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Abstract: This paper introduces a semi-automated approach for the prioritization of software features
in medium- to large-sized software projects, considering stakeholders’ satisfaction and dissatisfaction
as key criteria for the incorporation of candidate features. Our research acknowledges an inherent
asymmetry in stakeholders’ evaluations, between the satisfaction from offering certain features and
the dissatisfaction from not offering the same features. Even with systematic, ordinal scale-based
prioritization techniques, involved stakeholders may exhibit hesitation and uncertainty in their
assessments. Our approach aims to address these challenges by employing the Binary Search Tree
prioritization method and leveraging the mathematical framework of Intuitionistic Fuzzy Sets to
quantify the uncertainty of stakeholders when expressing assessments on the value of software
features. Stakeholders’ rankings, considering satisfaction and dissatisfaction as features prioritization
criteria, are mapped into Intuitionistic Fuzzy Numbers, and objective weights are automatically
computed. Rankings associated with less hesitation are considered more valuable to determine the
final features’ priorities than those rankings with more hesitation, reflecting lower indeterminacy
or lack of knowledge from stakeholders. We validate our proposed approach with a case study,
illustrating its application, and conduct a comparative analysis with existing software requirements
prioritization methods.

Keywords: software requirements prioritization; software features prioritization; binary search tree
prioritization; stakeholder satisfaction; stakeholder dissatisfaction; stakeholder hesitation; stakeholder
uncertainty; Intuitionistic Fuzzy Sets

MSC: 68N30

1. Introduction

In this paper, we address the challenge of software features prioritization within the
context of planning upcoming software releases. For the purpose of our discussion, we
adopt the definition that a software feature constitutes a logically related set of functional
requirements, offering a capability to the user or satisfying a business objective [1]. Specifi-
cally, we follow the definition that a software feature encompasses a cohesive set of logically
related individual functional requirements describing a software product characteristic
from the user or customer perspective [2].

While various prioritization methods have been proposed in the literature, they pre-
dominantly focus on software requirements rather than software features [3,4]. However,
in practical scenarios, software practitioners and developers often do not exhibit a strong
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preference for a specific prioritization method [5]. Despite the elegance of certain priori-
tization methods, many of them encounter scalability and complexity issues, hindering
their practical application. For instance, powerful prioritization methods that adhere to
a ratio-scale approach, such as the Analytical Hierarchy Process (AHP) pairwise compar-
ison method [6], may face challenges in practical implementation due to the extensive
and potentially inconsistent comparisons required to prioritize candidate requirements or
features. Consequently, practitioners and involved stakeholders may lean towards more
practical, ad-hoc, or ordinal-scale (ranking-based) prioritization approaches [7]. In these
simpler approaches, stakeholders involved in prioritization, including business experts,
end-user representatives, analysts, and software developers [8], straightforwardly rank
various candidate features based on one or multiple prioritization criteria. These criteria
can vary among stakeholder groups and may encompass aspects such as the features’
business value, implementation cost, or complexity [9]. Once stakeholders express their
rankings, the next step involves consolidating (or aggregating) these diverse rankings into
a single final priority list. This aggregation relies on subjective weight assignments to
individual stakeholders, rankings, or criteria used in the prioritization process.

The precise evaluation and ranking of each software feature, based on multiple pri-
oritization criteria, pose significant challenges for participating stakeholders, particularly
when dealing with a large number of software features and a variety of prioritization crite-
ria [10,11]. As the set of candidate features expands, the comparison of each feature against
every other feature within the set introduces additional hesitation and uncertainty among
stakeholders engaged in what may be inherently imprecise comparisons. This challenge is
accentuated when stakeholders encounter features that are relatively “unknown” to them,
leading to potentially vague assessments. Stakeholders’ knowledge may not always be
comprehensive enough to make precise and confident judgments regarding the implemen-
tation cost, technical intricacies, and/or business value of all candidate features. The extent
of their understanding may also vary depending on their specific roles. For instance, end
users or their representatives may lack detailed insight into the technical implications of
software features on the development effort required for the software system.

Consequently, it is foreseeable that some features might remain unranked in certain
stakeholders’ assessments, reflecting a lack of confidence or knowledge in their evaluation.
Additionally, due to inherent indeterminacy and hesitation, stakeholders may struggle to
precisely differentiate the relative value of certain candidate features concerning specific
prioritization criteria. It is not uncommon for a stakeholder to assign the same rank to
multiple features, indicating their belief in the equal value of these features with respect
to the prioritization criterion at hand. Such situations result in features sharing the same
rank in some stakeholders’ assessments, highlighting instances where stakeholders may
exhibit either a lack of knowledge or indeterminacy/hesitation. These various scenarios,
involving unranked features and features with identical ranking scores concerning cer-
tain prioritization criteria, necessitate consideration in the features prioritization process.
They may signify situations in which stakeholders, involved in the prioritization process,
demonstrate either a lack of knowledge or indeterminacy/hesitation.

Building upon our prior contributions [12,13], we have introduced advancements to
our software features prioritization approach, addressing the potential sources of stake-
holders’ hesitation discussed earlier. This paper significantly extends our previous work by
providing a detailed exposition of the mathematical computations integral to the proposed
semi-automated prioritization approach. Our extensions delve into the intricacies of the
mathematical computations essential for the proposed approach. Furthermore, we present
and discuss the outcomes of applying this approach in a case study, shedding light on its
practical implications. Additionally, we provide an overview of the current state of tool
support for our approach. To ensure a comprehensive evaluation, we meticulously compare
our approach with other existing requirements and features prioritization methods. This
comparative analysis aims to delineate the preferred context for the application of our
proposed approach in practical settings.
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In this paper, we introduce a semi-automated approach designed to facilitate the priori-
tization of medium to large sets of candidate software features. Our approach departs from
existing subjective methods by placing a strong emphasis on objectively and automatically
quantifying the weights of stakeholders involved in the prioritization process. Central to our
approach is the consideration of prioritization criteria that reflect the asymmetric perspec-
tives of stakeholders’ perceived satisfaction and dissatisfaction for the features. To achieve
objective weights’ quantification, we leverage the mathematical framework of Intuitionistic
Fuzzy Sets (IFSs). This framework allows us to precisely quantify the hesitation and un-
certainty exhibited by stakeholders when ranking candidate software features. The results
of this hesitation quantification play a pivotal role in the assignment of objective weights
to feature rankings and the corresponding stakeholders responsible for these rankings.
Furthermore, objective weights are assigned to the criteria used to derive these rankings.
A fundamental assumption of our approach is that larger weights should be allocated to
rankings, stakeholders, or criteria associated with lower levels of uncertainty and hesitation.

To apply and validate our proposed approach, we conducted a case study within the
context of the EDUC8 (EDUCATE) software project. EDUC8, a web-based system [14], aims
to develop personalized learning environments utilizing multi-faceted knowledge bases and
integrated technologies. The primary objective of EDUC8 is to facilitate personalized learn-
ing within higher education settings. In this case study, our focus was on determining the
priorities of a medium to large set of candidate features slated for inclusion in the upcoming
release of the EDUC8 system. For the prioritization process, we employed satisfaction and
dissatisfaction as the key criteria. Stakeholders involved in the EDUC8 project, who were
recognized experts, were asked to evaluate their satisfaction with each feature’s inclusion in
the next system release and their dissatisfaction with its absence.

Consistent with findings in other research studies [15], we also accounted for the asym-
metry between the levels of satisfaction and dissatisfaction associated with the inclusion or
absence of specific features in the next system release’s functionality. For the prioritization
methodology, we opted for a methodical, systematic, and practical ordinal scale-based
approach—the Binary Search Tree (BST) method. This approach, previously demonstrated
to scale effectively in prioritization problems, particularly with medium-sized feature
sets [16], was chosen for its suitability. During the case study, each stakeholder was tasked
with carefully performing a modified variant of the BST ordinal-scale prioritization method
twice. This involved ranking features based on satisfaction if the feature is delivered in the
next system release and, separately, based on dissatisfaction if the feature is not included in
the release. Importantly, the methodology allowed for tied rankings, enhancing the realism
of stakeholder assessments.

The foundational mathematical framework of our approach relies on the principles of
Intuitionistic Fuzzy Sets (IFSs) [17,18]. Specifically, we leverage IFSs to map the rankings
of features, derived from Binary Search Trees (BSTs) provided by stakeholders, into cor-
responding IFS representations. The concept of hesitation is integral to IFSs and proves
particularly suitable for expressing ties in software features’ rankings (i.e., tied features)
and unknowns (i.e., unranked features). Consequently, IFSs serve as a suitable mathemat-
ical tool for quantifying stakeholders’ indeterminacy and lack of knowledge regarding
the evaluation of features [19]. We can utilize the quantification of hesitation in features’
rankings to automatically calculate an objective weight for that ranking. This objective
weight may be assigned to the stakeholder who provided the ranking or to the prioriti-
zation criterion used to derive the ranking. In the final step, we aggregate the features’
rankings using the calculated objective weights. The result is a suggested prioritization
list of features presented to stakeholders. This final list takes into account the inherent
hesitation of stakeholders reflected in all features’ rankings.

In the subsequent sections, we delve into the various facets of our research. In Section 2,
we conduct a comprehensive review of related work and the background that forms the
foundation of our approach. Furthermore, we present a comparative analysis with other
approaches from the existing literature. Moving on to Section 3, we elucidate the intricacies
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of the mathematical method underpinning our approach. This section includes detailed
descriptions and examples to enhance the reader’s understanding of the method’s computa-
tions. Section 4 focuses on a practical demonstration of our approach through a prioritization
case study. This application serves to validate the approach’s efficacy for use in software
projects. In Section 5, we thoroughly discuss the case study’s results, analyzing the collected
evidence and drawing conclusions to support the robustness of our approach. Section 6 is
dedicated to addressing potential threats to the validity of our case study, providing a com-
prehensive examination of its limitations. Finally, in Section 7, we draw overall conclusions
from our research and offer insights into potential future research directions.

2. Related Work

In this section, we provide a concise overview of existing software requirements and
features prioritization methods. Additionally, we conduct a comparative analysis between
the approach proposed in this paper and other relevant methods in the field. We delve
into the concepts of stakeholders’ satisfaction and dissatisfaction, justifying their suitability
as features prioritization criteria. Lastly, we briefly review other fuzzy-based methods
presented in the literature for the prioritization of software requirements.

2.1. Overview of Software Requirements/Features Prioritization Methods

Software development projects grapple with diverse constraints, including budget
limitations, human resource constraints, time constraints, and the intricacies of complex
or misunderstood requirements and features [20]. A vital component in mitigating the
risks inherent in software development projects is the requirements prioritization process.
By devising a plan that ensures the delivery of the most crucial software requirements
and features first, stakeholders’ expectations can be effectively met. Therefore, software
requirements/features prioritization emerges as the foundational step in a successful
software release planning process, prompting the proposal of numerous techniques and
methods for this purpose [3,4]).

Methods for software requirements/features prioritization can be categorized based
on several key factors:

1. Measuring Scales:

• Nominal: Candidate requirements/features are classified into classes, with items
in each class deemed of equal priority, yet without any inherent ordering.

• Ordinal: Techniques produce an ordered list of requirements/features in an
intuitive manner.

• Ratio scale-based: Methods provide information about the relative difference
between any two requirements/features.

2. Level of Automation:

• Manual: All steps of the prioritization process are performed manually.
• Automated: All steps are executed by automated tools or algorithmic techniques

without stakeholder intervention.
• Semi-automated: Some steps are manual, while others are executed by tools/-

computational techniques.

3. Consideration of Stakeholder Importance [8]:

• Subjective methods: Few approaches in the literature emphasize prioritizing
stakeholders based on their impact, often with limitations such as being time-
consuming and lacking automation.

4. Project Size:

• Small: Fewer requirements or features (i.e., less than 15).
• Medium: A moderate number of requirements or features (i.e., between 15 and 50).
• Large: A substantial number of candidate requirements/features (i.e., more than

50) [21,22].
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5. Handling Dependencies:

• Consideration or lack thereof of dependencies among requirements/features,
acknowledging that some may functionally or logically depend on each other
and should be treated as a group for prioritization and subsequent development
planning [23].

This classification scheme provides a nuanced understanding of the diverse charac-
teristics exhibited by different prioritization methods, catering to the unique needs and
complexities of software development projects.

2.2. Comparison of the Proposed Approach with Existing Prioritization Methods

Before delving into a discussion of representative prioritization methods and their
comparison with our proposed approach, it is essential to position our approach within
the aforementioned classification of prioritization methods. Our approach aligns seam-
lessly with ordinal-scale prioritization methods, such as Simple Ranking, Binary Search
Tree (BST), or the Bubble Sort method [3,24]. Ordinal-scale methods, notably BST, offer
intuitive and practical applicability, demonstrating effectiveness in handling medium to
large sets of requirements due to their simplicity [25]. The suggested approach acts as
a complement to and supporter of ordinal-based prioritization techniques. It addresses
the inherent challenges of ambiguous and vague information that may arise from the
hesitation or uncertainty exhibited by stakeholders involved in the prioritization process
when determining feature rankings.

Concerning features’ dependencies, our approach addresses challenges often encoun-
tered when prioritizing requirements with interdependencies [23]. To mitigate these issues,
we shift the emphasis from prioritizing individual requirements to prioritizing features.
Features, in the context of a software system, are regarded as independent functional char-
acteristics that may encapsulate multiple low-level functional requirements [1,2]. While it
is acknowledged that features within a software system may possess dependencies and
interactions [26], our approach assumes that any existing functional or implementation
dependencies between features need not necessarily be considered during the initial steps
of the prioritization process. Instead, we advocate addressing these dependencies at subse-
quent stages in the software product release planning process, aligning with the findings
in [15].

