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Abstract: The Burnside problem, formulated by W. Burnside in 1902, is one of the most well-known
and important open questions in the field of Group Theory. Despite significant progress made in the
past century towards solving this problem, its complete solution remains unknown. In this paper,
we investigate one of the approaches to solving the Burnside problem based on the application of
an iterative theory of small cancellations and canonical forms developed by E. Rips in recent years.
We present a novel self-contained exposition of this theory and utilize it to obtain new estimates on
the infiniteness of initial approximations of Burnside groups where only a finite number of periodic
relations is used for relatively small odd exponents (n > 120).
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1. Introduction
1.1. A Brief History of the Burnside Problem

The Burnside problem is a question in Group Theory that was originally formulated by
W. Burnside in 1902 [1] and has since become one of the most well-known open problems in
the field (quoting [2], “the comparison suggests itself of the influence of the Burnside prob-
lem on combinatorial group theory with that of Fermat’s last theorem on the development
of algebraic number theory”). In the last century, several modifications as well as alternative
formulations of the problem have been suggested and extensively studied (for a survey of
some of them, see, e.g., [3,4]). Despite the remarkably concise and natural formulation of
the original problem, its complete solution remains unknown, although significant progress
in this area has been achieved.

Let us state here the original problem posed by W. Burnside. Consider the free group
generated by m symbols, denoted by a1, . . . , am. Now, for each word x in this alphabet
(that is, for each element of the group), we impose the relation xn = e, where e is the
identity element. The quotient group obtained after imposing all such relations is called
the Burnside group of rank m and exponent n, denoted by B(m, n).

The Burnside problem is the question of the finiteness of B(m, n) for a given m and
n. Alternatively, we can ask about the finiteness of any group G generated by m elements,
in which every g ∈ G satisfies the relation gn = e. It is clear that such a formulation of the
problem is equivalent to the original one, as every such group is a factor group of B(m, n).

In 1902, Burnside himself proved (see [1], where the problem was originally formu-
lated) that Burnside groups of exponent 3, that is, B(m, 3), are finite for m ≥ 2. He also made
some progress regarding the finiteness of linear (matrix) groups with similar relations [5],
a problem which was later fully solved by I. Schur [6]. In 1940, Sanov (see [7]) proved the
finiteness of B(m, 4). Then, after another 18 years, in 1958, the finiteness of B(m, 6) was
established (by M. Hall [8]). This essentially exhaustively covers positive results in this
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area. Thus, the question of the finiteness of B(m, n) for other small values of the exponent,
including 5, remains open.

On the other hand, in 1965 E. S. Golod proved that the analog of the Burnside group of
an unbounded exponent can indeed be infinite [9]. Other ingenious examples of constructing
infinite finitely generated groups with similar properties (i.e., each element is periodic,
but the exponent of the group is unbounded) can be found in [10–12].

Nevertheless, the most significant progress in resolving the Burnside problem was
achieved by P. S. Novikov and S. I. Adian, who, in a series of joint works [13], proved that
the group B(m, n) is infinite for all odd n > 4381 and m ≥ 2. They accomplished this result
by introducing a new generalization of small cancellation theory (see Section 2.1), which
allowed them to consider the structure of relations in Burnside groups as a graded set,
where within each rank, the relations satisfy the small cancellation condition. The direct
proof of the result relied on a simultaneous inductive proof of more than a hundred related
statements that established the necessary conditions for all ranks simultaneously.

It is worth noting that this work has since been recognized as “possibly the most
difficult-to-read mathematical paper ever written” [14]. Furthermore, Adian later managed
to lower the bound on the exponent from 4381 to 665, proving the infiniteness of B(m, n)
for all odd n > 665 [15]. This result essentially provided technical refinements to the
previous work, including more precise estimates of various parameters. Currently, these
results represent the best-known estimates in this field, despite ongoing research. See,
for example, the lecture by A. Atkarskaya [16], where she explores potential methods for
further reducing the existing bounds, and also a recent preprint of a paper by A. Atkarskaya,
E. Rips, and K. Tent [17].

In addition to P. S. Novikov and S. I. Adian, A. Y. Ol’shanski also worked on the
Burnside problem—approaching it from a more geometric standpoint stemming from
the analysis of van Kampen diagrams. His results are presented in the book [18]. It
should be noted that despite the more intuitive nature of this approach, Ol’shanski’s final
estimates were significantly weaker than the already known estimates by Novikov and
Adian (specifically, in [18], the infiniteness of B(m, n) is proven for odd n > 1010).

Finally, much later (starting from 1982), E. Rips developed an alternative theory by
working with iterative small cancellation theory (Refs. [19,20] and subsequent articles by
the authors, such as [17,21]). This theory was based on his development of canonical forms
for hyperbolic groups in the sense of Gromov [22]. In this work, we directly employ the
apparatus developed by Rips and apply it to an analysis of Burnside groups as well as
approximations of these groups obtained by factoring only by relations of a finite number
of lower ranks (further elaborated on later).

A more detailed historical overview along with a deeper survey of the current state of
this field can be found in the review by S. Adian [23], which also attempts to informally
explain the essence of the inductive argument used by Adian and P. Novikov to prove the
infiniteness of Burnside groups.

1.2. Goals and Objectives of the Present Paper

One of the planned goals of this project is the analysis of Burnside groups and other
similar algebraic structures, including the use of computer methods. It can be observed
that, especially in light of the recent advancements made by E. Rips [17], the analysis of
these structures allows for a natural formulation in a “computer” or algorithmic language.

We present several intuitive justifications for our confidence in obtaining results in
this area through computer analysis:

• Generalizations of small cancellation conditions (see Section 2.1) for Burnside groups
allow for efficient algorithmic solutions to the word problem in these groups.

• Relations in Burnside groups enable the introduction of a graded structure, which
allows for an iterative approximation of B(m, n) as a sequence of nested groups that
introduce more and more relations. Each of these groups has only a finite number of
relations, which can be effectively described for computer analysis.
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• The apparatus of canonical forms developed by E. Rips provides a direct algorithm for
constructing the canonical form of each word. Working with these canonical forms sig-
nificantly simplifies the structure of the resulting Van Kampen diagrams. Although this
theory does not initially involve manual (and rather laborious) computation of these
forms, this approach is very natural and convenient for computer processing.

A preliminary step for working in this direction is the study, formalization, and rigor-
ous presentation of the theory of canonical forms developed by Rips. The most substantial
part of this work (Section 3) in terms of both volume and content is dedicated to this task.
The size of this section may appear excessive, but it is necessary because the subsequent
analysis will be based on the considerations described here, and therefore it is important to
provide a sufficiently complete and rigorous exposition of the underlying theory.

Since the first nontrivial case that requires serious analysis is the restriction of relations
to the first two ranks, the second task accomplished in this work is to refine Rips’ estimates
in the case when relations in the group are divided into ranks 1 and 2 (see Section 4).
From the theory developed in Section 3.3, we obtain, for example, the result of the infinite-
ness of the Burnside group when considering only the first two ranks of relations, even
for relatively small exponents (odd n > 120). This result firstly serves as evidence of the
potential of this theory for analyzing approximations of Burnside groups, and secondly, it
significantly limits the number of cases requiring more detailed analysis.

Finally, in the last section (Section 5), we present some plans for further research.

2. Preliminaries

A part of this paper, which is dedicated to the exposition of previous advancements in
this field upon which our work relies as well as other preliminary information, consists of
two main sections that significantly differ in complexity and the nature of the presented
material. In this section, we provide a brief (and quite informal) introduction to the so-
called small cancellation theory. This area of geometric group theory was developed
independently of the Burnside problem (and consequently has other applications; see,
e.g., [24]), yet almost all progress achieved in the analysis of the structure of B(m, n) for
large exponents has been based on considerations stemming from this theory. Therefore,
we consider it necessary to present here a concise overview of some of its basic ideas
and propositions.

