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Abstract: The structure and topology of chemical compounds can be determined using chemical
graph theory. Using topological indices, we may uncover much about connectivity, complexity,
and other important aspects of molecules. Numerous research investigations have been conducted
on the K-Banhatti indices and entropy measurements in various fields, including the study of
natural polymers, nanotubes, and catalysts. At the same time, the Shannon entropy of a graph is
widely used in network science. It is employed in evaluating several networks, including social
networks, neural networks, and transportation systems. The Shannon entropy enables the analysis of
a network’s topology and structure, facilitating the identification of significant nodes or structures
that substantially impact network operation and stability. In the past decade, there has been a
considerable focus on investigating a range of nanostructures, such as nanosheets and nanoparticles,
in both experimental and theoretical domains. As a very effective catalyst and inert substrate, the
MgO nanostructure has received a lot of interest. The primary objective of this research is to study
different indices and employ them to look at entropy measures of magnesium oxide(111) nanosheets
over a wide range of p values, including p = 1, 2, 3, . . . , j. Additionally, we conducted a linear
regression analysis to establish the correlation between indices and entropies.

Keywords: K-Banhatti indices; magnesium oxide(111); topological indices

MSC: 05C92

1. Introduction

Chemical graph theory facilitates establishing a connection between the graphical
and chemical structure of molecules through quantitative structure-property relationships
and quantitative structure-activity relationships [1–3]. Due to the extensive production
growth in the chemical industry, the importance of chemical graph theory has increased.
Consequently, it is important to thoroughly analyze the chemical properties of these novel
medications and chemicals to utilize them effectively. A lot of research has been carried out
to determine how chemical properties like molecular structure, toxicity, melting point, and
freezing point are related [4,5].

The main goal of “quantitative structure-property relationships” and “quantitative
structure-activity relationships” is to examine the connections between molecular structures
and the properties or activities they have in different areas like medicine, pharmaceuticals,
medical research, rational drug design, and experimental science [6]. The researchers
analyzed different behaviors of chemical compounds in quantitative structure-property
relationships [7,8] through topological indices. Kirmani et al. [9] examined the different
topological variants and the physicochemical attributes of drugs employed in treating
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coronavirus. Hosseini and colleagues classify the degree-based indices according to their
predictive capacity [10]. The study conducted by Hosseini and Shafiei [10] investigated the
correlation between several chemical indices and thermodynamic properties.

The K-Banhatti indices and entropy measures are also very well-known indices to
study molecular graphs of compounds. These indices have been applied to analyze the
topological characteristics of natural polymers, such as cellulose networks [11]. Ghani et al.
looked into the entropies and K-Banhatti indices of C6H6 in various chemical networks [12].
The main goal of their study was to find out how the K-Banhatti indices work with other
molecules. V. R. Kulli developed the modified K-Banhatti indices [13,14]. Chaluvaraju
came up with the Zagreb version of the K-Banhatti index of a graph, which has been used
to study the topological properties of graphs [15]. Kiran Naz et al. studied the polycyclic
random chains and computed their multiplicative and hyper K multiplicative K Banhatti
indices [16]. The types of polycyclic chains that they studied include polyphenyl and spiro
chains. Hussain et al. [17] studied k Banhatti indices and entropy measures of rhodium (III)
chloride. Using the line-fit method, they conducted their research using linear regression
analysis and established the relationship between indices and entropy. Ref. [18] calculated
the M-polynomial of C3 and H6 nanosheets and computed some topological indices by
using M-polynomials. Ref. [12] calculated the precise values of K-Banhatti Indices of C6H6
by using atom-bond partitioning method based on valencies K-Banhatti indices provide
valuable information about the connectivity and complexity of graph structures. In the
context of MgO(111), understanding the topological properties of its molecular graph is
essential for predicting its behavior.