A pivotal characteristic of the proposed approach lies in its automatic calculation
of objective weights for stakeholders or prioritization criteria. This feature eliminates
the necessity of determining weights subjectively or arbitrarily through human decision-
making processes, such as relying on a specific decision maker or seeking input from other
stakeholders to assign priority. In contrast to many multi-criteria subjective stakeholder
prioritization methods, including those outlined in [27,28], our approach takes a distinc-
tive stance by placing emphasis on the objective calculation of participating stakeholders’
weights. We posit that stakeholders engaged in a prioritization process are experts and
possess extensive knowledge in the domain of the candidate features to be prioritized. Con-
sequently, objectively deciding and justifying different weights for stakeholders becomes
challenging. Therefore, we operate under the assumption that stakeholders are capable of
expressing their perspectives with equal or at least similar importance.

In the proposed approach, we adopt, as prioritization criteria, the stakeholders’ asym-
metric satisfaction and dissatisfaction from offering and not offering, respectively, candidate
features in the next software release. This deliberate focus on stakeholders’ satisfaction
and dissatisfaction aims to circumvent challenging compromises that may arise when
considering value-cost scenarios [6]. However, it is acknowledged that this choice may
render our approach less suitable for projects with resource constraints, as it accentuates the
“value” aspect of features—specifically, the satisfaction/dissatisfaction of stakeholders from
offering/not offering each candidate feature. Recent research, exemplified by the study
in [29], has examined value as the primary criterion in software features selection. This
study highlights a current industry shift toward value-based software engineering. Despite
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this trend, there remains limited clarity on the practical interpretation of value. By placing
emphasis on satisfaction and dissatisfaction, our approach endeavors to capture some of
the diverse aspects of value considered in [29]. This strategic choice allows our approach
to align with the evolving landscape of value-based software engineering, prioritizing
stakeholders’ perspectives on the intrinsic worth of candidate features. Similarly, to our
approach, authors in [22] have recently identified challenges in existing requirements prior-
itization techniques, particularly related to their handling of large and complex projects,
issues with the quantification of requirements’ priorities, subjective prioritization of stake-
holders, and the time-intensive nature of prioritizing extensive sets of requirements due to
a lack of automation. To address these concerns, authors in [22] proposed a semi-automated
method employing multi-criteria decision-making and clustering techniques (k-means and
k-means++) alongside Binary Search Trees (BSTs).

Our approach is of a semi-automated nature and is grounded in the principles of
Intuitionistic Fuzzy Sets (IFSs) techniques [17,18]. These techniques are adept at quantify-
ing stakeholders’ hesitation stemming from either their lack of knowledge or indetermi-
nacy—an aspect often overlooked in the current literature. Furthermore, we underscore
the importance of the practical applicability of any scientific approach, a sentiment echoed
by [30] in the context of static software analysis tools, stating that “sophisticated analysis is
not easy to explain or redo manually.” In a recent survey on software requirements prioriti-
zation [31], the observation is made that “Some 158 different techniques were researched
by those studying requirements prioritization, with AHP featuring most prominently; most
solutions were only validated as being operational.” This highlights a lack of empirical
evidence partially stemming from challenges in the practical applicability of many pri-
oritization methods. Specifically, in the domain of requirements/features prioritization,
approaches relying on automated clustering algorithms or machine learning techniques
may face challenges in justifying and explaining results to stakeholders and end users.
In contrast, our suggested approach integrates simple mathematical formulas to calculate
the final prioritization list, enhancing ease of explanation to stakeholders.

Another recent prioritization approach, employing search-based techniques, has been
presented in [32]. This work primarily centers around the cost aspect in requirements prior-
itization and aims to tackle the issue of cost overruns probability. Similar to our approach,
this work endeavors to quantify the inherent uncertainty in requirements prioritization
settings. However, it emphasizes the cost aspect rather than the value or satisfaction aspect
and employs an automated search-based method to handle stakeholders’ uncertainty and
hesitation when evaluating and ranking a set of candidate features.

Additionally, authors in [33] have introduced a novel approach that utilizes users’
ratings derived from questionnaires, incorporating features’ weighting through an optimiza-
tion technique. This innovative method seeks to advise managers on priority optimization
by mining online reviews and automatically assigning weights to features. While this aligns
with our approach’s objective of automatically assigning weights to features, the mathe-
matical approach differs. In our case, we assume that selected experts/stakeholders, rather
than a broad community of users, are entrusted with the responsibility of performing
features’ evaluation and prioritization.

A plethora of prioritization methods has been introduced in the literature, and these
find application in both traditional software development projects and, more recently,
in agile software development projects [4]. While academic publications often emphasize
the mathematical accuracy and elegance of corresponding approaches, practical success
is a primary driver. Methods that demonstrate robust results, particularly under specific
circumstances, tend to prevail in real-world settings [3].

One notable mathematical framework frequently referenced and utilized is the An-
alytic Hierarchy Process (AHP) [34]. AHP involves pairwise comparisons of require-
ments/features based on various criteria, such as their importance to stakeholders, cost/-
duration of implementation, risk, or the potential damage resulting from not implementing
a requirement/feature. Typically, a comparison matrix is constructed for pairwise com-
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parisons, as each item under prioritization needs to be compared to all other candidate
items with respect to each prioritization criterion. If criteria weights need determination,
pairwise comparisons are also conducted for prioritization criteria. AHP stands out for
its ability to provide reliable prioritization results, thanks in part to the computation of
consistency ratios across performed pairwise comparisons. In the realm of AHP-based
techniques for software requirements/features prioritization, a representative example is
the Power Analytic Hierarchy Process (PAHP) method [35]. PAHP combines requirements
prioritized by stakeholders through pairwise comparisons with the power priority vector,
which is generated by stakeholders ranking each other.

Our approach diverges from prioritization methods like PAHP in two notable aspects.
Firstly, our approach operates under the assumption that stakeholders adhere to an ordinal-
scale method (such as the Binary Search Tree method—BST) when assessing candidate
software features. We conduct ordinal-scale, not ratio-scale, pairwise comparisons of fea-
tures, a choice that prioritizes ease of use and scalability for a larger number of features
requiring prioritization. Secondly, we employ an objective method for weight assignment
to the feature orderings, stakeholders, or prioritization criteria. This characteristic renders
our approach more suitable for situations where subjectively ranking stakeholders’ power
or criteria’s importance is challenging.

An older, widely cited AHP-based approach for requirements prioritization is the Cost–
Value technique [6]. This technique utilizes AHP-based pairwise comparisons, with users
assessing the relative value of requirements and software engineers evaluating the relative
development cost of requirements. The approach produces “cost-value” diagrams, provid-
ing managers with justifications for their prioritization decisions. While the Cost-Value
approach strives for simplicity and intuitiveness and avoids the need to determine weights
for the cost and value criteria, it faces scalability limitations compared to our proposed
approach. Moreover, it has not been widely reported to be applied in real settings of
software development projects. Furthermore, our approach advocates for prioritizing
the value of features, expressed through the satisfaction/dissatisfaction of stakeholders,
rather than focusing on the cost aspect. This criterion may be reliably evaluated primarily
by stakeholders with technical expertise in software development, such as experienced
programmers or testers.

Another AHP-inspired approach is Case-based Ranking (CBRank) [36], which inte-
grates machine learning by combining stakeholders’ evaluations with approximations
computed through automated machine learning techniques. CBRank’s primary advantage
lies in significantly reducing human efforts in prioritization, making it particularly suitable
for small and medium projects. However, CBRank faces limitations, including challenges
in handling dependencies among ranked requirements and adapting to ranking updates in
response to changes in the candidate requirements’ list.

A similar approach to CBRank is DRank [37], which takes into account requirements’
dependencies, such as contribution dependencies and business dependencies, specified
using the i* framework. DRank has been demonstrated to outperform CBRank. Given
that many AHP-based approaches involve considerable time for pairwise comparisons,
various methods in the literature attempt to circumvent these comparisons. An example of
such an approach is Value-Oriented Prioritization (VOP) [38], where requirements receive
ratings on a scale from 1 to 10 based on core business values to the software organization.
Core business values are subjectively and somewhat arbitrarily assigned weights, also
on a scale from 1 to 10. VOP employs an additive weighting technique with the aim of
increasing anticipated business value, aligning with a central theme in most agile software
development methods. However, limitations of the VOP method primarily stem from the
subjective nature of the weighting approach, the neglect of requirements’ dependencies,
and the absence of consideration for stakeholders’ uncertainty. Additionally, VOP lacks
scalability, as it was primarily designed for use in small software projects implemented by
small software development companies.
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In addition to AHP, another widely referenced approach in the literature is Quality
Functional Deployment (QFD) [39]. QFD employs a matrix where clients’ expectations are
chronologically arranged, providing implementation guidelines to developers. However,
QFD is a subjective and rather complex technique, primarily suitable for small projects due
to scalability issues and challenges related to handling inconsistencies.

Within the realm of agile software development, a popular approach adopted by many
organizations, various methods are employed for requirements prioritization. While these
methods are generally user-friendly, they often encounter scalability issues and struggle
with handling dependencies among requirements, stakeholders’ uncertainty, and the sub-
jective nature of decision making. Notable methods in agile development include the
Planning Game, the $100 Test/Allocation Method (also known as Cumulative Voting),
the MoSCoW technique, and the Multi-voting system method [3]. According to [3], the ten
most referenced prioritization methods in software engineering literature are AHP, Quality
Functional Deployment, Planning Game, Binary Search Tree, $100 Allocation (Cumula-
tive Voting), Cost–Value approach, Wieger’s Matrix, Win–Win, Pairwise comparisons,
and Priority groups.

The majority of requirement/feature prioritization methods in the literature that assign
weights to stakeholders often do so arbitrarily or through ad hoc and subjective decisions
made by a designated decision maker [8]. Some methods, such as the one outlined in [28],
determine weight assignments using a schema in which each stakeholder assesses the
importance of other stakeholders in the group. The reliance on subjectively decided weights
for stakeholders or prioritization criteria may introduce bias into rankings, as altering these
weights can lead to significant variations in the final priorities of candidate features [38].

In contrast to existing subjective approaches, our method leverages the mathematical
framework of Intuitionistic Fuzzy Sets (IFSs) to quantify stakeholders’ hesitation and
uncertainty, providing objective weights to stakeholders or selected prioritization criteria.
This approach is considered more preferable and realistic in many cases, as it avoids
the need for subjective and ad hoc assignments of stakeholders’ and criteria weights.
For instance, this assumption could be realistic in prioritization case studies where all
stakeholders possess equal and high levels of experience, making them equally significant
in decision making for the prioritization of candidate software features.

2.3. Stakeholders’ Satisfaction and Dissatisfaction as Prioritization Criteria

In the application and validation of our approach, we employed stakeholders’ satisfac-
tion and dissatisfaction as prioritization criteria in the analyzed case study. We requested
the involved stakeholders to assess their satisfaction with the implementation of each can-
didate feature in the upcoming software release and their dissatisfaction with the absence
of each feature in the same release. Authors in [15], in their review of the literature on
software requirements prioritization studies, highlighted that “the majority of prioritization
techniques ignore the extent of conjoint consideration of satisfaction and dissatisfaction as
feature/requirement prioritization criteria.” This observation is surprising, as the notions
of satisfaction and dissatisfaction are inherently intuitive and easy to evaluate. In contrast,
other prioritization criteria may be too specific for certain stakeholders, potentially increas-
ing the level of indeterminacy and hesitation in stakeholder rankings. For instance, not
all stakeholders may feel confident in evaluating the development cost or the required
duration to implement each candidate software feature.

In the prioritization case study under analysis, we initially provided guidance to the
participating stakeholders on the application of the Binary Search Tree (BST) prioritiza-
tion method [16]. The objective was to systematically and methodically rank all candidate
features in the product backlog of the EDUC8 project [14] based on satisfaction and dissatis-
faction criteria. The overarching goal of the case study was to identify which features must,
should, or have be implemented in the second release of the EDUC8 system. The selection
of the BST method was motivated by its methodical, systematic, and practical ordinal scale-
based prioritization approach, which has demonstrated scalability with medium-sized sets
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of features [16]. Additionally, the BST method was chosen due to experimental validation in-
dicating that it requires fewer evaluations (comparisons) and generally yields more accurate
results compared to methods such as AHP, Planning Game, $100 Test method, and the Plan-
ning Game combined with AHP [25]. In the application of the BST method, each involved
stakeholder (or the stakeholders collectively as a group) was instructed to systematically
construct a binary search tree. This involved comparing features and assigning them to
respective tree nodes corresponding to their positions (ranks). Following the application of
the method, the feature positioned at the extreme left node of the binary tree held the lowest
rank, while the feature at the extreme right node held the highest rank [40].

A fundamental premise of the Binary Search Tree (BST) method involves the require-
ment for each stakeholder (or the stakeholders collectively as a group) to conduct a com-
parative evaluation of all candidate features. The objective is to construct a binary search
tree, with the total number of nodes equal to the count of all candidate features [41]. Conse-
quently, under normal circumstances, each resulting binary tree is expected to exhibit no
tied or unranked features. However, in the application of our approach to the EDUC8 case
study, we aimed to explore the impact of stakeholders’ hesitation and lack of knowledge
regarding the ranks of features based on satisfaction and dissatisfaction. Stakeholders were
explicitly informed of the option to assign more than one candidate feature to the same tree
node if they lacked confidence in distinguishing the relative value (satisfaction/dissatisfac-
tion) of these features. Moreover, stakeholders were given the flexibility to leave certain
features unassigned to any tree node if they faced uncertainty or hesitation about the value
(satisfaction/dissatisfaction) of these features.

In a departure from the traditional application of the BST method, stakeholders were
also made aware that they could assign more than one feature to the same node of the
binary tree if they believed that these features should be positioned at the same rank,
particularly concerning the satisfaction/dissatisfaction criterion. Thus, in the performed
case study, we meticulously instructed each stakeholder to perform this modified variant
of the BST ordinal-scale prioritization method twice: once for ranking the features based
on satisfaction if a feature is delivered in the next system release, and once based on
dissatisfaction if a feature is not delivered in the next system release.