The second part of what formally constitutes the preliminary information (Section 3,
the iterative small cancellation theory by E. Rips) represents an exposition of the generaliza-
tion as well as an alternative approach to the small cancellation theory developed by E. Rips.
This exposition allows for a substantial simplification of the inductive analysis of Burnside
groups. Although a significant part of this theory is presented in the publication [20]
and later in [17,21], the latest advancements and concepts formulated by Rips have not
been published yet.

Therefore, we deem it reasonable to include this text in a separate section since,
despite the fact that these facts are already known (albeit to an extremely narrow circle of
individuals), as far as the authors of this paper is aware, this text represents the first written
and self-contained presentation of Rips’ perspective formulated in this course. Hence, we
consider the appearance of this exposition as one of the results of this work.

2.1. Small Cancellation Theory

Small cancellation theory is a branch of geometric group theory that studies groups
satisfying the so-called small cancellation condition. Informally formulated as “distinct
relations do not contain overly long common subwords”, this condition allows for a series
of statements about the hyperbolic structure of Van Kampen diagrams in such groups
(see [25] for the earliest exposition of these ideas). Consequently, it enables the application
of geometric methods to prove, for example, the solvability of the word problem in these
groups. One of the best expositions of this theory, according to the authors of this paper,
can be found in the book by A. Y. Ol’shanskii [18].
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Small cancellation theory plays a key role in all known methods of obtaining estimates
for the infiniteness B(m, n) for large exponents and is based on its generalization and
iterative application.

In this section, we provide a brief introduction sufficient for understanding this
work, omitting almost all proofs. Additionally, in several places where it does not affect
the comprehension of the overall picture but facilitates the construction of an intuitive
understanding of this field, we intentionally allow some imprecision in our definitions,
guided by ease of understanding. Of course, rigorous definitions and proofs can be found
in any textbook covering this branch of group theory, such as [18].

Let us consider a group G generated by a (finite) set of elements A =
{

a1, . . . , am
}

. If G
is not free, there exist relations between the elements ai: words in the alphabet A ⊔ A−1 that
equal e in G (often denoted simply as 1 in the group G). For example, Z2 can be regarded
as a group generated by symbols a1, a2 with a single relation a1a2a−1

1 a−1
2 .

Naturally, it is not necessary to explicitly specify all relations in a group. Typically, it
is sufficient to specify a small subset from which all the others necessarily follow. More
precisely, we provide the following definition:

Definition 1. A relation w follows from relations v1, . . . , vn if and only if there exist words
u1, . . . , un such that

w = u−1
1 v±1

1 u1 · u−1
2 v±1

2 u2 · . . . · u−1
n v±1

n un.

It is clear that this constructive definition is equivalent to w = 1 in any group G
satisfying relations v1, . . . , vn.

However, thus far we have not directly addressed the small cancellation condition.
To introduce it, we formulate another equivalent way of looking at relations and the
deducibility of one relation from others.

Recall that a Van Kampen diagram over a group G is a planar directed graph, where
each edge is labeled with a generator ai, and for each cell in the graph, the word obtained
by reading its boundary is one of the generated relations. Here, reading the boundary
means concatenating the generators written on the edges of the boundary, where whenever
an edge is traversed in the opposite direction, the generator is included in the word with a
negative exponent.

Lemma 1 (Van Kampen Lemma). A relation w follows from relations v1, . . . , vn if and only if
there exists a Van Kampen diagram over G where the boundaries of each cell yield cyclic shifts of the
words vi or their inverses and the outer boundary of the entire diagram yields the word w.

To provide an intuitive justification for this lemma, we think the following example
(Figure 1) is best suited (adapted from [26]):

Figure 1. Simple Van Kampen diagram in group Z2 generated by x and y with the relation [x, y] = 0.
Blue arrows stand for x, and green arrows stand for y.
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On the left in the figure above, we can see a “geometric” derivation of the word
x−2y−2x2y2 from the defining relation [x, y] = x−1y−1xy. On the right, we can see the
decomposition of that Van Kampen diagram, which corresponds to the algebraic derivation:

x−2y−2x2y2 = (x)−1[x, y](x)(yx)−1[x, y](yx)[x, y](y)−1[x, y](y)

The formal proof of the Van Kampen lemma in its essence consists of the formalization of
this “decomposition of a diagram” operation.

For a somewhat more interesting example, let us consider the following diagram (see
Figure 2).

Figure 2. Van Kampen diagram arising in the proof of finiteness of B(2, 3). Again, blue arrows stand
for x and green ones for y, but this time, the relations are of the form g3 = e.

Each cell in this diagram corresponds to the relation w3 = 1, where w is equal to either
x, y, or x−1y. The outer boundary gives us the relation [[x, y], y] = 1. The deduction of this
relation is a key step in proving the finiteness of the group B(n, 3) of Burnside exponent 3
(see [1]).

The theory of small cancellations connects the algebraic nature of relations in groups
with the geometric language of Van Kampen diagrams. Here and further, we fix a set of
relations R. We assume that this set is closed under taking inverses and cyclic shifts.

We call a piece a word w that is part of two distinct relations in R. Formally, this means
that there exist relations R1, R2 ∈ R such that R1 = wr1, R2 = wr2. Finally, we say that
G = ⟨A|R⟩ satisfies the small cancellation condition C′(λ) if for every piece w and every
relation R containing it, we have |w| < λ|R|.

Intuitively, this condition asserts that any two generated relations in our group differ
from each other sufficiently (they do not have long common subwords), and thus, each cell
in the Van Kampen diagram has many (at least 1

λ ) neighbors.
Finally, we can state one of the main results in this area [27].

Theorem 1 (Greendlinger’s Lemma). If R satisfies the condition C′( 1
6 ) and the (cyclically

reduced) relation w = 1 follows from R, then there exists a cyclic shift w̄ of w denoted by w̄ and a
relation r ∈ R for which the common prefix u of the words w̄ and r has length |u| > 1

2 |r|.

Although this result may appear quite technical, its importance is hard to overestimate.
Indeed, Theorem 1 enables us to construct a greedy algorithm that solves the word equality
problem in G. To see how this becomes possible, note that it suffices for us to be able to
check whether a given word w equals 1 in G. However, if w = 1, then by Greendlinger’s
lemma, we can find a relation R for which more than half of R occurs as a subword u in w.
If R = us, then we can replace u with s−1 and reduce the resulting word. The length of the
word w will then decrease, and the claim is then proved by an inductive argument.

This algorithm is known as the Dehn algorithm (for a thorough treatment of these ideas,
see [28,29]), and its existence for groups with small cancellations is one of the reasons that
makes their study interesting.
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Let us finish this section off by noting that the constant 1
6 in the Greendlinger’s lemma

above is exact—that is, for each constant λ > 1
6 , we can construct a group satisfying C′(λ)

and a Van Kampen diagram in that group that does not satisfy Greendlinger’s lemma
statement. To illustrate this point, consider the condition C′( 1

5 ) and the following diagram
(this example is adapted from [26]):

Indeed, every cell in Figure 3 has a perimeter of at least 10, and every piece has length
of 2. Still, we can derive from these relations a word of length 2 (by applying Lemma 1 to
the diagram in Figure 3), which would clearly contradict Lemma 1.

Figure 3. Van Kampen diagram in the group satisfying C′( 1
5 ) with a perimeter of just 2, which

contrasts with the statement of Lemma 1.