Along with studying the topological indices, researchers studied the entropy of these
indices to thoroughly study the behavior of molecules. The computation of indices and
entropy measures provides valuable insights into the structural and topological characteris-
tics of polymers. Entropy is a fundamental concept in various fields such as information
theory, thermodynamics, and statistical mechanics, and is important in understanding
the behavior and characteristics of systems. Mansoor et al. [11] looked into determining
molecular descriptors along with entropy measures for isomeric natural polymers. Shan-
non introduced the concept of entropy to quantify a system’s randomness and information
content. The mathematical formula of Shannon entropy is given as under:

Eϕ(M) = ∑
xy∈W(M)

ϕ(xy)
∑xy∈W(M)ϕ(xy)

log[
ϕ(xy)

∑xy∈W(M) ϕ(xy)
] (1)

Metal oxides are a significant category of materials with an extensive range of features,
including insulating, semiconducting, and conducting characteristics. These materials have
been utilized in several fields, including technological devices, personal care products,
and catalysts. One case is the typical rock salt configuration of bulk MgO (magnesium
oxide), which serves various purposes. MgO is a diamagnetic oxide with ionic properties,
exhibiting insulating behavior. It possesses a significant band gap of 7.8 eV; this material is
inert and has an extremely high melting point.

Additionally, it accelerates chemical reactions and offers a suitable base for various
chemicals, including group III-V elements, metals, and high-pressure superconductors.
Because of its non-toxic and ecologically favorable properties, it is extensively employed as
a sorbent for eliminating dyes and metallic substances. It can also be utilized as an optical
material and constituent of optical composites [19,20]. In the past decade, there has been a
significant focus on investigating a range of nanostructures, such as nanosheets, nanowires,
nano-belts, and nanoparticles, in both experimental and theoretical domains [19,21,22]. As
of now, the effective synthesis of MgO thin films with two distinct facets, namely (111)
and (100), has been achieved. As a very effective catalyst and inert substrate, the MgO
nanostructure received a lot of interest [23]. Magnesium oxide nanosheets, which have a
band gap between 2.75 and 4.38 eV, could be very useful in UV-electronic devices on the
nanoscale level.
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Understanding MgO(111)’s structural and topological properties is crucial for predict-
ing its behavior and optimizing its performance in different applications. By representing
the crystal structure of Magnesium oxide as a graph, it is possible to analyze its connectivity,
complexity, and other topological characteristics. Topological indices of MgO(111) can
be used to quantify its structural features and predict its properties [24]. This study aims
to investigate the characteristics of magnesium oxide(111) nanosheets across a range of p
values, encompassing p = 1, 2, 3, . . . , j.

2. Preliminaries and Mathematical Framework

Chemical graph theory involves the representation of a molecule as a graph, where the
atoms are denoted as vertices, and the bond between atoms is represented by as an edge. The
graph M is an improvised representation of a magnesium oxide (111) nanosheet molecule.
The symbol X denotes the vertex set, whereas W is the edge set representing the atoms and
the bond between them, respectively. The cardinality of X in a graph is commonly referred to
as the order, whereas the total edges represent the size of the graph. The chemical networks
consist of nodes, represented by x and y, and are connected by edges labeled as w = xy.
The vertex x degree is represented by d(x) and indicates the total edges connected to that
vertex. Recently, an innovative concept of the edge degree has been introduced, denoted as
d(e) = d(x) + d(y)− 2. The maximum degree of the graph can be represented by ∆(M) and
δ(M), κ(x) = ∆(M) + δ(M)− d(x) and r(x̄) = ∆(M) + δ(M)− d(x). Table 1 contains the
formulas of all the indices under consideration.

Table 1. Topological Indices.

Indices Notations- Formula

The first K-Banhatti Index [14] B1(M)- ∑xw[d(x) + d(e)]
The second K-Banhatti Index [14] B2(M)- ∑xw[d(x) · d(e)]
The first K hyper-Banhatti Index [25] HB1(M)- ∑xw[d(x) + d(e)]2

The second K hyper-Banhatti Index [25] HB2(M)- ∑xw[d(x) · d(e)]2

The K-Banhatti harmonic Index [26] Hb(M)- ∑xw[
2

d(x)+d(e) ]

The first hyper Revan Index [25] ηR1(M)- ∑w=xy[κ(x) + κ(y)]2

The second hyper Revan Index [25] ηR2(M)- ∑w=xy[κ(x) · κ(y)]2

The third Revan Index [26] ηR3(M)- ∑w=xy[κ(x)− κ(y)]
The first Revan vertex Index [26] R1(M)- ∑w=xy[κ(x̄)]2

Various methodologies are employed to calculate the results, including vertex and
edge division and combinatorial techniques. The indices associated with degrees are
computed manually utilizing a simple calculator, and the results’ reliability is validated
using Python. The chemical structures of magnesium oxide are constructed using Chem-
Draw. The molecular graph of magnesium oxide (111) is given in Figure 1.

