
Citation: Yan, W.; Wang, L.; Zhang, M.

Existence of Kink and Antikink Wave

Solutions of Singularly Perturbed

Modified Gardner Equation.

Mathematics 2024, 12, 928.

https://doi.org/10.3390/

math12060928

Academic Editor: Qingguang Guan

Received: 25 January 2024

Revised: 16 March 2024

Accepted: 19 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Existence of Kink and Antikink Wave Solutions of Singularly
Perturbed Modified Gardner Equation
Weifang Yan 1 , Linlin Wang 1 and Min Zhang 2,*

1 School of Mathematics and Statistics Science, Ludong University, Yantai 264001, China;
yanwf1988@ldu.edu.cn (W.Y.); wangll_1994@sina.com (L.W.)

2 School of Science, Hunan Institution of Technology, Hengyang 421002, China
* Correspondence: zhangmin@usc.edu.cn

Abstract: In this paper, the singularly perturbed modified Gardner equation is considered. Firstly, for
the unperturbed equation, under certain parameter conditions, we obtain the exact expressions of
kink wave solution and antikink wave solution by using the bifurcation method of dynamical systems.
Then, the persistence of the kink and antikink wave solutions of the perturbed modified Gardner
equation is studied by exploiting the geometric singular perturbation theory and the Melnikov
function method. When the perturbation parameter is sufficiently small, we obtain the sufficient
conditions to guarantee the existence of kink and antikink wave solutions.
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1. Introduction

As we know, the investigation of nonlinear wave equations and their traveling wave
solutions has attracted extensive attention in mathematical physics and the engineering
field. A lot of effective methods have been developed to study the traveling wave solutions
and their dynamical behaviors [1–3]. In 1968, the mathematician Gardner [4] derived the
following Gardner equation:

ut + αuux + βu2ux + γuxxx = 0, (1)

which can be used to describe the weakly nonlinear dispersive waves in situations where
the higher-order nonlinearity effects play an important role. For a long time, the Gardner
equation (1) has attracted much attention due to its significant nature in physical contexts.
Various types of exact solutions of the Gardner equation (1) have been extensively stud-
ied [5–8]. For example, by applying the theory of dynamical systems and the bifurcation
method, Chen and Liu [9] obtained the solitary wave solutions and kink wave solutions
of (1). Recently, increasingly more interest has been paid to the traveling waves of singularly
perturbed mathematical physics models [10–15]. For instance, Tang et al. [16] studied the
Gardner equation with Kuramoto–Sivashinsky perturbation:

ut + αuux + βu2ux + γuxxx + ε(uxx + uxxxx) = 0. (2)

By using the geometric singular perturbation theory, the persistence of the solitary
wave solution for Equation (2) is investigated. Wen [17] further showed that kink waves
and antikink waves of Equation (2) persist. Zhang and Xia [18] studied the persistence of
kink and antikink wave solutions for the perturbed double sine-Gordon equation.
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Recently, Olivier et al. [19] first applied reductive perturbation analysis to a fluid
model and derived the generalized KdV equation with supersolitons:

ut + αuux + βu2ux + δu3ux +
1
2

uxxx = 0, (3)

which is a higher-order form of the Gardner equation (1) named the modified Gardner
equation. Tamang et al. [20] further derived the more general modified Gardner equation:

ut + αuux + βu2ux + δu3ux + γuxxx = 0. (4)

By studying this equation, it becomes possible to unveil the nonlinear wave behavior
and interactions in plasma. Jhangeer et al. [21] considered Equation (4) by using the
Lie group analysis, power series technique, and bifurcation theory. All practicable types
of phase portraits with regard to the parameters were plotted, and the traveling wave
structures were studied.

To our knowledge, the modified Gardner equation (4) under perturbation has yet to
be considered in the literature. Inspired by the above literature, we study the following
modified Gardner equation with Kuramoto–Sivashinsky perturbation:

ut + αuux + βu2ux + δu3ux + γuxxx + ε(uxx + uxxxx) = 0, (5)

where α, β, γ, δ are parameters, and ε > 0 is a perturbation parameter. uxx and uxxxx
represent the backward diffusion and dissipation terms, respectively.

Firstly, consider ε = 0: by using the dynamical system theory and bifurcation method,
when the parameters of the modified Gardner equation (4) satisfy certain conditions, we
provide several exact expressions of kink and antikink solutions of Equation (4). Note
that when δ = 0, Equation (4) becomes Equation (1). Compared with the methods and
results in [9], the process of obtaining the exact solutions of Equation (4) with δ > 0 is more
complicated because the degree of the Hamiltonian function is five, and the system (8)
admits a higher-order singular point.