3. Iterative Small Cancellation Theory by E. Rips

In this section, we provide a brief self-contained exposition of the iterative small
cancellation theory developed by E. Rips starting from [20] (1997) and further developed
in subsequent works [17,21]. However, only a part of the constructions presented in the
following subsections has been formally described by Rips in his publications. The remain-
ing part of his results has not been published and was presented in a lecture course given
by Rips at Tel Aviv University [30]. Since the notes from these lectures have only recently
(with the direct involvement of A. Kanel-Belov and, to a lesser extent, the authors of this
work) become publicly available, this work presents these materials in written form for the
first time. It should be noted that the course given by Rips was quite informal and consisted
mainly of intuitive explanations sufficient for subsequent rigorous development of the
underlying theory. Therefore, understanding and rigorously proving his results, as well as
their written exposition in this work, are, firstly, an important part of the progress in the
field of the Burnside problem and generalizations of small cancellation theory in general
and, secondly, a significant result of this work itself.

3.1. Diagrams for Semi-Canonical Words

So, we are working with a presentation of a group: G = ⟨A|R⟩, where A is a (finite)
set of generators and R is a set of relations, which we will assume to be closed under taking
inverses and cyclic shifts.

Our ultimate goal is to construct a canonical form for each word in G that would
simplify the process of analyzing Van Kampen diagrams for the group. As a first step
towards this goal, we introduce the concept of R-diagrams.
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Let us fix a constant τ ∈ (0, 1) (it is productive to think of τ as a sufficiently small
number). Also, for each relation R ∈ R, we define the relative length of each subword S in
R as LR(S) =

|S|
|R| .

Definition 2. For a word W in the alphabet A ∪ A−1, we call an R-diagram of W the collection
of all subwords S (we distinguish the occurrence of the same subword at different positions in
W) such that W = ASB and S = RαR1, where R ∈ R, α ≥ 0, R = R1R2, and the relative
length LR(S) ≥ τ. We call a diagram maximal if it contains only maximal subwords S in terms
of inclusion.

This definition may seem somewhat convoluted, but in reality, it is quite natural. For a
word W, we are interested in the potential possibilities for its cancellations, and each such
possibility corresponds to a piece of relation from R that occurs in our word. Moreover,
even a repeated occurrence of a relation is considered as a potential cancellation opportunity.
Finally, if we do not limit the length of the subwords of interest from below, we would
include too many uninteresting words in the R-diagram—for example, every symbol
occurring in any relation. To avoid this, we only consider subwords of relations with a
relative length of at least τ.

We assume that our group satisfies the conditions of small cancellation with a constant
ε (this assumption will be implied everywhere until the consideration of graded systems
of relations begins). In our terms, this means that if R1 = SP ∈ R, R2 = SQ ∈ R, then
LRi (S) < ε, i = 1, 2. Moreover, we require the inequality 2ε < τ. This condition gives us an
important restriction on the possible structure of maximal R-diagrams:

Lemma 2. Under these conditions, in the maximal R-diagram of a word W, no letter is included
in 3 or more subwords S simultaneously.

Proof. Let S1, S2 be subwords in the maximal diagram, let R1 and R2 be their respective
relations, and let P be the area of their intersection: S1 = AP, S2 = PB. In this case,
the relative length LR1(P) < ε, LR2(P) < ε. Let some third subword Q intersect P. From
maximality, Q cannot be contained in S2. Thus, it must extend beyond the boundaries of S2
either to the left (Figure 4, left) or to the right (Figure 4, right).

Figure 4. S1 shown in blue, S2 in green, and Q shown in red.

The first case is impossible, as the relative length of Q is at least τ > 2ε, and either
Q ∩ S1 or Q ∩ S2 would have a relative length greater than ε. The second case is impossible,
as then Q would cover S2 \ P, but LR2(S2 \ P) = τ − LR2(P) > ε. Thus, the intersection of
three maximal subwords at one point is impossible.

At this point, we have introduced the constants ε and τ, which are useful to think of
as numbers close to zero. For further reasoning, we will also need the constants λ0 and λ1,
subject to the following conditions:

1 − λ0 > τ + 2ε

λ0 − λ1 > 2ε

λ1 −
1
2
> 2ε

τ > 2ε

(1)

The technical details that make these conditions necessary will become clear later.
Thus, it is useful to think of λi as large numbers that are nevertheless distinct from 1 and 1

2



Mathematics 2024, 12, 665 8 of 25

(see Figure 5). With these constants introduced, we can finally give the main definition of
this subsection:

Figure 5. The diagram of constants included in the following arguments.

Definition 3. A word W is called λ-semicanonical (denoted W ∈ SC(λ)) if for every subword S
(and relation R whose subword is S) in the maximal R-diagram of W, we have LR(S) < λ.

Thus, we are interested in words where all occurrences of defining relations are
sufficiently small. It is natural to study such words because if a word contains a large
portion of a relation, it can be effectively canceled. The remainder of this subsection will
be devoted to establishing the main properties of semicanonical words, constructing a
group structure on them, and proving the equivalence between the obtained group and the
original group G.

It is evident that the primary tool for manipulating words in G is finding a subword S
such that there exists a relation of the form R = SP ∈ R and replacing S with the subword
P−1. We refer to each such replacement as an R-turn. The schematic representation we will
use to depict this transformation is shown in Figure 6. The black line corresponds to the
original word, and the green line represents the resulting word.

Figure 6. Schematic representation of a turn on the word S (blue) using the relation R = SP. The
resulting word is shown in green.

Furthermore, different λ-semicanonical words can actually be equivalent in group G.
To address this issue, we introduce the following:

Definition 4. Two words W1 and W2 in SC(λ1) are called equivalent if there exists a sequence of
R-turns transforming the word W1 into the word W2 such that all intermediate words belong to
SC(λ0).

Note that although this is indeed an equivalence relation (transitivity, reflexivity,
and symmetry are evident from the construction), it is initially not obvious why such a
definition (specifically, the requirement on λ0-semicanonicity of intermediate words) is
natural and reasonable. Nevertheless, everything becomes much clearer after considering
the following diagram in Figure 7:

Figure 7. Two R-turns; resulting word shown in red.

Here, the horizontal line denotes a sequence of characters in the word W1. The green
and blue strips represent the elements S1 and S2, respectively, of the maximal diagram.
Suppose the first transformation we make is an R-turn with respect to the first (green)
subword. The second turn is with respect to the subword S2. The resulting word W2
is indicated by the purple line. However, in this case, as can be seen from the diagram,
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after the first turn, the intersecting elements of the maximal diagram with S1 can change
because the intersection S1 ∩ S2 is no longer present in the word. In this particular case, S2
decreases, but it is clear that some turns (e.g., the inverse of the given one) can increase the
length of neighboring subwords in the diagram. However, since at each stage two distinct
words intersect by at most ε, the length of each subword S in the diagram can change by no
more than 2ε (due to the turns immediately to the right and left of S). Thus, by requiring a
sufficiently large difference between λ1 and λ0 (at least 2ε), we ensure that any sequence of
turns on subwords that were initially part of the diagram does not create in the diagram
subwords with a relative length greater than λ1 + 2ε.

On the other hand, it is easy to see that each turn allowed by our definition is a turn
using one of the subwords in the initial maximal diagram W1. Indeed, every turn replacing
S with P−1 must satisfy LR(S) > τ + 2ε (otherwise, the resulting word does not belong to
SC(λ0)). However, the subwords of S consisting of subwords from other relations have a
relative length of at most 2ε (see the proof of Lemma 2). Thus, S has a part with a size of at
least τ that does not come from other relations, which means that S was included in the
initial maximal R-diagram.

Finally, the first condition on the constants (1 − λ0 > τ + 2ε) is necessary for each new
subword to be included in the diagram again (otherwise, it may become too small and
disappear from the diagram altogether, as we consider only segments of relations with a
relative length of at least τ.

Combining Lemma 2 and Definition 4, we obtain the following lemma:

Lemma 3. In the conditions of Definition 4, the result of applying a sequence of turns to the
subwords S1, . . . , Sk in the maximal R-diagram W does not depend on the order of their application.