Figure 1. Molecular Graph of MgO(111).
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The Magnesium Oxide MgO(111) nanosheet has order 2(4p2 + 4p + 1) and size
12p2 + 8p + 1. The vertex set is divided into three categories (or subsets) X1, X2, X3 de-
pending upon their degrees given in Table 2.

Table 2. Vertex Division of MgO(111).

d(x) Cardinality- r(x̄)

X1 2- 3
X2 8p- 2
X3 8p2- 1

The edge set of MgO(111) has 4 categories W1, W2, W3, W4 depending upon the de-
grees of their end vertices that are given in Table 3. W1 has two edges where d(x) = 1
and d(y) = 3. W2 has two edges where d(x) = 2 = d(y). W3 with d(x) = 2 and d(y) = 3
contains 4(4p − 1) edges. W4 contains 4p(3p − 2) + 1 edges where d(x) = d(y) = 3.

Table 3. Edge Division of MgO(111).

Edges (d(x), d(y)) Frequency d(e) κ(x) κ(y)

W1 (1,3) 2 2 3 1
W2 (2,2) 2 2 2 2
W3 (2,3) 4(4p − 1) 3 2 1
W4 (3,3) 4p(3p − 2) + 1 4 1 1

3. Results and Discussion

We computed the K-Banhatti and Revan indices using multiple approaches, such
as vertex degree analysis and edge partitioning. Following that, we calculated entropy
utilizing these indices. Python has been used for result validation and correlation analysis.
By employing the data shown in Tables 3 and 4, we can compute K-Banhatti indices, as
given below.

• The first K-Banhatti Index

B1(M) = ∑
xw
[d(x) + d(e)]

= 2[(1 + 2) + (3 + 2)] + 2[(2 + 2) + (2 + 2)] + 4(4p − 1)

[(2 + 3) + (3 + 3)] + (4p(3p − 2) + 1)[(3 + 4) + (3 + 4)]

= 32 + 44(4p − 1) + 56p(3p − 2) + 14

= 168p2 + 64p + 2

• The second K-Banhatti Index

B2(M) = ∑
xw
[d(x)× d(e)]

= 2[(1 × 2) + (3 × 2)] + 2[(2 × 2) + (2 × 2)] + 4(4p − 1)

[(2 × 3) + (3 × 3)] + (4p(3p − 2) + 1)[(3 × 4) + (3 × 4)]

= 32 + 32 + 15(16p − 4) + 46p(3p − 2) + 96

= 288p2 + 48p + 68
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• The first hyper K-Banhatti Index

HB1(M) = ∑
xw
[d(x) + d(e)]2

= 2[(1 + 2)2 + (3 + 2)2] + 2[(2 + 2)2 + (2 + 2)2] + 4(4p − 1)

[(2 + 3)2 + (3 + 3)2] + (4p(3p − 2) + 1)[(3 + 4)2 + (3 + 4)2]

= 132 + 244(4p − 1) + 98[4p(3p − 2) + 1]

= 1176p2 + 192p − 14

• The second hyper K-Banhatti Index

HB2(M) = ∑
xw
[d(x)× d(e)]2

= 2[(1 × 2)2 + (3 × 2)2] + 2[(2 × 2)2 + (2 × 2)2] + 4(4p − 1)

[(2 × 3)2 + (3 × 3)2] + (4p(3p − 2) + 1)[(3 × 4)2 + (3 × 4)2]

= 74 + 468(4p − 1) + 288[4p(3p − 2) + 1]

= 3456p2 − 432p − 36

• The K-Banhatti harmonic Index

Hb(M) = ∑
xw
[

2
d(x) + d(e)