The format of this article is as follows. In Section 2, by using the dynamical system
theory and bifurcation method, when the parameters of the modified Gardner equation (4)
satisfy certain conditions, we provide several exact expressions of kink and antikink solu-
tions of Equation (4). In Section 3, when the perturbation parameter ε > 0 is sufficiently
small, by exploiting the geometric singular perturbation theory and the Melnikov function
method, the sufficient conditions are obtained to guarantee the existence of kink and an-
tikink wave solutions of Equation (5). In Section 4, we perform numerical simulations to
verify the theoretical results. Finally, the main conclusions of this paper are given.

2. Exact Solutions of the Unperturbed Modified Gardner Equation

In this section, we consider the unperturbed modified Gardner equation (4). Suppose
the traveling wave solution of Equation (4) is u(x, t) = φ(ξ), where ξ = x − ct, c > 0 is the
wave speed. Then we obtain the following ordinary differential equation:

−cφ′ + αφφ′ + βφ2 φ′ + δφ3 φ′ + γφ′′′ = 0. (6)

The above equation can be integrated once to yield

−cφ +
α

2
φ2 +

β

3
φ3 +

δ

4
φ4 + γφ′′ = 0, (7)

where the integral constant is set to be zero.
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Letting y = φ′, we obtain a planar system as follows:
dφ
dξ = y,
dy
dξ = 1

γ

(
cφ − α

2 φ2 − β
3 φ3 − δ

4 φ4
)

,
(8)

which is a Hamiltonian system with Hamiltonian function:

H(φ, y) = y2 − 1
γ

(
cφ2 − α

3
φ3 − β

6
φ4 − δ

10
φ5
)

. (9)

Now, for the case of γ > 0, δ > 0, we consider the phase portraits of system (8) (the
other cases can be considered similarly). To state conveniently, assume that

φ1 =
2
5

3

√
10c
δ

, φ2 =
3

√
10c
δ

.

When α = 9 3
√

δc2

10 , β = − 9
5

3√10δ2c, it is easy to see that system (8) has three singular points
(0, 0), (φ1, 0) and (φ2, 0). By calculating the characteristic values of the linearized system
of system (8), we know that (0, 0) is a saddle point, (φ1, 0) is a center, and (φ2, 0) is a
higher-order singular point.

According to the theory of dynamical systems, we easily know that there are two
heteroclinic orbits L1 and L2 connecting the two singular points (0, 0) and (φ2, 0) of sys-
tem (8), and we obtain the phase portrait of system (8) as shown in Figure 1 . We have the
following result:

Theorem 1. When α = 9 3
√

δc2

10 , β = − 9
5

3√10δ2c, γ > 0, δ > 0, Equation (4) has the kink wave
solution u1(x, t), antikink wave solution u2(x, t), and blow-up wave solution u3(x, t), whose
expressions are as follows:

2
√

φ2√
φ2 − u1(x, t)

− ln
√

φ2 +
√

φ2 − u1(x, t)
√

φ2 −
√

φ2 − u1(x, t)
=

√
c
γ
(x − ct) + 2

√
2 − 2 ln(1 +

√
2), (10)

2
√

φ2√
φ2 − u2(x, t)

− ln
√

φ2 +
√

φ2 − u2(x, t)
√

φ2 −
√

φ2 − u2(x, t)
= −

√
c
γ
(x − ct) + 2

√
2 − 2 ln(1 +

√
2), (11)

2
√

φ2√
φ2 − u3(x, t)

− ln
√

φ2 +
√

φ2 − u3(x, t)√
φ2 − u3(x, t)−√

φ2
= −

√
c
γ
|x − ct|. (12)

Proof. From Figure 1, we can see that there are two heteroclinic orbits L1, L2 and one open
orbit L3 which have expressions as follows:

L1, L2 : y2 =
δ

10γ
φ2(φ2 − φ)3, 0 < φ < φ2, (13)

L3 : y2 =
δ

10γ
φ2(φ2 − φ)3, −∞ < φ < 0. (14)

Substituting (13)–(14) into (dφ/dξ) = y and integrating it along L1, L2, L3, respectively,
we have ∫ φ

φ2
2

ds
s(φ2 − s)

√
φ2 − s

=

√
δ

10γ
ξ, (15)

∫ φ

φ2
2

ds
s(φ2 − s)

√
φ2 − s

= −

√
δ

10γ
ξ, (16)



Mathematics 2024, 12, 928 4 of 9

∫ φ

−∞

ds
s(φ2 − s)

√
φ2 − s

= −

√
δ

10γ
|ξ|. (17)

Solving (15)–(17) for φ and denoting them by φ1(ξ), φ2(ξ), φ3(ξ), respectively, we
obtain ui(x, t) = φi(x − ct) = φi(ξ)(i = 1, 2, 3) as (10)–(12).