Proof. Note that the lemma statement is meaningful since the condition 1 − λ0 > τ + 2ε
implies that all turns are indeed performed on some subwords in the initial diagram (possi-
bly lengthened or shortened by ≤ 2ε due to previous turns). We proceed by induction on
the number of turns. It is clear that it suffices to show that the new turn commutes with the
last one made. If the subword used for the new turn is separated by at least ε symbols from
the previous turn, commutativity is obvious. Otherwise, we have the situation depicted in
diagram 7, and commutativity is evident from considering the diagram: applying turns 1
and 2 in any order leads to the word marked by the purple line.

Establishing that the result does not depend on the order of turns but only on the
subwords on which we perform these turns, and based on Lemma 2, which postulates that
all subwords in the maximal diagram are arranged sequentially and intersect by no more
than ε, we can schematically depict each equivalence class of some λ1-canonical word in a
more symmetric form. A typical example of such a depiction is shown in Figure 8. Here,
each cell of the graph corresponds to a relation from R and the corresponding subword
in the maximal R-diagram W (the reverse is also true: for each subword in the maximal
R-diagram, we obtain the corresponding segment in the one-layer map). It is clear that
the length of each horizontal segment does not exceed λ0, and the length of each vertical
bridge does not exceed ε.

Figure 8. One-layer map of an equivalence class of a λ1-canonical word.

Each word in the equivalence class W is represented as a path going from left to right
in this diagram—choosing either the upper or lower segment for each segment. Each turn
performed during the equivalent transformations of W is now represented as “switching” of
the path from one alternative segment to another, and it is evident from this representation
that the turns commute with respect to different subwords in the diagram. We call such
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a representation a one-layer map for the equivalence class of some λ1-canonical word W.
These maps will be the basis for all subsequent reasoning.

The next step is to construct a group structure on the set of equivalence classes in
SC(λ1) (i.e., on the set of one-layer maps). It is clear that we want to use the same map read
in reverse as the inverse element in this group. However, if we define the multiplication of
two maps as their immediate concatenation, the product of a map with its inverse will not
be equal to the identity (the empty map). Therefore, a more elegant algorithmic definition
of multiplication for two maps is introduced.

To multiply the map C by the map D, we start by comparing the maps C−1 and D
symbol by symbol. We continue the comparison until we find the first place (either a
symbol not participating in the R-diagram or a cell in the map) where a difference occurs.
Next, several possibilities arise:

The common part of C−1 and D is depicted in black, while the corresponding exten-
sions are depicted in blue and green.

If the first variant is realized (the distinguishing point is a symbol not included in the
R-diagram), then the product of the maps is the concatenation of the blue and green parts.
If the second variant is realized (the distinguishing point is a cell of the map, but the two
possible extensions have disjointed subwords as bridges to this cell), then the product is
obtained by concatenating the blue and green parts, with the insertion in the middle of one
or both of the paths passing through the central cell depending on whether one or both
of the lengths of these paths satisfy the condition ≤ λ1. Finally, in the third case, only the
“short” segment of the central cell will be included in the product since its relative length
does not exceed 2ε, which means that the length of the alternative path is too large.

It can be seen that with this multiplication algorithm, the map read in reverse indeed
becomes the inverse element. It remains to verify that the introduced multiplication
operation is associative, which is quite obvious (it is sufficient to note that the disappearance
of the “merged” ends of the diagram does not affect the central cell, and therefore, the tails
can be deleted in any order).

Thus, we have introduced a group structure on the set of one-layered maps. It is
possible to prove the isomorphism of the group (denoted by G1) obtained in this way with
the original group G. One undeniable advantage of working with G1 instead of G is that
we have eliminated the freedom to choose different representations of the same element of
the group G, as now different maps correspond to different group elements. The next (and
crucial) step in building the theory is the introduction of the so-called canonical form of each
element of G1: that is, the selection of a specific distinguished path for each map.

3.2. Canonical and Certified Forms

Before proceeding to the (quite counterintuitive) construction of canonical forms, let
us try to formulate some motivations for this construction.

The idea of choosing a canonical representative for each one-layered map may seem
somewhat useless in a sense—after all, the entire previous section was devoted to con-
structing equivalence classes from the original elements of the group G, from which we
now want to return to considering specific elements. However, this idea becomes much
more appealing if we recall the main idea of working with Burnside groups (which is our
ultimate goal). This idea consists of grading the set of relations in such a way that within
each rank, the relations satisfy the small cancellation conditions, and the relations in the
previous rank are in some sense “small” compared to the subsequent ranks. In this case,
the van Kampen diagrams, in general, begin to resemble the one shown in Figure 9:
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Figure 9. Three-layer van Kampen diagram.

Cells of each specific rank are adjacent to each other not “ideally” but with layers of
cells of lower rank in between. In such a situation, despite the fact that the higher rank
satisfies the small cancellation condition, we cannot make any statements (in the spirit of
Lemma 1) about the structure of the entire diagram as a whole because cells of higher rank
do not abut each other closely.

However, let us assume that we have brought all the relations of rank 2 to canonical
form with respect to rank 1 and repeated this operation inductively for all ranks. In this
case, the boundaries of cells of the same rank, separated by a thin layer of cells of lower
rank, will actually coincide since the word corresponding to the common boundary is
written in canonical form on both sides. Hence, this word is the same on both sides (which
means that we have chosen the same path on the one-layer map from both sides). Then, we
would find that cells of higher ranks are actually directly glued to each other whenever
they are close enough, allowing us to manipulate such structures much like ordinary small
cancellation groups.

Now let us proceed directly to the formal construction. Let us consider a one-layer
map (see diagram 8) of a λ1-canonical word. The idea is to choose one of the two horizontal
segments—alternative paths—for each pair of segments and consider the path that goes
along the selected segments as the canonical form of the diagram. We use the following
criteria for the selection:

Definition 5. For two paths w1 and w2 in a one-layer map situated between bridges p1 and p2
(thus giving the relation R = p1w1 p−1

2 w−1
2 ), and given a set of generators x1, . . . , xn, we consider

path w1 as preferable if:

• w1 is shorter than w2 in terms of the number of symbols.
• If w1 and w2 are equal in length, we compare the pairs w1 and w2 (respectively, w−1

2 and w−1
1 )

and compute the difference between their positions in the lexicographical ordering of all of the
words of the same length in the alphabet x1, . . . , xn, x−1

1 , . . . , x−1
n , denoted by d1 (respectively,

d2). If |d1| > |d2|, we take the smaller of the words w1 and w2, and if |d1| < |d2|, we take the
smaller of of the words w−1

2 and w−1
1 .

• If the words w1 and w2 are equal as character strings, we repeat the operation from the previous
item for the words p1w1, p−1

1 w2 and p2w−1
1 , p−1

2 w−1
2 .

It is clear that this definition always allows us to obtain a single preferable path
except in the case of w1 = w2, p1 = p2: that is, the case R = (p1w1)

2. Therefore, in the
future, we assume that no relation is a complete square of a word.
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Note 1. It is precisely here that the reason for drawing conclusions only about Burnside groups
with odd exponents lies—otherwise, even in the first rank, we have a huge number of relations that
are squares, which prevent us from unambiguously choosing canonical representatives.

Finally, let us note that we intentionally complicated the definition by including not
only the words themselves but also their inverses in the comparison in order to ensure the
equivariance of taking the canonical form with taking the inverse element in the group
G1. Indeed, if we did not consider the lexicographic comparison of inverse elements, there
could be a situation where when traversing a one-layer map in one direction, we prefer w1,
and when traversing in the opposite direction, we prefer w−1

2 .

Definition 6. The canonical form of a one-layer map is defined as the result of concatenating all the
preferable subwords (traversals of the one-layer map) connected by bridges. We denote the canonical
form of a one-layer map C as can(C).