]

= 2[
2

(1 + 2)
+

2
(3 + 2)

] + 2[
2

(2 + 2)
+

2
(2 + 2)

] + 4(4p − 1)

[
2

(2 + 3)
+

2
(3 + 3)

] + (4p(3p − 2) + 1)[
2

(3 + 4)
+

2
(3 + 4)

]

=
62
15

+
44
15

(4p − 1) +
p
7
(3p − 2) +

4
7

=
48p2

7
+

752p
105

+
62
35

• The first hyper Revan Index

ηR1(M) = ∑
w=xy

[κ(x) + κ(y)]2

= 2(3 + 1)2 + 2(2 + 2)2 + 4(4p − 1)(2 + 1)2

+ [4p(3p − 2) + 1](1 + 1)2

= 32 + 32 + 36(4p − 1) + 4[4p(3p − 2) + 1]

= 48p2 + 112p + 32

• The second hyper Revan Index

ηR2(M) = ∑
w=xy

[κ(x)× κ(y)]2

= 2(3)2 + 2(2 × 2)2 + 4(4p − 1)(2 × 1)2

+ [4p(3p − 2) + 1](1 × 1)2

= 18 + 32 + 16(4p − 1) + [4p(3p − 2) + 1]

= 12p2 + 56p + 35
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• The third Revan Index

ηR3(M) = ∑
w=xy

[κ(x)− κ(y)]

= 2(3 − 1) + 2(2 − 2) + 4(4p − 1)(2 − 1)

+ [4p(3p − 2) + 1](1 − 1)

= 16p

• The first Revan Vertex Index

R1(M) = ∑
w=xy

[r(x̄)]2

= 2(3)2 + 8p(2)2 + 8p2(1)2

= 8p2 + 32p + 18

Upon assessing Table 4 and Figure 2, it becomes clear that the expansion rate of the
B1(M) index is significantly higher than that of the B2(M) index as p increases. Moreover,
it is noticeable that when the value of p increases, the growth rate of the HB2(M) index
surpasses that of HB1(M). Moving on, it can be observed that as p increases, the R1(M)
index grows far faster than Hb(M). Similarly, the ηR1(M) index grows faster than the
ηR2(M) and ηR3(M) indices as p increases. ηR3(M) shows a very steady increase.

Table 4. K-Banhatti and Revan indices of MgO(111).

p B1(M) B2(M) HB1(M) HB2(M) Hb(M) ηR1(M) ηR2(M) ηR3(M) R1(M)

1 234 404 1354 2988 15.790 192 103 16 58
2 802 1316 5074 12,924 43.523 448 195 32 114
3 1706 2804 11,146 29,772 84.971 800 311 48 186
4 2946 4868 19,570 53,532 140.133 1248 451 64 274
5 4522 7508 30,346 84,204 209.00 1792 615 80 378
6 6434 10,724 43,474 121,788 291.6 2432 803 96 498
7 8682 14,516 58,954 166,284 387.90 3168 1015 112 634
8 11,266 18,884 76,786 217,692 497.92 4000 1251 128 786
9 14,186 23,828 96,970 276,012 621.65 4928 1511 144 954
10 17,442 29,348 119,506 341,244 759.10 5952 1795 160 1138

Figure 2. Graphical Representation of K-Banhatti and Revan Indices.
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4. K-Banhatti Entropy and Linear Regression Analysis

In this section, the results of the entropy of the indices are given, along with the
discussion on corresponding numerical outcomes. In addition, we include visualizations of
topological indices for different parameter values. The following entropy values are found
using the above-estimated indices and the values from Table 3 in Equation (1).