O

1
L3

L

2
L

Figure 1. The phase portrait of system (8) when α = 9 3
√

δc2

10 , β = − 9
5

3
√

10δ2c, γ > 0, δ > 0.

3. Persistence of Kink and Antikink Wave Solutions

In this section, we consider the perturbed Equation (5). Substituting the traveling
wave transformation u(x, t) = φ(ξ), ξ = x − ct into Equation (5), we obtain

−cφ′ + αφφ′ + βφ2 φ′ + δφ3 φ′ + γφ′′′ + ε(φ′′ + φ′′′′) = 0, (18)

which can be integrated once to obtain

−cφ +
α

2
φ2 +

β

3
φ3 +

δ

4
φ4 + γφ′′ + ε(φ′ + φ′′′) = 0, (19)

where the integral constant is set to be zero. We can convert the above equation into the
following system: 

dφ
dξ = y,
dy
dξ = z,

ε dz
dξ = cφ − α

2 φ2 − β
3 φ3 − δ

4 φ4 − γz − εy,

(20)

which is called the slow system. Therefore, studying the perturbed Equation (5) is equiva-
lent to studying system (20). Formally, we can expect that there exists a two-dimensional
invariant manifold near the surface

C0 =

{
(φ, y, z) ∈ R3 : z =

1
γ

(
cφ − α

2
φ2 − β

3
φ3 − δ

4
φ4
)}

(21)

when ε > 0 is sufficiently small. Note that when α = 9 3
√

δc2

10 , β = − 9
5

3√10δ2c, γ > 0, δ > 0,
system (20) has three equilibrium points (0, 0, 0), (φ1, 0, 0), and (φ2, 0, 0), which are indepen-
dent of ε > 0.

By making the transformation ξ = ετ, we obtain the following system:
dφ
dτ = εy,
dy
dτ = εz,
dz
dτ = cφ − α

2 φ2 − β
3 φ3 − δ

4 φ4 − γz − εy,

(22)

which is called the fast system, and it is equivalent to the slow system (20) for ε > 0.
In order to obtain a two-dimensional invariant manifold of (20) for a sufficiently small
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ε > 0, it suffices to verify the normal hyperbolicity of C0. The linearized matrix of the fast
system (22) restricted on C0 is

M =

 0 0 0
0 0 0

c − αφ − βφ2 − δφ3 0 −γ

,

which has three eigenvalues λ1 = λ2 = 0 and λ3 = −γ, and, therefore, C0 is normally
hyperbolic. According to the geometric singular perturbation theory of Fenichel [22], there
exists a two-dimensional invariant manifold Cε of system (20) with ε > 0 sufficiently small,
which can be written in the following form:

Cε =

{
(φ, y, z) ∈ R3 : z =

1
γ

(
cφ − α

2
φ2 − β

3
φ3 − δ

4
φ4
)
+ ζ(φ, y, ε)

}
, (23)

where ζ(φ, y, ε) depends smoothly on φ, y, ε and satisfies ζ(φ, y, 0) = 0. Therefore, the func-
tion ζ(φ, y, ε) can be expanded in ε as follows:

ζ(φ, y, ε) = εζ1(φ, y) + O(ε2). (24)

Substituting it into the slow system (20) and comparing the coefficients of ε, we
can obtain

ζ1(φ, y) = − 1
γ2

(
c − αφ − βφ2 − δφ3

)
y − 1

γ
y. (25)

Thus, the dynamics of the slow manifold Cε for system (20) are given as
dφ
dξ = y,
dy
dξ = 1

γ

(
cφ − α

2 φ2 − β
3 φ3 − δ

4 φ4
)
+ ε
(
− 1

γ2

(
c − αφ − βφ2 − δφ3)y − 1

γ y
)

+O(ε2).

(26)

Then, we are in a position to state our main theorem on the persistence of kink and
antikink wave solutions for the perturbed modified Gardner Equation (5).

Theorem 2. For Equation (5) with α = 9 3
√

δc2

10 , β = − 9
5

3√10δ2c, γ > 0, δ > 0, there exists
c = 39

5 γ + O(ε) such that Equation (5) has a kink wave solution and an antikink wave solution
with wave speed c for 0 < ε ≪ 1.

Proof. From Han [23] and Perko [24], the associated Melnikov function for system (26) is

M(c) =
∫

L1

Q(φ, y(φ))dφ, (27)

where Q(φ, y) = − 1
γ2

(
c − αφ − βφ2 − δφ3)y − 1

γ y, and y(φ) is the expression of the or-
bit L1. Note that L1 has the expression

y(φ) =

√
δ

10γ
φ(φ2 − φ)

√
φ2 − φ, 0 < φ < φ2. (28)

Therefore, we have
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M(c)

=
∫ 3
√

10c
δ

0
Q(φ, y(φ))dφ

= − 1
γ

√
δ

10γ

∫ 3
√

10c
δ

0

(
φ +

c
γ

φ − α

γ
φ2 − β

γ
φ3 − δ

γ
φ4
)(

3

√
10c
δ

− φ

) 3
2

dφ

=
40

273 3
√

10
c

7
6

γ
5
2 δ

2
3

(
c − 39

5
γ

)
.