As previously mentioned, an inherent asymmetry surfaced between any two rankings
provided by the same stakeholder, indicating that the levels of satisfaction and dissatis-
faction varied for numerous features. Contrary to the expectation that satisfaction and
dissatisfaction would be relatively straightforward for stakeholders to discern compared
to more intricate prioritization criteria (such as the cost of requirement implementation,
potential penalties or damages resulting from not implementing a requirement, risk associ-
ated with realizing a requirement, volatility of a requirement, etc. [9]), the rankings derived
from stakeholders still exhibited indeterminacy and hesitation. This effect persisted despite
stakeholders employing a systematic ordinal scale-based approach, specifically the Binary
Search Tree (BST) method, to compare candidate features and establish their rankings.

2.4. Fuzzy Sets-Based Methods in Software Requirements/Features Prioritization

We are particularly focused on examining the asymmetry between satisfaction and
dissatisfaction and the degree of stakeholder hesitation in the computation of features’
priorities. The foundational mathematical framework of the proposed approach in this paper,
as previously mentioned, relies on the principles of Intuitionistic Fuzzy Sets (IFSs) [17,18].
Fuzzy set concepts in the realm of software features ranking have also been explored in [42],
who introduced a fusion of Fuzzy Set theory and Soft Set theory to address uncertainty
in determining criteria weights and importance. This approach involved the computation
of weights using fuzzy-soft sets derived from raw data and was compared with other
fuzzy-based methodologies. Additionally, authors in [43] presented a method that combines
a rough-fuzzy approach with aggregation techniques to ascertain weights and prioritize
requirements, especially when stakeholders furnish linguistic subjective evaluations. This
enables prioritization and aggregation within a subjective context, taking into consideration
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the side effects of interactions. Moreover, it incorporates the aggregation of interacting
features using two-additive fuzzy measures.

Fuzzy sets provide a valuable framework for addressing uncertainty and vagueness in
the feature prioritization process, allowing for the representation of a degree of membership
ranging from 0 to 1, in contrast to the binary 0 or 1 membership of classic sets. Intuitionistic
Fuzzy Sets (IFSs), an extension of fuzzy sets, further enhance this representation by incor-
porating not only the degree of membership and non-membership but also the degree of
indeterminacy. This extension is particularly beneficial in features prioritization scenarios,
where stakeholders may possess diverse opinions or knowledge about the features. In our
previous research studies, we integrated IFSs into features prioritization to effectively
handle the uncertainty inherent in stakeholder perspectives. Specifically, we proposed
an approach that quantifies the asymmetry between satisfaction and dissatisfaction when
employed as prioritization criteria. The final priority is determined concerning satisfac-
tion and dissatisfaction by calculating the objective weights of the criteria/rankings [12].
Additionally, IFSs played a pivotal role in another approach for features prioritization,
where they were utilized to aggregate stakeholders’ ratings expressing positive, nega-
tive, and “neutral/don’t know” assessments. This approach is further supported by a
consensus-reaching technique [44].

Fuzzy sets have found application in enhancing classical prioritization techniques,
notably in the Fuzzy Analytic Hierarchy Process (AHP). In the Fuzzy AHP, pairwise com-
parisons of candidate features and hierarchical criteria are conducted using linguistic terms
expressed in triangular or trapezoidal functions, deviating from traditional numerical
values [45]. Recognizing the scalability challenges associated with AHP and similar tech-
niques, especially in extensive software projects where stakeholders need to evaluate nu-
merous features, we introduced a Recommender System (RS) within the context of features
prioritization. This RS leverages collaborative filtering techniques to mitigate informa-
tion overload during the rating of candidate features and integrates Intuitionistic Fuzzy
Sets (IFSs) to adeptly represent stakeholders’ uncertainties [46]. The effectiveness of this
approach was validated using a publicly available dataset, yielding promising results. More-
over, researchers have explored the combination of techniques from neural networks with
fuzzy AHP for ranking requirements [45]. Additionally, a fusion of neural networks with a
fuzzy inference system was employed to handle uncertainties in the context of planning the
next software release [47]. These efforts showcase the versatility of fuzzy sets in addressing
complexities and uncertainties within various aspects of the software development lifecycle.

In the current study, we transform the features’ rankings, derived from the binary
search trees provided by stakeholders, into corresponding Intuitionistic Fuzzy Sets (IFSs).
This preference for IFSs over alternative mathematical constructs stems from their unique
ability to extend Fuzzy Sets by incorporating the concept of “hesitation”. In an IFS, each
element possesses a degree of both membership and non-membership simultaneously.
Notably, the values representing these two aspects, namely the membership and non-
membership values, do not necessarily sum up to unity. The remaining portion is identified
as the “hesitation degree”. The intrinsic nature of hesitation within IFSs renders them
particularly well-suited for capturing nuances in items’ rankings, such as tied items or
unranked items. This inherent capability of IFSs proves instrumental in mathematically
quantifying stakeholders’ indeterminacy and their lack of knowledge when confronted
with the task of evaluating a set of alternatives.

Subsequently, we employ a quantification method, as proposed in [19], to calculate
the level of hesitation present in features’ rankings. This method facilitates the automated
computation of objective weights for the features rankings. Our approach assigns higher
importance, signified by elevated weights, to features’ rankings associated with lower
levels of stakeholders hesitation. The rationale behind this prioritization is rooted in the
understanding that rankings with reduced hesitation are indicative of lesser indeterminacy
and greater knowledge on the part of stakeholders. Subsequently, we aggregate all features’
rankings from stakeholders using these objective weights. The culmination of this process
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results in the proposal of a final prioritization list for the candidate features, ensuring due
consideration of stakeholders’ inherent hesitation across all rankings.

3. Problem and Method Description
3.1. Mapping Features Rankings into IFSs

The proposed approach adopts the concepts of Intuitionistic Fuzzy Sets (IFSs) to repre-
sent features’ rankings derived from stakeholders’ evaluations. Let X denote a universe of
discourse. An IFS C in X is defined as follows [17,18]:

C = {< x, µC(x), uC(x), πC(x) > | x ∈ X} (1)

where µC : X → [0, 1], uC : X → [0, 1], 0 ≤ µC(x) + uC(x) ≤ 1, and πC(x) = 1− µC(x)− uC(x)
for all x ∈ X. Functions µC(x) and uC(x) represent, respectively, the degree of membership
and the degree of non-membership of an element x ∈ X to C, while function πC(x)
represents the hesitation degree of whether x ∈ X belongs or does not belong to C.

Considering a software features prioritization problem, let F = { f!, f2, . . . , fn} denote
a set of functionally independent software features (composite functional requirements)
candidate for prioritization, development, and inclusion in the next software release. All
candidate features in this set, comprising the software product backlog, must be assessed
and evaluated by stakeholders {s!, s2, . . . , sk} with respect to selected prioritization criteria.
This work assumes that the prioritization criteria adopted by stakeholders are satisfaction
(S) from including a feature and dissatisfaction (D) from excluding a feature in/from the
next software release. Each stakeholder sk provides two ranking vectors for the candidate
features based on these prioritization criteria, applying an ordinal-scale method (e.g.,
Simple Ranking, Binary Search Tree, or Bubble Sort) twice. The resulting ranking vectors
given by stakeholder sk are expressed as {RS

k
1, RS

k
2, . . . , RS

k
n} and {RD

k
1, RD

k
2, . . . , RD

k
n},

where RS
k
i is the rank (position) of feature fi among all other features with respect to

criterion S (satisfaction) and RD
k
i is the rank (position) fi among all other features with

respect to criterion D (dissatisfaction).
By applying the technique suggested in [19], each of these two ranking vectors pro-

vided by each stakeholder sk can be represented by corresponding vectors of Intuitionistic
Fuzzy Numbers (IFNs). This technique utilizes two functions, namely worsek

pj
( fi) and

betterk
pj
( fi), defined as follows: For each feature fi, worsek

pj
( fi) is the total number of

features surely worse than feature fi with respect to the chosen prioritization criterion
pj, according to the ranking provided by stakeholder sk. Similarly, for each feature fi,
betterk

pj
( fi) is the total number of features surely better than feature fi with respect to the

prioritization criterion pj, according to the ranking provided by stakeholder sk. The follow-
ing three Equations (2)–(4), are then used to compute the membership, non-membership,
and hesitation degree of the IFS Pj = {< fi, µk

pj
( fi), uk

pj
( fi), πk

pj
( fi) > | fi ∈ F}. In particu-

lar, Pj is an IFS that represents, in terms of IFNs, the ranking vector of the features Rp
k
j given

by stakeholder sk with respect to the prioritization criterion pj. The membership degree
µk

pj
( fi) expresses how much feature fi satisfies the criterion pj, the non-membership degree

uk
pj
( fi) expresses how much feature fi fails to satisfy the criterion pj, and the hesitation

degree πk
pj
( fi) denotes the level of indeterminacy of whether feature fi satisfies/dissatisfies

criterion pj.
µk

pj
( fi) =

worsek
pj
( fi)

n − 1
(2)

uk
pj
( fi) =

betterk
pj
( fi)

n − 1
(3)

πk
pj
( fi) = 1 − µk

pj
( fi)− uk

pj
( fi) (4)

where 0 ≤ µk
pj
( fi) + uk

pj
( fi) ≤ 1.
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Example: Let us illustrate the application of the proposed method through a hy-
pothetical scenario. Assume a stakeholder evaluates six candidate features, denoted as
f1, f2, . . . , f6, based on the satisfaction criterion. The resulting ranking vector from the
stakeholder is {1, 3, 3, 2, N, N}, indicating that f! is ranked 1st, f4 is 2nd, f2 and f3 are
tied for 3rd (suggesting potential indeterminacy or difficulty in distinguishing satisfaction
levels for these features), and f5 and f6 are not ranked, reflecting uncertainty or a lack of
knowledge in comparing these features.

Applying Equations (2)–(4), this ranking vector (i.e., {1, 3, 3, 2, N, N}) can be trans-
formed into the following vector of IFNs: {(0.6, 0, 0.4), (0, 0.4, 0.6), (0, 0.4, 0.6), (0.4, 0.2,
0.4), (0, 0, 1), (0, 0, 1)} where, for example, (1) the membership, (2) the non-membership,
and (3) the hesitation degrees of the feature f!, with regard to the satisfaction criterion, are
respectively calculated as follows:

(1)
3
5
= 0.6, (2)

0
5
= 0, (3) 1 − 0.6 − 0 = 0.4

3.2. Quantifying the Hesitation of Stakeholders

The mapping of features’ rankings into IFNs (by using Equations (2)–(4)) can be
particularly useful to quantify the total hesitation H(Rp

k
j ) associated with each ranking

vector Rp
k
j given by stakeholder sk when ranking the candidate software features with

respect to the prioritization criterion pj. This total hesitation H(Rp
k
j ) is calculated by

applying the following formula [19]:

H(Rp
k
j ) =

n

∑
i=1

(1 − µk
pj
( fi)− uk

pj
( fi)) =

n

∑
i=1

πk
pj
( fi) (5)

Example: In the running example, we can use Equation (5) to quantify the total
hesitation of the stakeholder who provided the previously considered ranking vector of the
six candidate features based on the satisfaction criterion (i.e., the vector {1, 3, 3, 2, N, N}).
According to Equation (5), the total hesitation “inherent” in this ranking vector is calculated
as equal to: 0.4 + 0.6 + 0.6 + 0.4 + 1 + 1 = 4.0, where this result is calculated by summing
the hesitation degrees of the IFNs in the corresponding IFNs vector: {(0.6, 0, 0.4), (0, 0.4,
0.6), (0, 0.4, 0.6), (0.4, 0.2, 0.4), (0, 0, 1), (0, 0, 1)}. Let us also assume that another stakeholder
also ranked the same six features, by considering satisfaction as prioritization criterion,
and he/she provided the ranking vector {1, 3, 4, 2, 5, 6} (i.e., in this ranking vector, there are
no tied and unranked features). Based on Equations (2)–(4), this second ranking vector can
be also mapped into a corresponding IFNs vector: {(1, 0, 0), (0.6, 0.4, 0), (0.4, 0.6, 0), (0.8,
0.2, 0), (0.2, 0.8, 0), (0, 1, 0)}, where the total hesitation associated with the ranking vector
provided by the second stakeholder is quantified as equal to 0.

The total hesitation, as computed by Equation (5), has been proven [19] to be equal
to the sum of two hesitation components: (i) the hesitation due to the indeterminacy
Hindet(Rp

k
j ) of stakeholder sk, expressed by the tied features in the ranking vector Rp

k
j that

they provide; (ii) the hesitation due to lack of knowledge Hlack_know(Rp
k
j ) of stakeholder sk,

expressed by the unranked features in the ranking vector Rp
k
j that they provide. These two

hesitation components are calculated, respectively, by the following two Equations [19]:

Hindet(Rp
k
j ) =

t

∑
i=1

(
ki(ki − 1)

n − 1

)
(6)

Hlack_know(Rp
k
j ) =

(n − m)m
n − 1

+ m (7)

where t is the total number of different ranks (positions) in the feature ranking Rp
k
j , ki is

the total number of features positioned at the same rank i, and m is the total number of
unranked features.
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Example: In the running example, we can use Equations (6) and (7) to quantify the
two components comprising the first stakeholder’s hesitation. In particular, by applying
Equation (6), the first hesitation component (i.e., the hesitation due to the stakeholder’s
indeterminacy that is expressed by tied features in the ranking) is equal to:

1(1 − 1)
6 − 1

+
1(1 − 1)

6 − 1
+

2(2 − 1)
6 − 1

= 0 + 0 +
2
5
= 0.4

By applying Equation (7), the second hesitation component (i.e., the hesitation due
to the stakeholder’s lack of knowledge expressed by unranked features in the ranking) is
calculated equal to:

(6 − 2)2
6 − 1

+ 2 =
8
5
+ 2 = 1.6 + 2 = 3.6

It should be noticed that the total hesitation, by considering both hesitation compo-
nents, is equal to 0.4 + 3.6 = 4.0, and therefore, it is equal to the value that was calculated
before by using Equation (5).