• The first K-Banhatti entropy

EB1 = log(B1)−
1
B1

log[ ∏
xy∈W(M)

(d(x) + d(e))(d(x)+d(e))]

EB1 = log(168p2 + 64p + 2)− log(2 × (8)8)

168p2 + 64p + 2
− log(2 × (8)8)

168p2 + 64p + 2

− log(4(4p − 1)× (11)11)

168p2 + 64p + 2
− log((4p(3p − 2) + 1)× (14)14)

168p2 + 64p + 2

• The second K-Banhatti entropy

EB2 = log(B2)−
1
B2

log[ ∏
xy∈W(M)

(d(x)× d(e))(d(x)×d(e))]

EB2 = log(288p2 + 48p + 68)− log(2 × (8)8)

288p2 + 48p + 68
− log(2 × (8)8)

288p2 + 48p + 68

− log(4(4p − 1)× (15)15)

288p2 + 48p + 68
− log((4p(3p − 2) + 1)× (24)24)

288p2 + 48p + 68

• The first hyper K-Banhatti entropy

EHB1(M) = log(HB1(M))− 1
HB1(M)

log[ ∏
xy∈W(M)

((d(x) + d(e))2)(d(x)+d(e))2
]

EHB1(M) = log(1176p2 + 192p − 14)− log(2 × (34)34)

1176p2 + 192p − 14

− log(2 × (32)32)

1176p2 + 192p − 14
− log(4(4p − 1)× (61)16)

1176p2 + 192p − 14

− log((4p(3p − 2) + 1)(98)98)

1176p2 + 192p − 14

• The second hyper K-Banhatti entropy

EHB2(M) = log(HB2(M))− 1
HB2(M)

log[ ∏
xy∈W(M)

((d(x)× d(e))2)(d(x)×d(e))2
]

EHB2(M) = log(3456p2 − 432p − 36)− log(2 × (40)40)

3456p2 − 432p − 36

− log(2 × (32)32)

3456p2 − 432p − 36
− log(4(4p − 1)× (117)117)

3456p2 − 432p − 36

− log((4p(3p − 2) + 1)× (288)288)

3456p2 − 432p − 36
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• The K-Banhatti harmonic entropy

EHb(M) = log(Hb(M))− 1
Hb(M)

log[ ∏
xy∈W(M)

(
2

d(x) + d(e)
)
( 2

d(x)+d(e) )]

EHb(M) = log(6.857p2 + 7.162p + 1.77)−
log(2 × ( 16

15 )
16
15 )

6.857p2 + 7.162p + 1.77

− log(2 × (1)1)

6.857p2 + 7.162p + 1.77
−

log(4(4p − 1)× ( 11
15 )

11
15 )

6.857p2 + 7.162p + 1.77

−
log((4p(3p − 2) + 1)× ( 4

7 )
4
7 )

6.857p2 + 7.162p + 1.77

• The first hyper Revan entropy

EηR1(M) = log(ηR1(M))− 1
ηR1(M)

log[ ∏
xy∈W(M)

((κ(x) + κ(y))2)(κ(x)+κ(y))2

EηR1(M) = log(48p2 + 112p + 32)− log(2 × (16)16)

48p2 + 112p + 32

− log(2 × (16)16)

48p2 + 112p + 32
− log(4(4p − 1)× (9)9)

48p2 + 112p + 32

− log((4p(3p − 2) + 1)× (4)4)

48p2 + 112p + 32

• The second hyper Revan entropy

EηR2(M) = log(ηR2(M))− 1
ηR2(M)

log[ ∏
xy∈W(M)

((κ(x)× κ(y))2)(κ(x)×κ(y))2

EηR2(M) = log(12p2 + 56p + 35)− log(2 × (9)9)

12p2 + 56p + 35

− log(2 × (16)16)

12p2 + 56p + 35
− log(4(4p − 1)× (4)4)

12p2 + 56p + 35

− log((4p(3p − 2) + 1)(1)1)

12p2 + 56p + 35

• The third Revan entropy

EηR3(M) = log(ηR3(M))− 1
ηR3(M)

log[ ∏
xy∈W(M)

(κ(x)− κ(y))(κ(x)−κ(y))]

EηR3(M) = log(16p)− log(2 × (2)2)

16p
− log(2 × (0)0)

16p

− log(4(4p − 1)× (1)1)

16p
− log((4p(3p − 2) + 1)× (0)0)

16p



Mathematics 2024, 12, 561 9 of 11

• The first Revan vertex entropy

ER1(M) = log(R1(M))− 1
R1(M)

log[ ∏
xy∈W(M)

((r(x̄))2)(r(x̄))2
]

ER1(M) = log(8p2 + 32p + 18)− log(2 × (9)9)

8p2 + 32p + 18

− log(8p × (4)4)

8p2 + 32p + 18
− log(8p2 × (1)1)

8p2 + 32p + 18

Upon assessing Table 5 and Figure 3, it becomes clear that the expansion rate of the
EB1(M) index and the EB2(M) index shows almost same growth as p increases. Similarly,
it is noticeable that when the value of p increases, the growth rate of the EHB2(M) index
surpasses that of EHB1(M).