(29)

Thus, there exists a unique

ĉ =
39
5

γ

such that M(ĉ) = 0. Furthermore, by a simple calculation, we can obtain

dM(c)
dc

∣∣∣∣
c=ĉ

=
4 3
√

100
35

6

√
39
5

1

γ
4
3 δ

2
3
̸= 0. (30)

Therefore, by the implicit function theorem, there exists c = 39
5 γ + O(ε) such that

system (26) has a pair of φ-axis symmetric heteroclinic orbits for 0 < ε ≪ 1. In other words,
Equation (5) has a kink wave solution and an antikink wave solution with a wave speed c.

4. Numerical Simulations

In this section, numerical simulations are performed to verify the theoretical results
of the previous sections. Firstly, taking α = 90, β = −18, γ = 1, δ = 1, c = 100, we
illustrate the profiles of the kink wave solution u1(x, t) and antikink wave solution u2(x, t)
in Figure 2, which can verify the correctness of Theorem 1.

-1 1 2 3

ξ

2

4

6

8

10

φ

(a)
-3 -2 -1 1

ξ

2

4

6

8

10

φ

(b)

Figure 2. (a). The profile of kink wave solution (10). (b). The profile of antikink wave solution (11).

Now, we verify the persistence of the heteroclinic orbits of Equation (5) through
system (20). Taking the parameters α = 9

2 , β = −9, γ = 5
78 , δ = 5, c = 1

2 , and the initial

conditions φ0 = 2
5 , y0 = 18

√
13

125 , z0 = 0.001. The persistence of the heteroclinic orbits for
ε = 0.001 is illustrated in Figure 3a, and the break of the heteroclinic orbits for ε = 0.1 is
illustrated in Figure 3b.
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0.2 0.4 0.6 0.8 1.0

φ

-0.6

-0.4

-0.2

0.2

0.4

0.6

y

(a)

0.2 0.4 0.6 0.8

φ

-0.6

-0.4

-0.2

0.2

0.4

0.6

y

(b)

Figure 3. (a). The heteroclinic orbits persist for ε = 0.001. (b). The heteroclinic orbits break for ε = 0.1.

For ε = 0, taking four different classes of parameter values, we can give the phase
portraits of system (8) in Figures 4 and 5. From this, we can see, under certain parameter
conditions, that Equation (4) yields solitary wave solutions and periodic wave solutions.
Thus, this study provides evidence for the existence of solitary waves, periodic waves, and
kink waves in quantum electron–positron–ion magneto plasmas. These findings contribute
to a better understanding of the nonlinear dynamics of ion-acoustic waves in plasmas and
offer insights and guidance for both theoretical and practical applications in related fields.

φ

y

(a)

φ

y

(b)

Figure 4. The phase portrait of system (8). (a). α = −2, β = 3
4 , γ = 1, δ = 1, c = 1. (b). α = 11

2 ,
β = − 39

8 , γ = 1, δ = 1, c = 1.

φ

y

(a)

φ

y

(b)

Figure 5. The phase portrait of system (8). (a). α = 1, β = 1, γ = 1, δ = 1, c = 1. (b). α = 45,
β = −90, γ = 1, δ = 50, c = 5.
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5. Conclusions

In [21], all practicable types of phase portraits of Equation (8) with regard to the
parameters are plotted, but the study does not find the exact solutions of Equation (4)
without solutions in power series form. In this paper, we provide the exact expressions of a
pair of kink and antikink wave solutions of Equation (4) by applying the theory of dynamic
systems, which are not in power series form. Furthermore, when ε > 0 is sufficiently
small, we obtain the sufficient conditions that assure the persistence of kink and antikink
wave solutions.

Furthermore, we intend to provide the exact expressions of solitary waves and periodic
waves of Equation (4) by applying the theory of dynamic systems and reveal their relations.
Note that if the integral constant is not set to be zero in Equation (7), then (0, 0) is not a
singular point. Furthermore, the phase portraits of system (8) will be more complicated.
Depending on the range of the integral constant, more expressions of exact solutions of
Equation (4) can be found. However, we do not think these contents are consistent with
the title of this article. So, we will study this topic in the future. Moreover, when ε > 0,
we intend to investigate the persistence of these solitary waves and periodic waves by
applying the geometric singular perturbation theory and Abelian integrals.
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