The method proposed in [19] for calculating the indeterminacy component Hindet(Rp
k
j )

in the total hesitation has a notable limitation. This limitation arises from the fact that the
indeterminacy component, as quantified by Equation (6), does not account for the positions
(ranks) of tied features in the ranking vector Rp

k
j . Consequently, this approach may assign

the same indeterminacy value to any two ranking vectors with the same total number of
tied features but in different rank positions.

This limitation holds implications for accurately quantifying the hesitation arising
from a stakeholder’s indeterminacy. In practice, stakeholders are often expected to assign
the most perceived valuable features to different, highly prioritized positions in their
rankings. Consequently, a scenario with a significant number of tied features occupying
the same top position in a ranking vector could signify high stakeholder indeterminacy.
Conversely, stakeholders may face challenges in distinguishing among the priorities of less
valuable (unimportant) features, leading to the placement of these features at the same,
very low position in a ranking vector. As a result, a substantial number of tied features
at the same very low position in a features ranking vector might not consistently indicate
high stakeholder indeterminacy, unlike the scenario where tied features are concentrated at
top positions in the ranking vector.

Issues related to tied priorities in requirements have been documented in various re-
quirements prioritization case studies, shedding light on potential challenges in the process.
For instance, authors in [48] conducted a prioritization case study within a market-driven
software development project. In their findings, they observed a noteworthy phenomenon
where all stakeholders assigned the same priority to numerous requirements, particularly
those deemed to have very low priority values. This observation aligns with a specific
challenge known as the “problem of zeros” within the context of the Cumulative Voting
prioritization method [49]. This issue, as identified in [50], manifests when stakeholders
consistently assign zero rates or very low rates to a considerable number of requirements,
often indicating a collective perception of these requirements as unimportant.

These instances highlight the complexities involved in eliciting distinct priorities, es-
pecially for less critical requirements. The tendency for stakeholders to converge on similar
low-priority assessments raises questions about the effectiveness of certain prioritization
methods in capturing the nuanced distinctions among less crucial features or requirements.
Addressing such challenges becomes crucial for refining prioritization approaches and en-
suring a more accurate representation of stakeholders’ preferences, particularly in scenarios
where certain features are collectively considered less significant.

Consequently, in order to consider the effect of the positions of the tied features, we
can also determine, in an alternative way, the indeterminacy component Hindet(Rp

k
j ) of the

total hesitation in a stakeholder’s ranking. In particular, we can modify the Equation (6)
as follows:
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Hindet(Rp
k
j ) =

t

∑
i=1

(
ki(ki − 1)

n − 1

)
(t − i + 1) (8)

Therefore, the overall hesitation in the ranking vector Rp
k
j provided by stakeholder

sk, when assessing the candidate features according to criterion pj, is the sum of the inde-
terminacy component Hindet(Rp

k
j ), representing tied features, and the lack of knowledge

component Hlack_know(Rp
k
j ), representing unranked features:

H(Rp
k
j ) = Hindet(Rp

k
j ) + Hlack_know(Rp

k
j ) (9)

where, Hlack_know(Rp
k
j ) is determined using Equation (7), while Hindet(Rp

k
j ) can be com-

puted using either Equation (6) or the modified Equation (9).
Example: In the hypothetical scenario mentioned above, consider six candidate fea-

tures f!, f2, f3, f4, f5, and f6 ranked by two stakeholders based on the satisfaction criterion.
The ranking vector of features provided by the first stakeholder is {1, 3, 3, 2, N, N}, while
the ranking vector of features provided by the second stakeholder is {1, 2, 2, 3, N, N}. These
two ranking vectors have the same total number of tied features (2), but the tied features
in these vectors appear at different positions. The first stakeholder expresses certainty
about satisfaction with the delivery of the first feature ( f!) and the second most preferred
feature ( f4), while expressing hesitation about features f2 and f3, ranking both at the third
(lowest) position in the satisfaction criterion. The second stakeholder is certain about the
most valuable feature ( f1) and the least preferred feature ( f4) according to the satisfaction
criterion. However, there is hesitation about features f2 and f3, ranking both at the second
position. It is reasonable to conclude that the hesitation of the first stakeholder is slightly
less than the hesitation of the second stakeholder. This is because the former is certain
about the two most valuable features, while the latter is certain about the most preferable
feature but less certain about the second feature in terms of the satisfaction criterion.

We can use Equations (2)–(4) to transform the two ranking vectors into two vectors of
Intuitionistic Fuzzy Numbers (IFNs): {(0.6, 0, 0.4), (0, 0.4, 0.6), (0, 0.4, 0.6), (0.4, 0.2, 0.4), (0,
0, 1), (0, 0, 1)} (representing the ranking vector by the first stakeholder), {(0.6, 0, 0.4), (0.2,
0.2, 0.6), (0.2, 0.2, 0.6), (0, 0.6, 0.4), (0, 0, 1), (0, 0, 1)} (representing the ranking vector by the
second stakeholder).

By applying Equation (6), the hesitation of both stakeholders due to their indetermi-
nacy (expressed by the tied features in the respective rankings) is the same and calculated
equal to 0.4 for both stakeholders:

1(1 − 1)
6 − 1

+
1(1 − 1)

6 − 1
+

2(2 − 1)
6 − 1

= 0 + 0 +
2
5
= 0.4 (stakeholder #1)

1(1 − 1)
6 − 1

+
2(2 − 1)

6 − 1
+

1(1 − 1)
6 − 1

= 0 +
2
5
+ 0 = 0.4 (stakeholder #2)

By applying Equation (8), however, the hesitation values due to the stakeholders’
indeterminacy are different and they are calculated as follows:

1(1−1)
6−1 (3 − 1 + 1) + 1(1−1)

6−1 (3 − 2 + 1) + 2(2−1)
6−1 (3 − 3 + 1) = 0 + 0 + 2

5 = 0.4 (stakeholder #1)

1(1−1)
6−1 (3 − 1 + 1) + 2(2−1)

6−1 (3 − 2 + 1) + 1(1−1)
6−1 (3 − 3 + 1) = 0 + 4

5 + 0 = 0.8 (stakeholder #2)

3.3. Computing Rankings Weights and Features Priorities

When stakeholders prioritize a large set of candidate software features, they may leave
some features with unknown ranks or assign multiple features the same rank, possibly due
to their lack of knowledge and indeterminacy. In this way, stakeholders express hesitation
regarding the evaluation of the candidate features. If many tied and unknown features
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are present in the rankings, the total hesitation of stakeholders could be significant. This
issue needs consideration as high total hesitation values in feature rankings may potentially
negatively impact the quality and validity of the final prioritization results. In our proposed
method, we explicitly consider the hesitation and uncertainty exhibited by stakeholders
engaged in the feature prioritization process. We have the flexibility to leverage either
the individual hesitation components (attributed to tied or unranked features) or the total
hesitation value (arising from both tied and unranked features) to quantify the significance
of rankings provided by stakeholders in the prioritization process. Specifically, our method
employs a technique outlined in [51] for determining objective weights, often referred to as
“entropy” weights, in intuitionistic fuzzy decision-making scenarios.

Unlike many manual and subjective prioritization methods where weights are as-
signed arbitrarily and subjectively to stakeholders, our approach introduces a key concept
of automatically calculating objective weights for stakeholders. The underlying principle is
that the higher the hesitation associated with a specific stakeholder’s ranking of features
according to a chosen criterion, the smaller the weight assigned to that ranking in the com-
putation of the final features’ priorities based on the selected criterion. Consequently, this
technique assigns larger weights to rankings (and, by extension, stakeholders expressing
them) associated with less hesitation.

Suppose that n features { f1, f2, . . . , fn} are ranked by each stakeholder in a set
{s1, s2, . . . , sk} according to a prioritization criterion pj. The weight W(Rp

l
j) of the ranking

vector Rp
l
j provided by stakeholder sl (1 ≤ l ≤ k) when ranking the candidate features

with respect to criterion pj can be calculated as follows [51]:

W(Rp
l
j) =

1 − Havg(Rp
l
j)

k − ∑k
l=1 Havg(Rp

l
j)

(10)

where 1 ≤ l ≤ k, W(Rp
l
j) ∈ [0, 1], ∑k

l=1 W(Rp
l
j) = 1, Havg(Rp

l
j) =

H(Rp
l
j)

n , and

0 ≤ Havg(Rp
l
j) ≤ 1.

The final priority of each software feature fi (1 ≤ i ≤ n), according to the prioritization
criterion pj, is derived by considering the objective weights of the ranking vectors (as
computed by Equation (10)). Specifically, the priority of each software feature can be
calculated by a measure called the weighted correlation coefficient (WCCi(F∗, fi)). This
measure represents the “distance” between each feature fi and the “ideal” feature F∗,
which is the feature associated with a rank expressed by the following Intuitionistic Fuzzy
Number (IFN): (µ(F∗), u(F∗), π(F∗)) = (1, 0, 0) (i.e., an IFN having a membership degree
equal to 1). The priority WCCi(F∗, fi) is calculated as follows [51]:

WCCi(F∗, fi) =
∑k

l=1 W(Rp
l
j)µpj( fi)√

∑k
l=1 W(Rp

l
j)
(

µ2
pj
( fi) + u2

pi
( fi)

) (11)

Example: Let us assume that a specific stakeholder ranked a rather large software
feature set which includes 27 candidate software features f1, f2, . . . , f27 based on satisfac-
tion/dissatisfaction from including/excluding features as part of the next software release.
Two feature ranking vectors are derived by evaluating the candidate features based on
these two (asymmetric) criteria, and these rankings are both shown in Table 1 along with
the respective IFN that expresses each feature rank. Please notice that both ranking vectors
contain unranked and tied features. As discussed before, the hesitation that is inherent in
each ranking vector can be quantified (by using Equation (9)) as the sum of the hesitation
due to tied features (i.e., the indeterminacy component) and the hesitation due to unranked
features (i.e., the lack of knowledge component), where, in particular, the hesitation due to
tied features can be calculated either by Equation (6) or by Equation (8).
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Table 1. Example of feature rankings and corresponding IFNs.

Feature
Ranking of Features

According to Satisfaction
Ranking of Features

According to Dissatisfaction
Position µ u π Position µ u π

f1 1 0.885 0 0.115 3 0.462 0.269 0.269

f2 2 0.846 0.038 0.115 2 0.577 0.115 0.308

f3 3 0.615 0.077 0.308 N 0 0 1.000

f4 4 0.462 0.308 0.231 1 0.731 0 0.269

f5 3 0.615 0.077 0.308 1 0.731 0 0.269

f6 3 0.615 0.077 0.308 2 0.577 0.115 0.308

f7 3 0.615 0.077 0.308 5 0.269 0.462 0.269

f8 3 0.615 0.077 0.308 2 0.577 0.115 0.308

f9 3 0.615 0.077 0.308 N 0 0 1.000

f10 4 0.462 0.308 0.231 1 0.731 0 0.269

f11 4 0.462 0.308 0.231 2 0.577 0.115 0.308

f12 4 0.462 0.308 0.231 3 0.462 0.269 0.269

f13 5 0.346 0.462 0.192 7 0.115 0.654 0.231

f14 5 0.346 0.462 0.192 8 0.077 0.731 0.192

f15 5 0.346 0.462 0.192 3 0.462 0.269 0.269

f16 6 0.192 0.577 0.231 9 0 0.769 0.231

f17 6 0.192 0.577 0.231 7 0.115 0.654 0.231

f18 6 0.192 0.577 0.231 5 0.269 0.462 0.269

f19 6 0.192 0.577 0.231 9 0 0.769 0.231

f20 7 0.115 0.731 0.154 6 0.192 0.577 0.231

f21 7 0.115 0.731 0.154 N 0 0 1.000

f22 8 0.077 0.808 0.115 4 0.385 0.385 0.231

f23 9 0 0.846 0.154 4 0.385 0.385 0.231

f24 9 0 0.846 0.154 6 0.192 0.577 0.231

f25 N 0 0 1.000 N 0 0 1.000

f26 N 0 0 1.000 5 0.269 0.462 0.269

f27 N 0 0 1.000 N 0 0 1.000

Total Hesitation = 8.230 Total Hesitation = 10.692

Average Total Hesitation (Total
Hesitation/No. of Features) = 0.304

Average Total Hesitation (Total
Hesitation/No. of Features) = 0.396

Weight = 0.535 Weight = 0.464

In this example, for simplicity, only Equation (6) is considered, neglecting the positions
of tied features in each feature ranking. The total hesitation values in the ranking vectors
are presented at the bottom of Table 1, along with the average total hesitation that serves as
input in Equation (10) for computing the objective weight of each ranking. The objective
weight of each ranking (and, consequently, the objective weight for the corresponding
criterion used to derive the ranking) is displayed in the last row of Table 1. It is noteworthy
that the weight of the first ranking provided by the stakeholder based on the satisfaction cri-
terion is slightly larger (0.535) than the weight of the second ranking (0.464) provided by the
same stakeholder based on the dissatisfaction criterion. This discrepancy is attributed to the
smaller total hesitation of the stakeholder in the first ranking (8.230) compared to the total
hesitation in the second ranking (10.692). These weights are then applied in Equation (11)
to calculate final priority values for the candidate features, expressed by corresponding
weighted correlation coefficients. All intermediate results of the computations applied by
Equation (11) are detailed in Table 2, with the final priority values (WCC values) of the
candidate features shown in the last column of Table 2.
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Table 2. Weighted correlation coefficients (final features’ priorities).

