the service rate of the test image dorm.jpg is increased by
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34% at most, and the service rate of the two test images, test1.jpg and test2.jpg, randomly
selected from the public data is increased by 11% at most.

Figure 14. The relationship between the average number of users Nv and the compression quality
factor Q.

Figure 15. (a) dorm.jpg comparison of user service rate under different compression quality fac-
tors; (b) test1.jpg comparison of user service rate under different compression quality factors; and
(c) test2.jpg comparison of user service rate under different compression quality factors.

Consequently, the resource optimization scheme that incorporates image compression
technology within an edge computing framework is utilized to compress the image data
prior to transmission, not only conserving data space but also significantly enhancing the
average number of users accessing the IoV as well as the user service rate.

6. Conclusions

This study investigated the resource optimization issue for object detection in the
IoV within the context of edge computing, aiming to enhance the service user rate and
more effectively meet real-world application demands. Initially, the paper analyzed the
system architecture both with and without edge computing, introducing the modules and
operational flow of the optimized system. Subsequently, a performance analysis model
for the AD HOC MAC protocol was established based on the Markov chain, elucidating
the positive mathematical correlation between the average service users Nv and the frame
length N. Additionally, this study explored the negative mathematical correlation between
the user service rate η and the data size S. Following this, we introduced an image com-
pression algorithm for further optimization. Utilizing the positively correlated nonlinear
mapping relationship between the compression quality factor Q and the data size S, adjust-
ments to Q values were made to facilitate image processing transmission under varying
compression ratios, subsequently deriving the negatively correlated nonlinear mapping
relationship between the user service rate η and the compression quality factor Q. Utilizing
the Yolov5s object detection model, an evaluation was conducted to ascertain whether the
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compression results satisfy the detection accuracy requirements, and the minimal com-
pression limit Qmin and the corresponding maximum user service rate ηmax under these
accuracy requirements were then derived. The conclusive optimization results demonstrate
that integrating edge computing with compression processing significantly enhances the
user service rate. Specifically, the service rate for open datasets sees an increase of up to
11%, while, for real-scene shooting data, the increase reaches up to 34%.

In future research, certain idealized conditions will be taken into account, including
an examination of the access performance of the AD HOC MAC protocol in a multi-hop
network environment, the enhancement of the accuracy of the target detection model, and
the impact on the service rate due to data collisions during information transmission.
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