Note that for an arbitrary choice of representatives in each equivalence class, it is
initially unclear how the canonical forms of the factors are related to the canonical form
of the product. However, for our definition of the canonical form, the situation improves
significantly. Specifically, we will prove the following lemma:

Lemma 4. can(W1)can(W2)can(W−1
2 W−1

1 ) = R∨
1 R∨

2 R∨
3 R∨

4 , where R∨
i is the result of conjugat-

ing relation Ri by some word.

Thus, in a relation diagram composed of three canonical forms that multiply to give
1, there are at most 4 cells. Moreover, we will show that the diagram of such a “triangle”
looks generally like the diagram in Figure 10.

1 2

Figure 10. General view of a triangle formed by three canonical words.

Proof. To prove this fact, let us first examine how the canonical form can change when
one cell is modified in a one-layer map. It is clear that since we choose the preferred
option independently in each cell, the canonical form can only change in the initial cell
as well as in the case when new cells appear or disappear from our one-layer diagram.
The only reason a cell can disappear is if one of its sides becomes too long (longer than
λ1) and therefore ceases to be included in the one-layer map (since we consider only
sufficiently short subwords as options for transformations; see Definition 4). However,
can the disappearance of cells affect cells in the one-layer map far from the one where the
change occurred? Clearly, when moving through the diagram from the changed cell, if a
certain cell survives, then all subsequent cells also remain unchanged, so the change can
only spread along a sequence of cells, each of which disappears from the diagram. On the
other hand, when a neighboring cell disappears, alternative paths are extended by no more
than ε (because the vertical bridge is now included in one of the alternatives), so a chain of
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disappearances occurs only when there is a chain of cells for which one of the sides has a
relative length of at least λ1 − ε. This situation is depicted in Figure 11.

Here, the blue path represents the canonical form in the initial map, and the cells in
the chain on the right each have a length of at least λ1 − ε in the upper part. Then, when
the red segment is added to the one-layer map, this chain of cells collapses, disappearing
from the map. It is clear that since for each of these cells, the side that disappeared had a
length of at least λ1 − ε > 1

2 , the canonical form in this area does not change. Moreover,
the only place where the canonical form can change is the first surviving cell. Moreover,
the change can occur only if the relative lengths of both alternatives in this cell are in the
interval ( 1

2 − ε, 1
2 + ε), since otherwise, the disappearance of the neighboring cell would

not have changed the preferred path.
Thus, despite the fact that a small change in the word can change the canonical form

indefinitely far from the point of change, we can somehow “control” these changes: the
canonical form changes only in one place, only in the presence of a chain of cells with
near-maximal length of one of the paths, and only if at the end of this path there is a cell
with relative side lengths close to 1

2 .

Figure 11. “Domino effect”: change of the canonical form far from the word modification.

Taking this fact into account, the conclusion of the proof of Lemma 4 becomes obvious:
indeed, according to the definition of the product in the group G1, we obtain a triangular
construction from one-layer maps (see Figure 12) in which for each of the three sides,
the change occurs only in the central (first differing) cell. Thus, the canonical forms of the
initial words and their products can differ only in one place on each of the “rays” emanating
from the central cell, which proves the statement.

Figure 12. Possible arrangements of maps at the first point of difference.

However, our goal in introducing the canonical form is to achieve even more precise
control over possible discrepancies. To achieve this, we will impose an additional condition
on the maps under consideration.

First of all, let us note that Lemma 2 implies that all subwords in the maximal R-
diagram of a word are arranged sequentially (possibly with small overlaps) and can
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therefore be ordered. Let us introduce two new constants, which we will denote by λ2 and
λ3, with conditions similar to those imposed on λ1:

λ1 − λ2 > 2ε

λ2 − λ3 > 2ε

λ3 −
1
2
> 2ε

(2)

Finally, let us fix a certain aperiodic sequence l1, l2, l3, . . . of numbers 1 and 2. As a
concrete example, the Morse–Thue sequence [31] can be used, which has the property that
for no word X and symbol a does the sequence contain a subword of the form aXaXa,
from which it follows that this sequence does not contain a cube of any word.

Definition 7. A reliable horizontal segment S of relation R in a one-layer map C is defined as
follows: there exists a word W equivalent to the word represented by map C (i.e., a path in the
map C) such that S is contained in the maximal R-diagram of W, the relative length LR(S) ≤ λ3,
and for each n, the n-th subwords Sl (respectively, Sr) in the maximal R-diagram encountered when
moving left (respectively, right) in the diagram of W have a relative length ≤ λln . In this case, W is
called a witness for S.

This definition is not very intuitive, so let us examine it in more detail.
First, note that every preferred horizontal segment (i.e., one that belongs to can(C)) is

reliable. Indeed, it is straightforward that can(C) serves as a witness for every segment in it
(the length of each preferred segment does not exceed 1

2 , so all subwords in the R-diagram
have a length of at most 1

2 + 2ε).
Second, notice that the requirement for the existence of a witness is very weak: almost

every horizontal segment with a length of λ3 or less has the canonical form of the map
as a witness. The only situation in which a segment is reliable but the canonical form
is not a witness for it is when we have a sequence of horizontal segments of almost
exactly the required length (i.e., of a length almost exactly equal to λli ). Indeed, if the
diagram contains a sequence of horizontal segments S0, S1, S2, . . . for which the relative
length LR0(S0) ∈ (λ3 − ε, λ3) and for all n > 0, LRn(Sn) ∈ (λln − ε, λln), then we have a
witness for S0, but we cannot switch to an alternative, shorter path since the length of each
horizontal segment satisfies very strict conditions that do not allow us to add a vertical
bridge to take an alternative, globally shorter path. However, if such a situation does not
occur, we can always “switch” to the canonical form:

Lemma 5. If there exists a cell R in map C for which the relative length of each horizontal segment
does not exceed λ3, then for each horizontal segment to the left of this cell, the existence of a witness
is equivalent to the existence of a part of the witness that reaches R. Similarly, for each segment to
the right of R, the existence of a witness is equivalent to the existence of a part of the witness that
reaches R.

Proof. Since λ3 + 2ε ≤ λ1, λ2, we can add vertical segments both to the left and to the right,
thereby allowing us to switch to the beginning of the shorter horizontal segment in the next
cell. Then we take the corresponding part of can(C) as a continuation of the witness.

Definition 8. A map in which every segment is reliable is called certified. The result of leaving
only the reliable segments in map C is called the certification result (or certified form) of C and is
denoted as cert(C).

Now, by introducing separate canonical and certified forms for maps, in the future,
we will almost always be interested in their composition: the canonical certified form
can(cert(C)).
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Lemma 6. can(cert(W1)) can(cert(W2)) can(cert(W−1
2 W−1

1 )) = R∨
1 R∨

2 R∨
3 R∨

4 , where R∨
i is

the result of conjugating relation Ri with some word.

Proof. This lemma is a direct analogue of the previous statement, but it is not obvious
itself since diagram certification is a global process, and therefore, the certified form of the
product may not coincide with the certified forms of the factors. However, using Lemma 5,
we understand that the differences in certified forms occur only in the segment from the
triangle center (see Figure 10) to the point of difference in canonical forms. Indeed, at the
point of difference, the length of each horizontal segment does not exceed 1

2 + ε < λ3, so
from Lemma 5, we obtain that all segments farther from the center are either included or
not included in the certified forms of both factors and the product simultaneously (since by
using a segment with length < λ3, we can switch to either can(W1) or can(W−1

2 W−1
2 )).

Moreover, we can observe that since all diagram segments are now reliable and thus
do not exceed λ3 in terms of relative length, the situation depicted in Figure 11 is impossible.
Therefore, the only reason for differences in canonical forms can be differences in certified
diagrams. However, again, using Lemma 5, this imposes length conditions on all segments
between the triangle center and the point of difference. Recall that the sequence (ln) was
specifically chosen by us to be aperiodic, which gives us the following fact:

Note 2. If in the conditions of Lemma 6 we have W1 = An1
1 , W2 = An2

2 , then the distinguishing
points in canonical forms are at most 2 max(|A1|, |A2|) away from the center.