Table 5. Entropy of K-Banhatti and Revan indices of MgO(111).

p EB1(M) EB2(M) EHB1(M) EHB2(M) EHb(M) EηR1(M) EηR2(M) EηR3(M) ER1(M)

1 5.019 5.616 6.655 7.181 2.442 4.634 3.904 2.343 3.540
2 6.556 7.062 8.383 9.276 3.595 5.831 4.873 3.165 4.453
3 7.379 7.881 9.251 10.218 4.334 6.530 5.484 3.642 5.045
4 7.951 8.457 9.843 10.842 4.870 7.02 5.933 3.972 5.487
5 8.392 8.902 10.295 11.311 5.290 7.42 6.289 4.223 5.842
6 8.752 9.265 10.662 11.689 5.636 7.744 6.586 4.426 6.139
7 9.056 9.571 10.971 12.006 5.930 8.020 6.841 4.595 6.395
8 9.319 9.837 11.238 12.279 6.185 8.262 7.065 4.741 6.620
9 9.552 10.071 11.474 12.519 6.412 8.476 7.265 4.868 6.822
10 9.760 10.281 11.684 12.733 6.615 8.670 7.446 4.982 7.004

Figure 3. Graphical Representation of Entropy of Banhatti and Revan Indices.

Moving on, it can be observed that as p increases, the EHb(M) index grows far faster
than ER1(M). Similarly, the EηR1(M) index grows faster than the EηR2(M) and EηR3(M) indices
as p increases. EηR3(M) shows a very steady increase.

This section explores the correlation between K-Banhatti and Revan indices and the
corresponding entropy values. Academic researchers heavily depend on graphical and
computational representations of their findings to optimize efficiency and reduce the need
for costly laboratory procedures. The current investigation employed a particular research
methodology to analyze the correlation between the advancement of entropy and many
other variables. Linear regression is employed to assess the relationship between entropy
and the indices. This methodology entailed the manipulation of fundamental factors. The
analysis’s performance was evaluated using the RMSE. The simulations were performed
utilizing Microsoft Excel software. The coefficients are displayed in Table 6.
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Table 6. Linear Regression Analysis of Entropy of K-Banhatti and Revan indices of MgO(111).

EI(M) a b RMSE

EB1(M) 1.43 12.40 1.11
EB2(M) 1.43 12.94 1.11
EHB1(M) 1.44 14.34 1.12
EHB2(M) 1.45 15.40 1.15
EHb(M) 1.41 9.24 1.07
EηR1(M) 1.38 11.23 1.03
EηR2(M) 1.34 9.92 0.96
EηR3(M) 0.86 6.36 0.443
ER1(M) 1.34 9.50 0.97

5. Conclusions

We calculated the K-Banhatti indices in this article. We derived analytical formulas
by generalizing the K-Banhatti topological descriptors of MgO(111). Subsequently, we
utilize our results in entropy equations to determine the entropies of K-Banhatti indices of
MgO(111). The transition state of MgO(111) undergoes a significant rise as the p increases,
resulting in the most substantial modification in entropy. This research employed linear
regression to evaluate the relationship between entropy and the K-Banhatti index. To
evaluate the precision of our findings, we utilized statistical metrics such as RMSE. Based
on the findings of the analysis carried out, it has been seen that the third Revan index
constantly yields the most favorable and progressively improving results. This may be
attributed to its higher accuracy regarding the root mean square error (RMSE). The results
were reported in both numerical and graphical formats. If the experimental values of the
physical properties of MgO(111) are known, it is easy to verify which one of these indices
is better for predicting the corresponding physical properties of MgO(111).
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