Feature
Results in the

Numerator
of Equation (11)

Results in the
Denumerator

of Equation (11)

WCC (Final
Features’
Priorities)

f1 0.688 0.419 0.133 0.551 0.743 0.926

f2 0.721 0.384 0.161 0.545 0.738 0.977

f3 0.329 0.206 0 0.206 0.454 0.726

f4 0.587 0.165 0.248 0.413 0.643 0.913

f5 0.669 0.206 0.248 0.454 0.674 0.993

f6 0.598 0.206 0.161 0.367 0.606 0.987

f7 0.454 0.206 0.133 0.339 0.582 0.781

f8 0.598 0.206 0.161 0.367 0.606 0.987

f9 0.329 0.206 0 0.206 0.454 0.726

f10 0.587 0.165 0.248 0.413 0.643 0.913

f11 0.515 0.165 0.161 0.326 0.571 0.903

f12 0.462 0.165 0.133 0.297 0.545 0.846

f13 0.239 0.178 0.205 0.383 0.619 0.386

f14 0.221 0.178 0.251 0.429 0.655 0.337

f15 0.400 0.178 0.133 0.311 0.558 0.717

f16 0.103 0.198 0.275 0.473 0.688 0.150

f17 0.157 0.198 0.205 0.403 0.635 0.247

f18 0.228 0.198 0.133 0.331 0.575 0.397

f19 0.103 0.198 0.275 0.473 0.688 0.150

f20 0.151 0.293 0.172 0.465 0.682 0.222

f21 0.062 0.293 0 0.293 0.541 0.114

f22 0.220 0.352 0.138 0.490 0.700 0.314

f23 0.179 0.383 0.138 0.521 0.722 0.248

f24 0.089 0.383 0.172 0.555 0.745 0.120

f25 0 0 0 0 0 0

f26 0.125 0 0.133 0.133 0.364 0.344

f27 0 0 0 0 0 0

Finally, it is important to note that in Equation (10), the objective weight of each
ranking vector Rl

p is computed by considering the average total hesitation Havg(Rl
p) in

the ranking vector Rl
p, whereas the total hesitation H(Rl

p) is computed by Equation (9).
Following the concept of “entropy” [51], if the entropy value (i.e., the hesitation) in a
ranking vector is small across all candidate software features, it should provide more
valuable information for the final prioritization of the features, and this ranking should
receive a higher weight.

As a distinctive feature of our approach, it calculates objective weights for the stake-
holders’ ranking vectors. This approach is particularly relevant in scenarios where all
stakeholders are highly experienced in their respective domains, making it challenging to
subjectively decide and justify different weights for each stakeholder’s importance.

When stakeholders’ evaluations carry varying degrees of importance, it becomes bene-
ficial to account for the significance or weight assigned to each stakeholder in determining
the final prioritization outcome. In such instances, a combination of both objective and
subjective weighting can be employed, similar to the approach proposed by [52].

Specifically, a subjective weight Wsubj(Rl
p) can be considered for the ranking vector

Rl
p provided by stakeholder sl (where 1 ≤ l ≤ k) when ranking the candidate features

concerning criterion pj. Here, Wsubj(Rl
p) is in the range [0, 1], and ∑k

l=1 Wsubj(Rl
p) = 1.

The final combined weight for the ranking vector can then be computed by incorporating
both objective and subjective weights, expressed as Wcomb(Rl

p) = αW(Rl
p) + βWsubj(Rl

p),
subject to α + β = 1, α ≥ 0, and β ≥ 0. Here, the coefficients α and β represent the relative
importance of the objective and subjective weights, respectively.
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4. Prioritization Case Study
4.1. Case Study Context

To validate the proposed prioritization approach, we conducted a case study within
the EDUC8 (EDUCATE) software development project. EDUC8 focuses on delivering an
integrated information technology solution for the dynamic recommendation and execution
of personalized academic plans in higher education settings [14]. The EDUC8 software
system [53] provides a unified software environment for various stakeholders, including
academic advisors, educators, managers, and administrative personnel within Higher
Education Institutions (HEIs). EDUC8 is designed to address the diverse nature of their
tasks, responsibilities, and personal experiences.

The EDUC8 project underwent a two-year iterative analysis, design, and development
process, resulting in the creation of three system releases. These releases followed a struc-
tured approach involving requirements analysis, formulation of functional specifications,
software architecture design and implementation, rigorous testing, validation, and even-
tual software deployment. The initial system release underwent in-house testing at the
University of Thessaly, involving key stakeholders such as academic advisors responsible
for guiding university students in selecting lifelong learning programs.

During this testing phase, stakeholders were actively engaged in providing feedback,
maintaining a journal of suggestions for improvements, additional features, and change
requests pertaining to software stability and usability. Prior to the features ranking and
prioritization session with stakeholders, the EDUC8 development team, in collaboration
with researchers involved in the current study, conducted a comprehensive brainstorming
session. The objective was to compile a list of features to be considered for implementation
in the second system release. Following a thorough review and analysis of the identified
features, the stakeholder team collectively settled on 27 candidate features for inclusion in
the EDUC8 software system. These features are meticulously detailed in Table 3.

As previously mentioned, the proposed approach operates under the assumption
that candidate software features are independent functional components. This implies
that these features are designed to have minimal functional, precedence, or coupling
interdependencies among them [23]. The case study presented in this paper adheres to
this assumption. This non-general assumption holds true for all features evaluated in the
case study, as each feature in the list presented in Table 3 represents a coherent set of
functionalities fulfilling a specific functional goal of the EDUC8 system.

Table 3. Candidate Features of EDUC8.

Feature Feature Name Description (Functional Goal)

f1 Incomplete tasks view View pending or incomplete tasks associated with a particular workflow

f2 Push notifications Add push notifications as a way of alerting users to information from EDUC8

f3 Multiple file upload mechanism Upload multiple files using a single input file element

f4 Enhanced language options Add a new menu as a language selector

f5 Drag and drop feature Copy, reorder, and delete objects using the mouse in various sections

f6 Handling multiple concurrent programs Support the execution of multiple concurrent educational programs

f7 Event viewer to track changes Log EDUC8 messages, including errors, information messages, and warnings

f8 Search by program Allow users to filter search results by programs

f9 Graphical learning pathway designer Implement an integrated Business Process Model Notation (BPMN) diagram tool

f10 View individuals by category Display instances of a specific class

f11 Built-in analytics Incorporate predictive analytics modules to drive decision making

f12 Email notifications Automated email notifications for specific tasks

f13 Keyboard shortcuts Add keyboard shortcuts that trigger specific actions

f14 Graphical Semantic Web Rule Language (SWRL) rule designer Implement a visual modeling tool for the design and storage of semantic rules

f15 What You See Is What You Get (WYSIWYG) editors Replace simple text areas with WYSIWYG editors to enrich content creation

f16 Single sign-on Connect with the University’s Lightweight Directory Access Protocol
(LDAP) directory
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Table 3. Cont.

Feature Feature Name Description (Functional Goal)

f17 Advanced search by student Narrow student results by adding more search terms

f18 Improve error handling Add error descriptions in clear and simple language

f19 Human Resource Management System integration Integrate with the University’s human resource management system

f20 Student Information System integration Integrate with the University’s student information system

f21 Improve user profile settings Implement a tabbed user interface

f22 “Forgot password” functionality Add a password recovery option

f23 Grant Management System integration Integrate with the grant management system

f24 “Remember Me” login functionality Allow users to store their login information on their local computer

f25 Real-time chat Provide a live transmission of text messages between end-users

f26 Fully responsive design Preserve the user experience and look and feel across all devices

f27 GUI role-based adaptation Show or hide features for specific roles

In accordance with the definition of a software product feature provided in [1], each
feature can be developed autonomously. They can be seamlessly incorporated as add-
ons to the implemented system prototype in subsequent system releases. For instance,
f11 involves the integration of a machine learning add-on module, as described in [54],
designed to predict student outcomes and enhance decision making. Similarly, f10 entails
the implementation of an extension based on a Web Ontology Language (OWL) API.
This extension can be developed, deployed, operated, and scaled without affecting the
functionality of other software components.

4.2. Stakeholders Selection

At the beginning of the case study, we specified the suitable roles and the number
of stakeholders that could be engaged in the features prioritization process to obtain
a representative group of involved participants. Five stakeholders participated in the
features prioritization/ranking case study, and they are listed in Table 4. The low number
of stakeholders that participated during the experiment could be considered a possible
threat to the validity of the case study. This is a threat that was nearly impossible to remove
because a larger pool of participants would be obtrusive to the experiment hosting team.
However, the selected stakeholders had extensive professional experience that perfectly
covered all EDUC8 software modules and features, as well as a clear picture of the EDUC8
project business needs and priorities. Considering that the participating stakeholders were
experts and all had been involved in the development of the previous (first) release of the
EDUC8 software system, they were considered trustworthy to provide justified, precise,
and valid features’ rankings.

Table 4. Stakeholders and their roles.

Stakeholder Role

Stakeholder #1 IT Team Head

Stakeholder #2 Ontology Engineer

Stakeholder #3 Academic Advisor

Stakeholder #4 BPMN Process Analyst

Stakeholder #5 Manager

4.3. Architectural Description of Software

The choice of these specific knowledgeable stakeholders has also been justified by
considering all the architectural layers of the EDUC8 system and corresponding offered
system functionalities. The conceptual architecture of the EDUC8 system (Figure 1) com-
prises distinct architectural layers, which involve the above-mentioned stakeholders who
collaborate throughout learners’ academic plans lifecycle.
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Figure 1. Architecture of the EDUC8 System.

The lower layer of the EDUC8 architecture is the semantic infrastructure layer and
encompasses the appropriate semantics and knowledge streams (Learner part, Learning
Pathway part, Business and Finance part, and the Quality Assurance part) required for the
dynamic and personalized composition of academic plans for each individual university
student. HEI managers, academic advisors, and ontology engineers (stakeholders: #5,
#3, #2) are engaged to add and maintain the corresponding part of knowledge in the
semantic model.

At the next layer, a rule-based expert system undertakes the task of executing the
semantic rules that model the knowledge acquired from the academic advisors (stakeholder:
#3) concerning the suggestion for the appropriate next step of the academic plan, while
the next system module encloses the workflow-part in BPMN for each academic plan
monitored by the HEI’s personnel (stakeholder: #4).

The upper layer of the EDUC8 allows the integration and presentation of client-side
components for various tools and applications of the software environment. The architec-
ture includes two modules positioned vertically, which can be accessed by various software
components. The RDBMS module provides a common interface that the EDUC8 platform
can use to store and retrieve information from a relational database. Finally, the machine
learning module is specifically applied to learn potential insights pertaining to student
characteristics, education factors, and outcomes, which can be used by the HEI’s managers
(stakeholders: #1, #5) to conceptualize the system’s structure or behavior.

A meeting was organized and held with the five stakeholders with the aim of carefully
evaluating and systematically prioritizing the 27 candidate features that comprised the
EDUC8 product backlog. Stakeholders were asked to apply the BST prioritization approach
to rank the features based on their perceived satisfaction (dissatisfaction) from the inclusion
(exclusion) of each feature in (from) the second system release. To facilitate the systematic
application of the BST method and provide an automated tool for supporting the ranking
of the candidate features, we developed a graphical Binary Search Tree design tool named
BSTV (Figure 2).

To mitigate the risk of stakeholders not understanding how features should be eval-
uated, stakeholders received a 30 min long instruction aimed at explaining the meaning
of the prioritization criteria (satisfaction/dissatisfaction), how to construct the BSTs (bi-
nary search trees), and how to use the BSTV tool to compare features. Stakeholders were
explicitly informed that they were allowed to assign more than one feature to the same
node of a BST (if they hesitated to differentiate among the values of some features) or leave
some features unassigned to any tree node (if they lacked knowledge about the value of
some features). Stakeholders were also informed that they could even assign more than
one feature to the same node of the BST if they thought that these features were of equal
value. In such cases, they were advised to use the “Annotate a Tree Node” functionality
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of the BSTV tool to provide comments and justifications for the equally ranked features.
Afterward, each stakeholder had another 45 min to use the BSTV tool to construct two BSTs
denoting, respectively, two rankings of the 27 candidate features based on satisfaction and
dissatisfaction criteria.

Figure 2. Tool for constructing binary search trees and implementing method computations.

4.4. Application of the Proposed Approach

In the application phase of our proposed methodology, stakeholders were tasked
with evaluating and ranking all candidate features based on their perceived satisfaction or
dissatisfaction with the inclusion or exclusion of features in the upcoming system release.
A comprehensive briefing was provided to stakeholders on the feature-ranking process,
utilizing the Binary Search Tree (BST) method as outlined by [41]. The initial step involved
creating a single node holding a randomly selected feature from the list of candidates.

Subsequently, each subsequent feature was compared to the top node in the BST. If its
value was lower than the node, it was compared to the node’s left child, and vice versa if
its value was higher. This process continued until each feature found its place within a
respective node. Traversal of the final BST in in-order fashion resulted in a sorted order
of features, initially from the lowest- to the highest-ranked feature. To present the final
prioritized list from the highest to the lowest rank, the sorted list of features was reversed.
This systematic application of the BST method facilitated the stakeholders in providing a
structured and ordered evaluation of the candidate features.

An illustrative Binary Search Tree (BST), reflecting the comparison of features based
on the satisfaction criterion as perceived by Stakeholder #1, is presented in Figure 3. In this
representation, each node within the BST signifies features that are tied in the same rank,
and the adjacent number to each node denotes the assigned rank (i.e., position) of the tied
features. The BSTV tool automatically calculated these ranking values by traversing the
BST in a reverse in-order manner.

In Figure 3, all features situated in the left subtree of a tree node denote lower-ranked
features compared to those assigned to the node. Conversely, features located in the right
subtree of each tree node represent higher-ranked features. Features placed in the same
tree node are considered tied in rank. For instance, Stakeholder #1’s evaluation in Figure 3
indicates that features f1 and f19 are tied, both holding the rank of 1 according to the
satisfaction criterion. Similarly, f20 and f22 share rank 2, f13, f16, and f23 are tied in rank 3,
f4, f17, f21, and f26 are tied in rank 4, and so forth. It is noteworthy that features f15 and f24
are absent from this BST, implying that Stakeholder #1 might have faced uncertainty or
lacked the necessary knowledge to compare these particular features with the others.
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Figure 3. Stakeholder #1—BST for ranking the features according to satisfaction.