Proof. Indeed, we impose some aperiodic conditions and, moreover, conditions that do
not contain subwords of the form aXaXa, on the lengths of segments of the map between
the center of the triangle and the distinguishing point of canonical forms, while the maps of
these words are periodic. As a result, the length of the segment on which both conditions
hold cannot exceed two periods.

Here we encounter for the first time the specificity of relations in Burnside groups
(periodicity). Since this case is of particular interest to us, let us dwell on it a little more and
also prove the following lemma:

Lemma 7. Let n > 4 and C be a one-layer map. Then for the map Cn, the certified (and therefore
canonical) forms have a periodic structure, except possibly for two boundary periods of C on each side.

Proof. If in the certified form C there are no cells (i.e., pairs of alternative paths), then the
statement is proven. If at least one cell is present, then the length of each side in it does not
exceed λ3. In this case, according to Lemma 5, the witness only needs to reach the first such
cell. And since this cell appears in every instance of the map C, the existence of a witness is
equivalent for all internal periods (as it is sufficient to reach the nearest copy of this cell on
the right and left).

At this point, we move from constructing the necessary structures for analyzing
Burnside groups (and groups with a graded structure of small cancellations) to more
applied activities. In the next section, we will consider graded Van Kampen diagrams and
apply the apparatus developed in the two previous sections to analyze them.

3.3. Ranking of Relations

Starting from this section, we will finally study the topology of Van Kampen diagrams
arising in groups with a graded structure of small cancellations. Here and below, we will
usually require ε ≤ 1

10 : that is, each cell is surrounded by at least ten other cells of the
same rank.

The foundation for all subsequent reasoning in this section will be the distribution of
cells in the diagram according to their distance from a certain fixed central cell.
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More formally, let us fix a cell R0; then the distance from each cell R in the diagram to
R0 is defined as the minimum distance between the vertices corresponding to these cells in
the dual graph. The left side of Figure 13 shows a typical (topological) appearance of the
diagram after distributing the cells by distance.

By classical reasoning in small cancellation theory, it can be proved that if all cells in
the diagram, except possibly the central cell, satisfy the small cancellation condition with a
constant ε < 1

6 , then no cell can behave as shown in Figure 13 in the central or right diagram
(otherwise, the cells in the closed region would have too few neighbors in the end).

Lemma 8. No cell from the ring at distance n > 1 can touch three or more cells at distance n − 1.
Also, each cell at distance n has at least three neighbors at distance n + 1.

Proof. For the first statement: otherwise, one of these cells has one neighbor at distance
n, at most two neighbors at distance n − 1, and at most two neighbors at distance n − 2
(we consider a minimal counterexample). For the second statement: otherwise, we have
no more than two neighbors at the previous level, no more than two neighbors at the
same level, and no more than two neighbors at the next level. Thus there would be a
contradiction.

From Lemma 8, it immediately follows that the number of cells at distance n from a
given cell grows exponentially as a function of n.

0 0 0
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1

1

1 1 1

1

1
1

1

1
1 1

1

1

2
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Figure 13. Left: topology of the Van Kampen diagram. Right: examples of impossible topology.

However, we are interested in the topology of diagrams not only in groups with small
cancellation conditions but also in groups where the small cancellation condition holds
for each rank of relations separately. In this work, we focus on the case when there are
two ranks of relations: R = R1 ⊔R2. However, generalization to an arbitrary number of
ranks can be achieved by trivially repeating all the reasoning presented here. We will use
the results of previous sections and bring all the words from R2 to canonical form with
respect to the relations from R1. Now our goal will be to formulate the necessary estimates
for, informally speaking, the number of neighbors for each cell of rank 2 in the Van Kampen
diagram over G.

Let us formalize the above. So for a Van Kampen diagram consisting of relations of two
ranks, we introduce the concept of a derived diagram as follows. Let us introduce a certain
ordering of rank 2 cells participating in the diagram and denote them as R1, R2, . . . , Rk.
Then for each cell of rank 1, distances d1, . . . , dn from it to each of the cells of rank 2 are
defined. We call the region of the cell Ri the subdiagram that includes Ri itself as well as all
cells for which ∀j ̸= i : di < dj and all cells for which ∀j < i : di < dj and ∀j > i : di ≤ dj.
Intuitively, we call the region of the cell Ri the area of the diagram for which Ri is the
nearest cell of rank 2, using the introduced ordering to resolve cases of equal distances.
The Van Kampen diagram, together with the ordering Ri, the numbers di, and the partition
into regions, is called the derived diagram.
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It is clear that since the relations from R2 are now written in canonical form, the cells
of rank 2 cannot contain, informally speaking, too long parts of the relations from R1.
Therefore, the cells of rank 1 cannot be strongly adjacent to a cell of rank 2. More precisely,
it will be sufficient for us that the relative length of the common boundary between a cell
of rank 1 and rank 2 does not exceed λ1 < 1 − 4ε, which means that each such cell of rank 1
has at least five neighbors of rank 1. As mentioned above, we also assume ε < 1

9 , which
means that each cell of rank 1 that does not share a boundary with a cell of rank 2 has at
least nine neighbors.

Taking into account the above and using reasoning that completely repeats the case of
diagrams with relations of one rank, we conclude that, informally speaking, in the topology
of each specific region there are no holes (see Figure 13). Formally, this means that the
subsets of the region formed by the cells of distance d ≤ n is simply connected for all n.

We are interested in analyzing the boundary between two regions. Before moving on
to the analysis of the “big picture”, we will prove a lemma that is quite trivial but plays
a key role in the subsequent analysis. Note that due to the regularity of the cell layout
structure at a given distance from the center of the region, we can fix a certain direction of
traversal and have the ability to talk about the next and previous regions in the traversal
order at a given distance from the center.

Now consider a cell R of rank 1 at distance n. Let us find a cell R f at distance 1
obtained as follows: starting from R, at each step, we choose the first in the traversal order
cell adjacent to the current cell and located at a distance one less. Similarly, we find a cell Rl
obtained in a similar way but choose at each step the last in the traversal order cell among
those adjacent to the current cell.

Then the following lemma holds.

Lemma 9. Cells R f and Rl are adjacent.

Proof. Let us consider the process of iterative descent by distance to the center of the
region. At the first step, we obtain two adjacent cells (a consequence of the first statement
of Lemma 8). Furthermore, if at the next step we obtain non-adjacent cells, then in the
region denoted by blue in Figure 14, a cell at the next level has no more than two neighbors,
which again contradicts the second statement of Lemma 8.

n-1 n-1

n-2 n-2

n

???

Figure 14. Impossibility of divergence of two extreme paths through adjacent cells.

Now let us look at the boundary between two regions. The general view is shown
on the left side of Figure 15. Let us first consider the case when the cells of rank 2 for
these regions are not close to each other: that is, the boundary between the regions is not a
boundary of a rank 2 cell.

Without loss of generality, let us say that the cell of the region on the left has a smaller
number. Then with a cell at distance k from the center to the left of the boundary, there can
be cells at a distance k or k − 1 to the right of the boundary. The key fact that allows us to
provide estimates of the number of neighbors for this region is the following lemma:
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k

k-1

k

Figure 15. (Left): general view of the boundary between two regions. (Right): possible distances of
cells on the other side of the given cell.

Lemma 10. If the boundary between regions does not pass through the boundary of a rank 2 cell,
then in the sequence of distances to the center during motion, there are no (non-strict) local maxima.