Figure 4 illustrates the corresponding Binary Search Tree (BST) representing the fea-
ture ranking based on the dissatisfaction criterion, as derived by Stakeholder #1. These
BSTs exemplify instances of asymmetry between satisfaction and dissatisfaction rankings.
Examining the features ranked 1st and 2nd by Stakeholder #1, notable differences emerge
when considering satisfaction versus dissatisfaction. In terms of satisfaction, features f1
and f19 hold the 1st rank, while features f20 and f22 occupy the 2nd rank. In contrast,
the dissatisfaction perspective reveals that features f12, f18, and f25 are ranked 1st, while
features f3, f14, and f20 secure the 2nd rank. Notably, only one feature, f20, is common to
both rankings at the 2nd position, indicating a nuanced relationship between satisfaction
and dissatisfaction criteria.

Figure 4. Stakeholder #1—BST for ranking the features according to dissatisfaction.

The feature ranking vectors derived from the five stakeholders involved in the prioriti-
zation case study, based on the satisfaction criterion, are presented in columns (b), (f), (j),
(n), and (r) of Table 5. Corresponding rankings based on the dissatisfaction criterion are
also provided by the stakeholders in the respective columns of Table 6.

Utilizing the BSTV tool facilitated all necessary computations. Ranks in the vectors
shown in Table 5 were transformed into Intuitionistic Fuzzy Numbers (IFNs) (applying
Equations (2)–(4)) with membership, non-membership, and hesitation degrees displayed in
columns (c), (d), and (e) for stakeholder #1, (g), (h), and (i) for stakeholder #2, and so forth.
Total hesitation in each ranking vector was calculated using Equation (5), and the corre-
sponding (objective) weight of each ranking vector was determined with Equation (10)).
These values, for each stakeholder ranking, are shown in the last two rows of Table 5.
Notably, larger weights indicate rankings with less total hesitation.
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Table 5. Features’ rankings and priorities based on satisfaction.

Features
(a)

Stakeholder #1 Stakeholder #2 Stakeholder #3 Stakeholder #4 Stakeholder #5 Features’ Priorities (WCCs)
Based on Satisfaction

(v)

Final Priority
(w)

Ranking
(b)

µ

(c)
u

(d)
π
(e)

Ranking
(f)

µ

(g)
u

(h)
π
(i)

Ranking
(j)

µ

(k)
u
(l)

π
(m)

Ranking
(n)

µ

(o)
u

(p)
π
(q)

Ranking
(r)

µ

(s)
u
(t)

π
(u)

f1 1 0.885 0 0.115 4 0.462 0.308 0.231 3 0.385 0.346 0.269 6 0.346 0.538 0.115 N 0 0 1.000 0.709 11
f2 9 0 0.885 0.115 6 0.192 0.577 0.231 5 0.115 0.692 0.192 N 0 0 1.000 7 0 0.808 0.192 0.089 27
f3 9 0 0.885 0.115 4 0.462 0.308 0.231 2 0.577 0.192 0.231 N 0 0 1.000 7 0 0.808 0.192 0.310 20
f4 4 0.538 0.269 0.192 6 0.192 0.577 0.231 5 0.115 0.692 0.192 4 0.577 0.269 0.154 2 0.577 0.154 0.269 0.643 13
f5 8 0.077 0.769 0.154 6 0.192 0.577 0.231 5 0.115 0.692 0.192 8 0.115 0.769 0.115 5 0.231 0.538 0.231 0.204 24
f6 6 0.346 0.538 0.115 6 0.192 0.577 0.231 6 0 0.808 0.192 1 0.885 0 0.115 3 0.423 0.308 0.269 0.537 15
f7 5 0.423 0.423 0.154 7 0.115 0.731 0.154 6 0 0.808 0.192 2 0.769 0.077 0.154 1 0.731 0 0.269 0.564 14
f8 7 0.192 0.615 0.192 7 0.115 0.731 0.154 6 0 0.808 0.192 7 0.192 0.615 0.192 N 0 0 1.000 0.166 25
f9 5 0.423 0.423 0.154 4 0.462 0.308 0.231 2 0.577 0.192 0.231 2 0.769 0.077 0.154 1 0.731 0 0.269 0.895 2
f10 8 0.077 0.769 0.154 2 0.692 0.115 0.192 2 0.577 0.192 0.231 7 0.192 0.615 0.192 N 0 0 1.000 0.489 18
f11 8 0.077 0.769 0.154 N 0 0 1.000 N 0 0 1.000 8 0.115 0.769 0.115 5 0.231 0.538 0.231 0.146 26
f12 7 0.192 0.615 0.192 8 0 0.808 0.192 1 0.731 0 0.269 9 0 0.846 0.154 6 0.077 0.654 0.269 0.260 22
f13 3 0.692 0.154 0.154 2 0.692 0.115 0.192 3 0.385 0.346 0.269 5 0.423 0.385 0.192 3 0.423 0.308 0.269 0.859 4
f14 6 0.346 0.538 0.115 5 0.346 0.462 0.192 1 0.731 0 0.269 1 0.885 0 0.115 4 0.346 0.462 0.192 0.769 8
f15 N 0 0 1.000 8 0 0.808 0.192 4 0.231 0.538 0.231 7 0.192 0.615 0.192 4 0.346 0.462 0.192 0.251 23
f16 3 0.692 0.154 0.154 1 0.808 0 0.192 1 0.731 0 0.269 3 0.692 0.192 0.115 1 0.731 0 0.269 0.986 1
f17 4 0.538 0.269 0.192 3 0.615 0.231 0.154 4 0.231 0.538 0.231 4 0.577 0.269 0.154 3 0.423 0.308 0.269 0.799 7
f18 7 0.192 0.615 0.192 2 0.692 0.115 0.192 1 0.731 0 0.269 9 0 0.846 0.154 6 0.077 0.654 0.269 0.458 19
f19 1 0.885 0 0.115 1 0.808 0 0.192 3 0.385 0.346 0.269 6 0.346 0.538 0.115 N 0 0 1.000 0.755 9
f20 2 0.808 0.077 0.115 5 0.346 0.462 0.192 3 0.385 0.346 0.269 5 0.423 0.385 0.192 2 0.577 0.154 0.269 0.815 6
f21 4 0.538 0.269 0.192 N 0 0 1.000 N 0 0 1.000 4 0.577 0.269 0.154 6 0.077 0.654 0.269 0.519 16
f22 2 0.808 0.077 0.115 3 0.615 0.231 0.154 4 0.231 0.538 0.231 5 0.423 0.385 0.192 2 0.577 0.154 0.269 0.819 5
f23 3 0.692 0.154 0.154 5 0.346 0.462 0.192 3 0.385 0.346 0.269 3 0.692 0.192 0.115 2 0.577 0.154 0.269 0.860 3
f24 N 0 0 1.000 8 0 0.808 0.192 4 0.231 0.538 0.231 7 0.192 0.615 0.192 3 0.423 0.308 0.269 0.278 21
f25 7 0.192 0.615 0.192 1 0.808 0 0.192 1 0.731 0 0.269 9 0 0.846 0.154 5 0.231 0.538 0.231 0.519 17
f26 4 0.538 0.269 0.192 N 0 0 1.000 N 0 0 1.000 5 0.423 0.385 0.192 1 0.731 0 0.269 0.685 12
f27 5 0.423 0.423 0.154 4 0.462 0.308 0.231 2 0.577 0.192 0.231 2 0.769 0.077 0.154 6 0.077 0.654 0.269 0.735 10

Total Hesitation = 5.846 Total Hesitation = 7.769 Total Hesitation = 8.692 Total Hesitation = 5.846 Total Hesitation = 9.769

Weight = 0.218 Weight = 0.198 Weight = 0.189 Weight = 0.218 Weight = 0.177
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Table 6. Features’ rankings and priorities based on dissatisfaction.

Features
(a)

Stakeholder #1 Stakeholder #2 Stakeholder #3 Stakeholder #4 Stakeholder #5 Features’ Priorities (WCCs)
Based on Satisfaction

(v)

Final Priority
(w)

Ranking
(b)

µ

(c)
u

(d)
π
(e)

Ranking
(f)

µ

(g)
u

(h)
π
(i)

Ranking
(j)

µ

(k)
u
(l)

π
(m)

Ranking
(n)

µ

(o)
u

(p)
π
(q)

Ranking
(r)

µ

(s)
u
(t)

π
(u)

f1 8 0.115 0.769 0.115 9 0.038 0.846 0.115 4 0.577 0.346 0.077 N 0 0 1.000 9 0 0.846 0.154 0.227 25
f2 7 0.231 0.654 0.115 5 0.385 0.500 0.115 11 0 0.923 0.077 7 0.115 0.654 0.231 N 0 0 1.000 0.220 26
f3 2 0.769 0.115 0.115 N 0 0 1.000 1 0.885 0 0.115 6 0.231 0.538 0.231 7 0.154 0.692 0.154 0.641 13
f4 7 0.231 0.654 0.115 6 0.269 0.577 0.154 6 0.385 0.538 0.077 7 0.115 0.654 0.231 N 0 0 1.000 0.352 20
f5 7 0.231 0.654 0.115 5 0.385 0.500 0.115 6 0.385 0.538 0.077 7 0.115 0.654 0.231 N 0 0 1.000 0.391 19
f6 8 0.115 0.769 0.115 8 0.115 0.769 0.115 11 0 0.923 0.077 N 0 0 1.000 8 0.077 0.769 0.154 0.084 27
f7 6 0.346 0.538 0.115 9 0.038 0.846 0.115 10 0.077 0.846 0.077 4 0.500 0.308 0.192 9 0 0.846 0.154 0.241 24
f8 6 0.346 0.538 0.115 8 0.115 0.769 0.115 10 0.077 0.846 0.077 1 0.731 0 0.269 8 0.077 0.769 0.154 0.334 21
f9 5 0.462 0.385 0.154 7 0.192 0.692 0.115 1 0.885 0 0.115 5 0.346 0.385 0.269 5 0.308 0.500 0.192 0.663 11
f10 3 0.692 0.231 0.077 10 0 0.923 0.077 1 0.885 0 0.115 3 0.577 0.231 0.192 7 0.154 0.692 0.154 0.602 14
f11 9 0 0.885 0.115 6 0.269 0.577 0.154 9 0.154 0.769 0.077 N 0 0 1.000 4 0.423 0.423 0.154 0.248 23
f12 1 0.885 0 0.115 1 0.808 0 0.192 5 0.462 0.423 0.115 1 0.731 0 0.269 3 0.500 0.269 0.231 0.920 4
f13 8 0.115 0.769 0.115 7 0.192 0.692 0.115 4 0.577 0.346 0.077 N 0 0 1.000 5 0.308 0.500 0.192 0.395 18
f14 2 0.769 0.115 0.115 3 0.538 0.269 0.192 3 0.654 0.231 0.115 6 0.231 0.538 0.231 1 0.769 0 0.231 0.873 5
f15 5 0.462 0.385 0.154 1 0.808 0 0.192 7 0.308 0.615 0.077 5 0.346 0.385 0.269 1 0.769 0 0.231 0.778 9
f16 N 0 0 1.000 2 0.692 0.154 0.154 5 0.462 0.423 0.115 8 0 0.769 0.231 2 0.654 0.154 0.192 0.598 15
f17 9 0 0.885 0.115 6 0.269 0.577 0.154 8 0.231 0.692 0.077 8 0 0.769 0.231 4 0.423 0.423 0.154 0.252 22
f18 1 0.885 0 0.115 1 0.808 0 0.192 3 0.654 0.231 0.115 1 0.731 0 0.269 3 0.500 0.269 0.231 0.961 2
f19 3 0.692 0.231 0.077 1 0.808 0 0.192 2 0.769 0.115 0.115 3 0.577 0.231 0.192 3 0.500 0.269 0.231 0.950 3
f20 2 0.769 0.115 0.115 N 0 0 1.000 2 0.769 0.115 0.115 6 0.231 0.538 0.231 5 0.308 0.500 0.192 0.700 10
f21 5 0.462 0.385 0.154 4 0.462 0.423 0.115 9 0.154 0.769 0.077 5 0.346 0.385 0.269 6 0.231 0.615 0.154 0.509 16
f22 9 0 0.885 0.115 3 0.538 0.269 0.192 8 0.231 0.692 0.077 8 0 0.769 0.231 1 0.769 0 0.231 0.401 17
f23 6 0.346 0.538 0.115 2 0.692 0.154 0.154 2 0.769 0.115 0.115 4 0.500 0.308 0.192 2 0.654 0.154 0.192 0.868 6
f24 4 0.615 0.308 0.077 2 0.692 0.154 0.154 7 0.308 0.615 0.077 2 0.654 0.154 0.192 2 0.654 0.154 0.192 0.838 7
f25 1 0.885 0 0.115 3 0.538 0.269 0.192 3 0.654 0.231 0.115 1 0.731 0 0.269 1 0.769 0 0.231 0.962 1
f26 4 0.615 0.308 0.077 4 0.462 0.423 0.115 N 0 0 1.000 2 0.654 0.154 0.192 6 0.231 0.615 0.154 0.654 12
f27 5 0.462 0.385 0.154 3 0.538 0.269 0.192 5 0.462 0.423 0.115 5 0.346 0.385 0.269 3 0.500 0.269 0.231 0.791 8

Total Hesitation = 4.000 Total Hesitation = 5.692 Total Hesitation = 3.462 Total Hesitation = 9.385 Total Hesitation = 7.538

Weight = 0.219 Weight = 0.203 Weight = 0.224 Weight = 0.168 Weight = 0.185
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Applying Equation (11), the weighted correlation coefficients (WCCs) for all features
were computed. These values represent the final priorities of the candidate features ac-
cording to the satisfaction criterion, displayed in column (w) of Table 5. Sorting features
by their WCC values in descending order yields the final prioritized features list based on
satisfaction, shown in column (x) of Table 5.