Proof. Let us consider a local maximum in the left region (the second case is treated
analogously). Suppose it is located at a distance of k from the center. It is clear that the
neighboring cells in the same region have distances to the center of either k − 1 or k (since
k + 1 is impossible due to local maximality). In this case, the given cell has at most four
neighbors in its own region. Hence, this cell has at least five neighbors in the right region
(see Figure 16).

k

Figure 16. Local maximum of distance on the boundary.

It is clear that each of these cells has a distance to the center of k or k − 1. However,
in any sequence of 5 numbers k and k − 1, there exists a local maximum. Now let us repeat
the reasoning for this local maximum, and we obtain that this cell must have at least five
neighbors in the left region. However, by construction, it has exactly one. Thus, there is a
contradiction.

Thus, when moving along the boundary between regions, the distance to the center
first decreases with each step and then increases with each step, with no more than two re-
peated distances in between (otherwise we would have a local maximum in a trivial way).
This means that for the outermost cell on the boundary, one of the two sequences of cells
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described in Lemma 9 goes along the boundary (see Figure 17) until the minimum distance
on the boundary is reached. This allows us to prove the following important fact:

Figure 17. Paths obtained by choosing the rightmost (respectively, leftmost) cells on the previous
layer, starting from the outermost cells on the boundary.

Lemma 11. If the boundary between regions does not pass through the boundary of a rank 2 cell,
then any shortest path from a cell on this boundary to a cell at a distance of 1 from the center of the
region enters one of at most five consecutively located cells at a distance of 1 from the center.

Proof. Let T and B denote the outermost cells on the boundary. It is evident that two cells,
in which the leftmost and rightmost paths coming from T respectively enter (denoted by Tf
and Tl in the terminology of Lemma 9) are the endpoints of any shortest path to the center
starting from any cell on the boundary from T to the local minimum. The same holds for B.
It has been previously shown that there is at most one local minimum, which means that
there is at most one cell between the pair of cells Tf , Tl and the pair B f , Bl , which proves
the statement of the lemma.

Moreover, since each cell at a distance of 1 is an endpoint of a shortest path from a
cell on the region boundary, Lemma 11 asserts that the number of boundaries that do not
pass through rank 2 cells for a given region must be sufficiently large (since each boundary
occupies no more than five cells at a distance of 1 from the center).

We still need to consider the case when the boundary between regions passes directly
through the boundary of a rank 2 cell. In this case, we are dealing with the so-called
adjacency region:

Definition 9. Let us consider two rank 2 cells R1 and R2 in the Van Kampen diagram. The portion
of the diagram consisting of rank 1 cells for which the distance to each of R1 and R2 is one as well
as the common segments of the boundaries of R1 and R2 is called the adjacency diagram of R1
and R2.

It is precisely in the analysis of adjacent rank 2 cells that our previous efforts pay off.
Since the rank 2 relations are now written in canonical form with respect to the rank 1
relations, the following statement is true:

Lemma 12. Let us consider the region of adjacency between cells R1 and R2. Then except for at
most two cells on each side of the adjacency region, this region consists entirely of the immediate
border between R1 and R2.
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Proof. It is clear that the region of adjacency for R1 and R2 is precisely a one-layer map.
Since each of the relations Ri is written in canonical form, the length of each of the alterna-
tive sections does not exceed 1

2 + 2ε, as we choose the shorter of the alternative sections
in the canonical form. According to Lemma 5, in this case, the certified forms match
everywhere, except perhaps two sections on each side of the map (the proof is similar to
the proof of Lemma 7). Then the canonical forms coincide everywhere, except perhaps
three extreme sections on each side (since the canonical form depends only on the geom-
etry of the given cell; two extreme cells may differ in certified form, and one more cell is
simultaneously present in both, but the side lengths in it may differ by ε due to differences
in the previous ones).

Thus, we obtain the following result:

Theorem 2. If the relations within rank 1 satisfy the small cancellation condition with constant
ε1, the relations within rank 2 satisfy the small cancellation condition with constant ε2, and the
length of the common section of rank 1 and rank 2 cells with respect to a rank 2 cell does not
exceed ε3, then for each Van Kampen diagram over G = ⟨A|R1 ⊔R2⟩, each region has at least(
ε2 + 10ε3

)−1 neighbors.

Proof. From Lemmas 11 and 12, we deduce that if the border between regions does not
have an adjacency region, then it corresponds to at most five rank 1 cells at a distance of 1
from the center of the region. If the border has an adjacency region, then it corresponds to
at most two rank 1 cells on each side at a distance of 1 from the adjacency region plus at
most three rank 1 cells on each side within the adjacency region plus the relative measure
of the immediate common border between rank 2 cells, which gives the required estimate
(Figure 18).

Figure 18. The border between two rank 2 cells. The possible regions of difference in certified forms
are shown in blue; the additional regions of difference in canonical forms are shown in red; the
regions where the borders of rank 2 cells necessarily coincide are shown in green.

4. Immediate Results

As mentioned above, this work is an initial step in the project of studying Burnside
groups for relatively small exponents based on the apparatus of canonical forms developed
by Rips. The first important result in this direction presented in this work is a rigorous
written exposition of the theory developed by Rips. Although these explanations are not,
strictly speaking, previously unknown scientific achievements, working on this exposition
required clarification and formalization of proofs for facts discovered by E. Rips as well as
organization of a coherent written presentation of this theory starting from the immediate
foundations and ending with an analysis of specific Burnside groups.



Mathematics 2024, 12, 665 21 of 25

Now let us move on to the initial steps taken directly for the purposes of our work.

4.1. Graded Structure of Relations in B(m, n)

As mentioned earlier, relations in Burnside groups can be divided into ranks R = R1 ⊔
R2 ⊔R3 ⊔ . . . in such a way that:

• If R1 = sr1 ∈ Rk, R2 = sr2 ∈ Rk are two distinct (i.e., not cyclic shifts or inverses
of each other) relations of rank k, then |s| < εk|R1|, |s| < εk|R2| for some εk < 1 (the
small cancellation condition for each rank).

• If R1 = sr1 ∈ Rk, R2 = sr2 ∈ Rl , k < l are relations of different ranks, then
|s| < ε′k|R2| for some ε′k < 1 (the smallness condition for previous ranks compared to
the next one).

Initially, it is not obvious that such a partition is possible; this fact follows from the
following lemma:

Lemma 13. Let w1 = pn
1 and w2 = pn

2 be relations in a group, where the words p1, p2 are not
periodic and are not cyclic shifts or inverses of each other. Then the length of any common segment
of these relations is less than |p1|+ |p2|.

Proof. In the case of |p1| = |p2|, the statement is obvious: having a common segment with
a length of at least |p1| implies that w1 = w2. Without loss of generality, let |p1| > |p2|. Let
s be a common segment of w1 and w2 with |s| ≥ |p1|+ |p2|. Let q1 (q2) be the first |p1| (|p2|)
symbols of s. In this case, wi becomes periodic with period qi. Then, if |p1| = k|p2|, we have
q1 = qk

2, which contradicts the non-periodicity of pi. Thus, |p1| = k|p2|+ r, 0 < r < |p2|.
However, this means that the subword s|p1|+1s|p1|+2 . . . s|p1|+|p2| is also equal to q2, which
implies that w2 contains two equal periods of q2 shifted by 0 < r < |p2|. This means
that the word w2 is periodic with a period length of (|p2|, r), which again contradicts the
non-periodicity of p2.

Therefore, the powers of different non-periodic words intersect at most by the sum of
their periods. This allows us to divide the relations into ranks. Let us introduce a sequence
of numbers l0 = 0, l1, l2, l3, . . . and define

Rk =

{
wn

∣∣∣∣∣ lk−1 < |w| ≤ lk, w − non-periodic word

}
(3)

Then, under certain conditions on lk, which we will derive below, this grading will
indeed satisfy the required conditions.

Note that E. Rips, like most authors of previous works on this topic, does not thor-
oughly investigate the relations that lk must satisfy. This is because when analyzing the
complete family of relations R, the result does not depend on the specific partition into
ranks. Therefore, different (correct) partitions are completely equivalent. However, in the
context of our research plan on approximations of Burnside groups (which includes only a
finite number of relations), a specific and meaningful choice of grading is important to us.

As mentioned above, in this work, we primarily focus on the analysis of the first
nontrivial case that arises when considering the first two ranks: R1 ⊔R2.

4.2. Refinement of Estimates for the Case R = R1 ⊔R2

Despite the fact that the theory constructed by E. Rips allows for precise estimates of
the exponent at which the Burnside group becomes infinite, the exact calculation of these
estimates is quite laborious due to boundary effects that arise each time when transitioning
from the previous rank to the next (see Figure 19).
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Figure 19. Boundary effects (i.e., differences in the canonical form along alternative paths) for one
cell in the one-layer map of higher rank.

We observed an example of such boundary effects already for rank 2 in Theorem 2,
where the constant in the small cancellation condition for the reduced diagram was a
nontrivial combination of the small cancellation constants for the first and second ranks.
Although the detailed analysis of the necessary exponent estimates is complex, when taking
a sufficiently large exponent, the constants of small cancellations in the reduced diagrams of
all ranks are clearly bounded from above, as the sizes of relations grow exponentially with
the rank. Therefore, Rips operates with a sufficiently large odd exponent (e.g., an exponent
greater than 230) in his reasoning to simplify proofs during the inductive transition through
ranks. Naturally, such restrictions are insurmountable for any (manual or computer) direct
analysis. Fortunately, for the case of a finite number of ranks, these restrictions can be
significantly relaxed, as the specific form and size of boundary effects in this case can be
manually controlled. In this section, we provide refined estimates for the case of the first
two ranks. In the terminology of the previous section, let the nth powers of non-periodic
words with lengths not exceeding l be assigned to the first rank, and let the nth powers of
non-periodic words with lengths from l + 1 to L be assigned to the second rank. We prove
the following theorem:

Theorem 3. Let G = ⟨A|R1 ⊔R2⟩ in the above terminology, where |A| ≥ 2. Then, if

n > 120, n is odd

l <
n − 24

24

L <
n(n − 114)

144

(4)

the group G is infinite.

Proof. To prove the theorem, we consistently take into account all the necessary require-
ments and gradually obtain stronger constraints on n.

In constructing the theory in Section 3, we considered an arbitrary constant ε and
assumed the fulfillment of the small cancellation condition in rank 1 for it. Note that not
every value of ε will work. For the existence of constants τ, λ0, λ1, λ2, λ3, it is necessary
and sufficient that

(1 − λ0) + (λ0 − λ1) + (λ1 − λ2) + (λ2 − λ3) + (λ3 −
1
2
) <

1
2

from which, recalling that τ > 2ε, we obtain

(4 + 2 + 2 + 2 + 2)ε <
1
2
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That is, ε < 1
24 . Now, to satisfy the condition C′(ε) in rank 1, it is necessary that

∀a, b ≤ l : a + b < min(a, b)nε

(the condition of small length of the common part for words with periods of lengths a and
b). Considering the case a = l, b = l, we obtain

n > ε
2l
l

,

which gives n > 48 (note that n is odd; see Remark 1). On the other hand, it is clear that the
most stringent condition on l is obtained when considering the case a = 1, b = l:

l < 1 + nε

Thus, although we can choose a value for l that satisfies the conditions for each odd n > 48,
as n decreases, the number of words we can place in the first rank in such a way that the
small cancellation condition C′(ε) is satisfied rapidly decreases. In the limiting case, when
n = 49, only nth powers of words of lengths 1, 2, and 3 can be in the first rank.

Now let us consider the constraints imposed on the second rank. Recall that our goal
is to apply the analogue of Grindlinger’s lemma (Theorem 1) to the derived Van Kampen
diagram. For this, it is required that the relative measure of the boundary between two
regions in an arbitrary map is less than 1

6 .
Using Lemma 13, we conclude that the length of the common part between a rank 1

cell and a rank 2 cell relative to the rank 2 cell does not exceed

(l + 1) + l
n(l + 1)

<
2
n

Now using the main result of Section 3, Theorem 2, we conclude that in this case,
in order for the derivative map to satisfy the condition C′( 1

6 ), it is necessary that:

ε2 + 10 · 2
n
<

1
6

where ε2 is the small cancellation constant within the second rank. From here, we obtain a
condition on ε2:

ε2 <
n − 120

6n
which clearly implies n > 120. Finally, we need to impose a condition on L necessary to
satisfy the small cancellation condition with the constant ε2 within rank 2. As in rank 1,
this requires

∀a, b ∈ [l + 1, L] : a + b < min(a, b)nε2

where the strictest estimate is achieved when a = l + 1, b = L:

L + l + 1
l + 1

< nε2 < n · n − 120
6n

=
n − 120

6

Now transferring terms and recalling that l + 1 < nε, we obtain:

L < (l + 1) · (n − 120
6

− 1) < (l + 1) · n − 114
6

< nε · n − 114
6

<
n(n − 114)

144
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Thus, the final constraints we obtained are as follows:

n > 120, n odd

l <
n − 24

24

L <
n(n − 114)

144

(5)

Under these conditions, according to Theorem 2, the derivative Van Kampen diagram
satisfies the condition C′( 1

6 ), and thus, by Greendlinger’s lemma (Lemma 1), some cell of
some rank forms a boundary segment with a relative length exceeding 1

2 .
However, it is clear that due to the specifics of the relations in the Burnside groups, it is

easy to construct an arbitrarily long word W that does not contain subwords of the form Sm,
where m > n

2 —it is sufficient to take a sequence that does not have long periodic segments.
An example of such a sequence is the Morse–Thue sequence (see, for example, [sequences]),
which does not even have complete cubes as subwords. Such a sequence cannot be the
boundary of a Van Kampen diagram for which it was a boundary, and therefore, it is not
equal to the identity in the group G.

Thus, under these conditions, the group generated by m > 2 generators and relations
R1 ⊔R2 is infinite.

This theorem shows that considering only the first two ranks of relations makes sense
only for sufficiently small (odd) exponents (n < 120).

5. Planned Further Research

This work represents the first step in the investigation of approximations of groups
B(m, n) based on the developments of E. Rips. The main result of this paper is the for-
malization and self-contained exposition of the theory of canonical forms as well as the
direct and independent application of this theory to refine some estimates of the approxi-
mations of Burnside groups with a finite number of relations. Further research is planned
in three directions:

• Generalizing the methods that allowed us to obtain estimates for the two-rank sys-
tem of relations to an arbitrary finite number of ranks and studying the boundary
effects that arise when the number of ranks increases in order to potentially lower
the estimates;

• Using computer enumeration to study approximations of B(m, n) for small exponents
(e.g., studying the finiteness of B(2, n) for odd n < 120);

• Extending the framework of the iterative small cancellation theory developed by E.
Rips to other algebraic structures (rings and fields).

The first direction of research represents the most accessible and straightforward
approach to the extension and generalization of this work. It is worth noting that despite
the fact that for sufficiently large exponents the inductive transition along the ranks is
performed almost automatically, the complexity of obtaining precise estimates and the
manual analysis of the process rapidly increases with the growth in the number of ranks
under consideration. Nevertheless, it seems possible to obtain estimates that combine a
sufficiently high degree of accuracy and allow for an inductive proof to generalize to the
case of an arbitrary, finite number of ranks.

At the same time, computer analysis (the second potential direction) may lead to
improvement in our understanding of the structure of B(m, n) for small exponents. Finally,
the third approach is arguably the most ambitious one, as obtaining an analogue of the
small cancellation theory for other algebraic objects is a potentially important and largely
open problem in modern mathematics.
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