Similarly, WCCs (final priority values) for the features were calculated based on the
dissatisfaction criterion, and the results are presented in the corresponding columns of
Table 6.

The WCCs (priorities) for features based on satisfaction (column (w) of Table 5) are
also included in column (b) of Table 7, while the WCCs for features based on dissatisfaction
(column (w) of Table 6) are included in column (c) of Table 7. In the final step, features
with WCCs values greater than 0.5 in both satisfaction and dissatisfaction were identified
as potentially highly valuable. These features, including f9, f14, f16, f19, f20, f21, f23, f25, f26,
and f27, are suggested for implementation in the next release of the EDUC8 system and are
listed in column (f) of Table 7.

Table 7. Features’ priorities and finally selected features.

Features
(a)

Priorities
Based on

Satisfaction
(b)

Priorities
Based on

Dissatisfaction
(c)

Features with
Priorities Higher than 0.5

Based on Satisfaction
(d)

Features with
Priorities Higher than 0.5
Based on Dissatisfaction

(e)

Selected
Features

(f)

f1 0.709 0.227 f1

f2 0.089 0.220

f3 0.310 0.641 f3

f4 0.643 0.352 f4

f5 0.204 0.391

f6 0.537 0.084 f6

f7 0.564 0.241 f7

f8 0.166 0.334

f9 0.895 0.663 f9 f9 f9

f10 0.489 0.602 f10

f11 0.146 0.248

f12 0.260 0.920 f12

f13 0.859 0.395 f13

f14 0.769 0.873 f14 f14 f14

f15 0.251 0.778 f15

f16 0.986 0.598 f16 f16 f16

f17 0.799 0.252 f17

f18 0.458 0.961 f18

f19 0.755 0.950 f19 f19 f19

f20 0.815 0.700 f20 f20 f20

f21 0.519 0.509 f21 f21 f21

f22 0.819 0.401 f22

f23 0.860 0.868 f23 f23 f23

f24 0.278 0.838 f24

f25 0.519 0.962 f25 f25 f25

f26 0.685 0.654 f26 f26 f26

f27 0.735 0.791 f27 f27 f27

We conducted a sensitivity analysis to evaluate the impact of variations in the objective
weights on the final calculated priorities (WCCs). The objective weights, automatically
computed for feature rankings, were subjected to different calculations using the BSTV tool
to assess their influence. Specifically, we altered the method of total hesitation computation
for stakeholders’ rankings in the following ways:

1. Calculating total hesitation solely due to tied features using Equation (6).
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2. Calculating total hesitation exclusively due to unknown features via Equation (7).
3. Determining total hesitation attributed to tied features with a modified weighting

approach based on Equation (8), assigning lower weights to rankings with a higher
number of tied features at top positions.

Throughout these various modes of WCCs calculation, the final results—especially
concerning the most highly prioritized features (WCCs exceeding 0.5)—remained consistent.
This robustness across different weighting scenarios suggests that the objectively calculated
weights had minimal impact on the prioritization outcomes. Consequently, we inferred that
there was no necessity to request certain stakeholders to reapply the BST method for feature
ranking. All calculations for this sensitivity analysis were automated using the BSTV tool.

During the conclusive joint meeting involving all stakeholders, it was emphasized
that the simplicity of the BST prioritization method, coupled with the comprehensive
functionalities supported by the BSTV tool, renders the approach highly practical for real-
world software projects. The consensus reached was that the utilization of the BSTV tool
significantly aids in computing final feature priorities. This, in turn, assists stakeholders in
justifying and selecting the most valuable software features for inclusion in the upcoming
software release.

The unanimous agreement among stakeholders highlighted the effectiveness of the
software feature prioritization approach, resulting in the identification of the final set
of the top 10 preferred features for delivery in the next system release. Stakeholders
acknowledged that these features, with their calculated high WCCs, are anticipated to yield
a substantial amount of satisfaction (or dissatisfaction if not offered). In the final meeting
discussion, stakeholders recognized the interconnected nature of these specific ten features,
emphasizing that none can be neglected.

Notably, two recommended features, f9 and f14, were closely tied to the implementa-
tion of two new graphical tools for the EDUC8 environment. These tools aim to empower
academic staff, enabling them to model learning sub-processes and semantic rules without
requiring advanced IT skills. The implementation of such tools is expected to be a signifi-
cant enhancement, improving the overall usability and user-friendliness of the software
platform. Additionally, features f16, f19, and f20 pertained to the integration of EDUC8
with existing University software systems. Given that this integrated software environment
operates within a Higher Education Institution (HEI), these key features are crucial for
ensuring a high degree of interoperability, which is deemed critical for the project’s viability.
Feature f27 emerged as another top priority, focusing on the design and implementation of
a component that personalizes EDUC8 GUIs based on the role of the individual end-user.
This component also provides access to the appropriate subset of data, emphasizing the
importance of user-specific customization and data accessibility.

In the conclusive joint meeting, we sought to assess the perceived usefulness of our
approach by administering a questionnaire to the five stakeholders. The questionnaire
comprised 10 questions, and stakeholders were asked to provide anonymous responses
on a 5-point Likert scale, where “1” represented “strongly disagree” and “5” represented
“strongly agree”. The average scores of the received answers were highly positive and are
summarized as follows:

1. I feel familiar with the features considered for prioritization: 4.2;
2. The method was simple to use: 4.0;
3. I have understood the key ideas of the method: 4.4;
4. I agree with the key ideas of the method: 3.6;
5. The method can effectively prioritize software features: 4.2;
6. The method can efficiently support the feature prioritization process: 3.6;
7. It was easy to learn how to use the BSTV tool: 4.4;
8. I believe that the method can be easily applied in practice: 3.2;
9. I believe the proposed method increases the chances of recommending the most

valuable features to be implemented: 4.2;
10. Overall, I am satisfied with the method results: 4.0.
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These positive average scores indicate a generally favorable perception of the approach
and its components, demonstrating a high level of satisfaction and understanding among
the stakeholders. The feedback suggests that the method and the associated BSTV tool
were well-received in terms of usability, effectiveness, and overall satisfaction in the context
of feature prioritization for software projects.

5. Discussion

This section delves into a detailed discussion of the case study’s application of the
proposed approach, aiming to analyze the gathered evidence and fortify the drawn con-
clusions. The examination of the approach’s application follows the case study planning
template outlined in [55], encompassing three key steps: (i) case study design and planning,
(ii) collection of data, and (iii) analysis of the collected data.

5.1. Case Study Design and Planning

The primary aim of the conducted case study was to implement the proposed priori-
tization approach, utilizing stakeholder satisfaction and dissatisfaction as criteria for the
prioritization of valuable features in the forthcoming software release of the EDUC8 system.
Additionally, the study sought to recommend final feature priorities to stakeholders by
incorporating the hesitation in stakeholder judgments concerning feature rankings.

Before the features prioritization session, the research team, in collaboration with
stakeholders, identified a set of candidate features, totaling 27 (refer to Table 3). As per
established categorizations in the literature [21,22], sets with fewer than 15 candidate
features are deemed small, those ranging from 15 to 50 are considered medium, and sets
exceeding 50 features are classified as large. Consequently, our set of candidate features
falls within the medium-sized category. Despite its application to a medium-sized feature
set in this case study, the proposed approach exhibits potential effectiveness for handling
medium to large feature sets. The BST prioritization method demonstrates scalability
and outperforms other prioritization methods, such as bubble sort, binary priority list,
spanning tree matrix, and AHP [25,41]. The BST method requires fewer comparisons and
less time, with a complexity of O(log(n)) for a balanced BST and O(n × log(n)) for an
unbalanced BST, making it well-suited for larger feature sets. In contrast, AHP and bubble
sort involve ( n×(n−1)

2 ) comparisons, presenting technical challenges and considerable
time consumption.

It is essential to note that the BST method involves comparing and placing all features
into nodes of a binary search tree to establish their relative rankings based on the chosen
prioritization criterion. The method has demonstrated effectiveness in minimizing errors
associated with feature prioritization, a process prone to errors for stakeholders [40]. This
effectiveness can be attributed to the ordinal scale of the BST method, which represents the
rank and order of features without revealing precise performance details.

During the case study design and planning phase, stakeholders received a 30-min
briefing on the ranking process, elucidating the BST method for prioritizing candidate
features. Stakeholders were also introduced to the BSTV tool, facilitating the application
of a modified BST technique. This tool allows evaluators/stakeholders to place two or
more features in the same position (i.e., tree node) or leave some features unranked if they
are uncertain about their relative value. Stakeholders were explicitly informed that they
could assign equal ranks to features expressing equal satisfaction/dissatisfaction and were
encouraged to use the “Annotate a Tree Node” functionality in the BSTV tool to provide
justifications for such cases.

It is noteworthy that the mathematical calculations of stakeholders’ weights, per-
formed by the BSTV tool using Interval Type-2 Fuzzy Sets (IFSs), were not explained to
stakeholders due to potential confusion for unfamiliar participants. Moreover, disclos-
ing the calculation method could lead to intentional shrewd tactics, such as avoiding the
specification of tied features or leaving features unranked. The use of BST-based pairwise
(ordinal-scale) comparisons minimizes the risk of obstructive tactics through consistent
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application [48]. In this case study, rankings were independently provided by each stake-
holder to ensure their results were not influenced by other stakeholders’ opinions.

5.2. Collection of Data

The challenge of assessing the value of candidate features in features prioritization
arises from stakeholders’ diverse perspectives and interpretations of what constitutes
value [56]. To encourage stakeholders to thoroughly examine the perceived value of features,
each stakeholder in our case study was tasked with performing the BST method twice.
Stakeholders were required to rank the candidate features based on satisfaction with the
inclusion of each feature in the next software release and dissatisfaction with the exclusion
of each feature from the next release. The time invested by stakeholders in constructing
the two BSTs, depicting rankings based on satisfaction and dissatisfaction, ranged from 32
to 45 min. The duration of stakeholders’ evaluations indicates that the final BSTs resulted
from thoughtful and careful pairwise comparisons.

Our proposed method addresses the challenge of time efficiency and automation
in features prioritization, common in many existing techniques [22]. Most prioritization
methods often involve manual quantification by stakeholders, relying on substantial profes-
sional human intervention to calculate the weight of each participating stakeholder. In our
method, human intervention is required in the “Mapping Features Rankings into IFSs”
step when stakeholders provide their rankings, and this step is facilitated by the BSTV
tool. The “Quantifying the Hesitation of Stakeholders” and “Computing Rankings Weights
and Features Priorities” steps are executed automatically by the BSTV tool, handling all
necessary calculations. For “Computing Rankings Weights and Features Priorities”, the
BSTV tool offers flexibility in calculating objective weights of stakeholders’ rankings by
varying the method of total hesitation computation, thereby testing the sensitivity of the
weights to the final priorities.

It is important to note that in a features prioritization process involving expert stake-
holders, subjective determination of different weights for each stakeholder can be challeng-
ing. We assume that the participating stakeholders can express their perspectives on feature
values with equal or similar importance. Using the suggested method, objective weights
are derived through mathematical calculations from information present in stakeholders’
preferences for feature rankings. Specifically, weights are determined using the “entropy”
measure, a widely-used approach in the decision-making literature for determining ob-
jective weights [57]. The primary advantage of entropy-based weight calculations is the
reduction of stakeholders’ subjective impact on the final results [58]. Alternatively, asking
stakeholders to indicate their confidence in the feature rankings could introduce another
method potentially biased by stakeholders’ subjective self-evaluations.

5.3. Analysis of Collected Data

The results of the prioritization process underscore the inherent difficulty in identify-
ing high-value features, accentuated by the introduced asymmetry. Even within the same
stakeholder, the consideration of a feature from two different perspectives—satisfaction
and dissatisfaction regarding its inclusion in the next software version—reveals notable dis-
parities. A closer examination of the ranking values exposes asymmetries in both individual
stakeholder rankings and the final aggregated rankings.

For instance, features such as f16 (Single sign-on—Connect with University’s LDAP
directory) and f17 (Advanced search by student—Narrow student results by adding more
search terms) hold the 1st and 7th positions, respectively, when evaluated based on per-
ceived satisfaction in offering them in the next release (refer to Table 5). This prioritization
is attributed to their enhancement of the EDUC8 software project capabilities. However,
when considering dissatisfaction (refer to Table 6), these features are ranked 15th and 22nd,
suggesting that they may be considered desirable but not essential, as the dissatisfaction
from their exclusion is relatively low.
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Conversely, features like f25 (real-time chat—provide a live transmission of text mes-
sages between end-users) and f12 (email notifications—automated email notifications for
specific tasks) exhibit the opposite asymmetry. When evaluated from the dissatisfaction
perspective, they hold the 1st and 4th positions, respectively (refer to Table 6). However,
from the satisfaction perspective, their rankings are 17th and 22nd (refer to Table 5). A closer
inspection of these features’ functionalities justifies the observed high dissatisfaction when
excluded, indicating their essential nature for the scope of the EDUC8 software project.

To aggregate and analyze feature rankings from different stakeholders, an alternative
approach involves assigning equal weights to all stakeholders and computing the average
rank for each feature across all rankings. Figures 5 and 6 present a visual comparison of fea-
ture priorities expressed through Weighted Consistent Criterions (WCC) values—calculated
with objective weights for stakeholders—and average rankings, assuming equal weights
for all stakeholders.

Figure 5. Features prioritization comparison based on satisfaction.

Figure 6. Features prioritization comparison based on dissatisfaction.

If we compare the prioritization results between these two approaches, substantial
variations in the priorities of some features become apparent. For instance, in Figure 5, we
observe that feature f26 (fully responsive design—preserve the user experience and look
and feel across all devices) is prioritized at the 7th position according to the satisfaction
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criterion when using the average ranking (assuming equal stakeholder weights). However,
in our proposed approach, it is prioritized at the 12th position (refer to Table 5).

A closer examination of individual stakeholder rankings (Table 5) reveals that two
stakeholders (Stakeholder #2 and Stakeholder #3) left feature f26 unranked, while the
other three stakeholders ranked it as follows: (i) Stakeholder #5 ranked f26 at the 1st
position, (ii) Stakeholder #1 at the 4th position, and (iii) Stakeholder #4 at the 5th position.
Considering the 7th position of feature f26 based on average ranking, it attains a high
priority value, appearing among the top 10 highest priority features out of all 27 features.
This result, however, overlooks the fact that 2 out of 5 stakeholders left feature f26 unranked,
and 2 out of 5 stakeholders ranked it nearly at the median position. In contrast, our
approach prioritizes f26 at the 12th position, which appears more reasonable in the context
of stakeholders’ rankings.

Features that receive consistent rankings with fewer ties, such as f16 (Single sign-on-
Connect with University’s LDAP directory), maintain the same position when comparing
our approach with the equal weights/average ranking approach. Both these examples
underscore that the entropy-based method we employ places emphasis on stakeholders’
ability to discriminate among features, assigning higher weights when stakeholders can
effectively differentiate the value of features.

Moreover, our proposed prioritization method mitigates collisions in final priority
values, even when stakeholders rank features at the same tied position due to hesitation or
the assumption that certain features perform equally according to a specific criterion. Colli-
sions may only occur in rare cases where two features are ranked in the same position by all
stakeholders. This consideration is particularly significant in agile software development
settings, where features must be uniquely selected for each software release [34].

To further explore the impact of hesitation calculations on final prioritization results,
we tested the sensitivity of the resulting Weighted Consistent Criterions (WCC) values
using different methods for calculating total hesitation and objective weights. For example,
Table 8 presents the total hesitation and objective weights of the five stakeholders based
on their rankings according to the satisfaction criterion: (i) only due to tied features by
applying Equation (6), and (ii) considering the effect of the positions of the tied features by
applying Equation (8). Both approaches result in the same average weights (equal to 0.2);
however, the standard deviation is larger when considering the effect of the positions of the
tied features. The impact of these two Equations on the final features’ priorities based on
satisfaction in our case study could be considered negligible, as 18 out of 27 features appear
in the same position, while the remaining features’ ranks differ by only one position.

Table 8. Stakeholders weights based on satisfaction (with/without the effect of the positions of the
tied features).

Stakeholder Hindet Calculated
Using Equation (6) Weight Hindet Calculated

Using Equation (8) Weight

Stakeholder #1 5.846 0.218 13.000 0.238

Stakeholder #2 7.769 0.198 14.692 0.209

Stakeholder #3 8.692 0.189 17.846 0.156

Stakeholder #4 5.846 0.218 12.769 0.242

Stakeholder #5 9.769 0.177 17.846 0.156

Average 7.584 0.200 15.231 0.200

St. Dev. 1.738 0.016 2.500 0.038

Table 9 presents the correlation between the rankings provided by the stakeholders
and the final prioritization rankings, considering the satisfaction/dissatisfaction from
offering/not offering the same features in the next software release. The correlation is
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calculated using the Spearman’s rank correlation coefficient (ρ) through the following
Equation, which accounts for tied and missing ranks [59,60]:

ρ =
1
n ∑n

i=1(xi − x̄)(yi − ȳ)√(
1
n ∑n

i=1(xi − x̄)2
)(

1
n ∑n

i=1(yi − ȳ)2
) (12)

where n is the total number of features, xi is the stakeholders’ i-th feature ranking, x̄ is the
mean stakeholders’ feature ranking, yi is the final i-th feature prioritization position and ȳ
is the mean of the final feature rankings.

Table 9. Stakeholders’ feature ranking and final prioritization correlation.

Stakeholder Correlation Based on
Satisfaction

Correlation Based on
Dissatisfaction

Stakeholder #1 0.799 0.806

Stakeholder #2 0.545 0.752

Stakeholder #3 0.302 0.647

Stakeholder #4 0.670 0.556

Stakeholder #5 0.691 0.662

An intriguing observation is that the rankings from Stakeholder #3 exhibit the lowest
correlation according to the satisfaction criterion, despite Stakeholder #3 not having the
lowest weight. Stakeholder #3 assigned the most tied features based on the satisfaction
criterion and used the lowest number of ranks, specifically 6 (Table 5). In cases where
multiple ties occur, it is interpreted as an indication of hesitancy and uncertainty in discrim-
inating features with the highest value based on the satisfaction criterion. Tied ranks may
appear; however, considering the two asymmetric criteria, we anticipate that equal features
would be revealed. When evaluating the rankings based on the dissatisfaction criterion for
Stakeholder #3 (Table 6), it is observed that tied features in the corresponding ranking are
significantly fewer, revealing that these specific features do not have equal value. Despite
having the highest weight based on the dissatisfaction criterion (Table 8), Stakeholder #3
does not exhibit the highest correlation in this context.

After presenting the final prioritization results (Table 7) to the stakeholders, we pro-
vided them with a comprehensive explanation of the underlying process. We observed
that stakeholders judiciously utilized the annotation option of the BSTV tool to denote tied
features—those positioned at the same rank concerning the satisfaction or dissatisfaction
criterion, which they deemed to have equal perceived value. For instance, Stakeholder #3
annotated features f22 (“Forgot password” functionality—add password recovery option)
and f24 (“Remember Me” login functionality—allow users to store their login information
on their local computer) as equally valuable. Stakeholder #3 positioned both features at
the 4th rank based on the satisfaction criterion (Table 5). The rationale, as annotated by
Stakeholder #3, was because both these features are related to login functionality. However,
in the stakeholders’ rankings, we generally observed a limited number of ties associated
with features of equal value, as perceived by the stakeholders.

In conclusion, the application of the proposed prioritization approach in the case study
revealed several key findings:

• The prioritization method employs two asymmetric criteria (satisfaction and dissatis-
faction), highlighting the asymmetry in the perceived value of features.

• The method utilizes the Binary Search Tree (BST) technique, known for its efficiency
and accuracy in the ordinal ranking of medium to large sets of features. The application
is facilitated by the BSTV tool, implementing a modified version of the BST technique
to handle tied and unranked features effectively.

• The proposed method translates feature rankings into Intuitionistic Fuzzy Sets (IFSs),
providing a quantitative measure of stakeholders’ hesitation.
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• Objective stakeholders’ weights are calculated in multiple ways, incorporating stake-
holders’ hesitation and mitigating subjectivity in assigning weights.

• The method is semi-automated, requiring minimal human intervention.
• The method yields final feature priorities, ensuring that no two or more features share

the same prioritization value.

6. Threats to Validity

The conducted case study aimed to assess the advantages and limitations of the pro-
posed approach for prioritizing software features. While the case study approach is widely
employed in software engineering research, it is susceptible to certain well-documented
validity threats. In this section, we will address specific threats related to construct validity,
internal validity, external validity, and reliability [55], offering insights into the potential
challenges and limitations associated with our case study work.

Construct Validity pertains to the alignment between the observations in the case study
and the theoretical concepts under examination. In our case study, this involves assessing
whether the questions posed to the participants were pertinent to the established hypotheses.
For instance, did the questions effectively gauge the extent to which the applied tool and
the procedural steps aided stakeholders in prioritizing requirements? Were the questions
designed to capture improvements resulting from the tool-assisted process?

As outlined in the case study section (Section 4), we gauged the approach’s effective-
ness through a questionnaire, wherein stakeholders provided anonymous responses using
a Likert scale ranging from 1 to 5. The questionnaire comprised ten questions addressing
both the process and the tool, with additional inquiries (e.g., question no. 1) about partic-
ipants’ experience in assessing features. The responses proved highly encouraging and
directly relevant to the theoretical concept under investigation—specifically, the quality
of the suggested feature priorities. These priorities were calculated by aggregating stake-
holders’ rankings using the BST approach and factoring in objective weights based on each
stakeholder’s level of hesitation or knowledge gaps.

Internal Validity concerns the causal relationship between the studied factors and the
observed results, questioning whether unconsidered external factors might have influenced
the results. In our context, it explores whether the observed results truly stem from the
proposed tool-assisted process or if other factors played a role.

To mitigate external factors, we took precautions during stakeholder selection, ensur-
ing participants possessed a high level of experience and familiarity with the features under
evaluation [55]. This precision in assessments aligns with the methodology’s requirements.
Stakeholders’ justifications during the BSTV tool evaluation demonstrated their knowledge
and reasoned evaluations. While the low number of participants could be seen as a threat,
the selected stakeholders, being EDUC8 software project experts, offered justified and
valid rankings.

Fatigue and confusion due to an excessive number of feature comparisons might
impact results. However, the Binary Search Tree (BST) method, requiring O(n × log(n))
comparisons, is less prone to this issue compared to methods like AHP. Participants spent
less time and effort expressing their evaluations [22]. Misinterpretations or incorrect as-
sumptions by evaluators about the process or tool usage could introduce errors. To counter
this threat, stakeholders underwent a detailed course with instructions for applying the
BST approach. The graphical tool (BSTV) provided further assistance, and participants’
time dedication during tool usage was monitored.

Additionally, potential influences of features interdependencies and interactions were
considered. While modern software features often exhibit high interdependence, the pro-
posed method focuses on ranking features under specific criteria, deferring the resolution
of dependencies to the release planning process [26,37]. The BST method supports accurate
and incremental feature prioritization without necessitating a complete reevaluation as
new candidate features are introduced [61].
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External Validity pertains to the extent to which the findings of a study can be general-
ized beyond the specific case under examination. It questions whether the tool-assisted
process introduced in our case study can be applied in similar contexts.

While our discussion has primarily focused on one case study, it is essential to note
that our approach has been applied to multiple case studies, enhancing the external validity
of our findings. In a software development project for a Greek commercial company in the
oil industry, the approach was tested to implement a marketing portal [13]. Another case
study involved the development of an internet portal for multimedia file sharing, catering
to employees and clients of the same oil company in Greece [62]. The criteria in these case
studies mirrored the perceived satisfaction/dissatisfaction of users with software features,
similar to the case study presented in this work. Encouraging conclusions from these
diverse cases reinforce the potential generalizability of our results to future case studies.

Furthermore, we plan to extend the application of our tool and process to case studies
with varying characteristics, spanning different domains and sizes. However, it is worth
noting that our approach may not be readily applicable to projects with an extensive
number of stakeholders or requirements. For projects of considerable scale, recommender
system approaches might be more suitable [28]. Consequently, the generalizability of our
suggested approach to such large-scale projects may be limited.

Reliability examines whether the results of a study are consistent and would be repro-
ducible under similar conditions. In the context of our case study, several aspects contribute
to the reliability of the results:

• The tool-driven approach: The reliance on a tool ensures that if the same input
is provided to the tool, it would produce identical output. This inherent feature
contributes to the reliability of the case study results.

• Selection of stakeholders: The choice of knowledgeable stakeholders with significant
experience in the domain under study enhances the reliability of the results. Less
experienced or less knowledgeable stakeholders could introduce variability and com-
promise the reliability of the findings. Thus, the careful selection of stakeholders is a
deliberate measure to ensure reliability.

• Stakeholders’ responses: While it is natural to expect some variations in responses
to qualitative surveys, the structured nature of the approach, including the use of a
Likert scale, mitigates the potential for large variations. The reliability of the results is
further reinforced by the consistency in stakeholders’ responses, making the outcomes
more dependable.

• Dual criteria evaluation: The dual evaluation of features based on both satisfaction
and dissatisfaction contributes to increased reliability. The consideration of these
two criteria often leads to asymmetric evaluations, providing richer information
for decision making. This enhanced information contributes to more reliable and
repeatable results in future applications.

• Sensitivity analysis on stakeholders’ weights: The reliability of the results is con-
firmed by the sensitivity analysis conducted on stakeholders’ weights. Three variants
were used to calculate these weights based on different components of hesitation.
Importantly, the prioritization of features remained consistent across these variants, in-
dicating that the results are not highly sensitive to the calculation of objective weights.
This resilience contributes to the overall reliability of the findings.

7. Conclusions and Future Work

In this paper, we introduced a practical semi-automated method designed for the
prioritization of medium to large sets of candidate software features. The method generates
the final priority list of candidate software features, focusing on stakeholders’ asymmetric
criteria of satisfaction and dissatisfaction, while emphasizing the value of each feature rather
than its implementation cost. The primary motivation behind this method is to address the
hesitant and uncertain perceptions that stakeholders often have when ranking medium to
large sets of software features using an ordinal scale-based prioritization method.
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The key feature of the proposed method is its translation of stakeholders’ rankings
of features into Intuitionistic Fuzzy Numbers. Notably, the method calculates objective
weights based on the total hesitation of stakeholders who express their rankings for the
features. The underlying assumption is that the larger the hesitation associated with each
stakeholder’s ranking, the smaller the weight of that ranking should be in determining the
final features’ priorities. Objective weights for stakeholders’ rankings can be computed in
various ways, allowing for sensitivity analysis.

While our case study is thorough, it is important to outline the limitations that may
appear. Firstly, our approach might not work well for software projects with a very large
number of candidate features or a very large number of stakeholders. Recommender system
approaches could be more appropriate for large-scale software projects. Furthermore,
the objectivity of the responses of the stakeholders to the qualitative survey might introduce
variations, which could affect the results.

Our future work will involve implementing the tool supporting the method, the BSTV
tool, as a web-based software. This transition aims to simplify the method’s application
further by enabling a large number of stakeholders to provide their rankings remotely.
This enhancement will support the application of the method in the context of distributed
software development projects involving numerous stakeholders physically dispersed at
various locations. Furthermore, we plan to examine various approaches for the expression
of stakeholders preferences (e.g., linguistic terms) and analyze possible conflicts between
stakeholders and their impact for the final prioritization result. Additionally, we plan to
conduct further controlled experiments to evaluate the underlying principle of the approach,
specifically the idea that more hesitation implies less importance weights for deciding the
priorities of the features. We acknowledge that in certain cases, such as malformed features,
this principle might not always hold, and further investigation is warranted.
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