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Abstract: We consider a constrained optimal control problem and an extension of it, in which the
set of strict-sense trajectories is enlarged. Extension is a common procedure in optimal control
used to derive necessary and sufficient optimality conditions for the original problem from the
extended one, which usually admits a minimizer and has a more regular structure. However, this
procedure fails if the two problems have different infima. Therefore, it is relevant to identify such
situations. Following on from earlier work by Warga but adopting perturbation techniques developed
in nonsmooth analysis, we investigate the relation between the occurrence of an infimum gap and the
abnormality of necessary conditions. For the notion of a local minimizer based on control distance
and an extension, including the impulsive one, we prove that (i) a local extended minimizer that is
not a local minimizer of the original problem, and (ii) a local strict-sense minimizer that is not a local
minimizer of the extended problem both satisfy the extended maximum principle in abnormal form.
The main novelty is result (ii), as until now, it has only been shown that a strict-sense minimizer that
is not an extended minimizer is abnormal for an ‘averaged version’ of the maximum principle.

Keywords: optimal control problems; maximum principle; state constraints; gap phenomena; impulsive
optimal control

MSC: 49K15; 34K45; 49N25

1. Introduction

It is common practice in the fields of the calculus of variations and optimal control to
extend the space of solutions for problems that cannot be solved in, say, an ordinary space,
or if the solution is difficult to find, even with numerical approximation. This process,
known as extension, involves compactifying and regularizing the problem, resulting in
a more manageable structure and the possibility of obtaining necessary and sufficient
conditions for optimality. However, in order for an extension to be well posed, it is
fundamental that the infimum value achievable in the original problem coincides with
that of the extended problem. Otherwise, the extended problem will not provide any
useful information about the original problem, which is the only one whose strategies we
actually want or can implement. So, for instance, determining an extended minimizer
and the solution to the Hamilton–Jacobi equation associated with the extended problem
(analytically or using numerical methods) is useful only if from them, we can derive a quasi-
optimal control and the value function for the original problem, respectively. Clearly, this is
only possible if there is no gap between infima. However, in the presence of endpoint and
state constraints, a gap often occurs, even in situations where the set of strict-sense original
solutions is L∞-dense in the set of extended paths. In particular, this problem arises when
all strict-sense solutions close to an extended trajectory that satisfies the constraints, for
instance, a local minimizer, fail to meet them in turn. Criteria for avoiding an infimum gap
have, therefore, been extensively investigated in the literature. In the calculus of variations,
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for example, it is well known that, in the absence of suitable coercivity assumptions, the
minimum of an integral cost over Lipschitz-continuous functions with assigned initial
and final points may not exist or may be greater than the minimum assumed in the
largest set of absolutely continuous functions. In this context, the gap issue is called the
Lavrentiev phenomenon, and it is still widely studied (see, e.g., [1] and the comprehensive
bibliography therein). As far as optimal control is concerned, a classical extension involves
relaxation, obtained by either convexifying the set of admissible velocities or introducing
relaxed controls that take values in a set of probability measures. Another extension
is the impulsive one, in which a non-coercive problem with unbounded controls, i.e.,
where minimizing sequences of solutions may have increasing velocities and tend in the
limit to discontinuous paths, is extended by admitting functions of bounded variation as
solutions. A detailed description of these well-known extensions and a wide bibliography
can be found, e.g., in [2,3]. The gap phenomenon has also been studied extensively in
optimal control, often in correspondence with necessary optimality conditions, known in
the literature as the Pontryagin Maximum Principle (see [4,5] for its original formulation
and applications). In particular, starting from the seminal work by Warga [6] in the early
1970s, criteria for excluding an infimum gap for different problems and extensions have
been expressed in terms of normality conditions for some versions of the Pontryagin
Maximum Principle, where normality means that all sets of multipliers have the cost
multiplier different from zero (see, e.g., [7–13]).

This paper focuses on the connection between the presence of an infimum gap, at least
in a local sense, and a nonsmooth version of the maximum principle satisfied in abnormal
form, i.e., not normal, for the following problem (P) and its extension (Pe).

Given T > 0 and x̌0 ∈ Rn, we introduce the constrained control system

ẏ(t) = F (t, y(t), ω(t), α(t)) for a.e. t ∈ [0, T], y(0) = x̌0, (1)

h(t, y(t)) ≤ 0 ∀t ∈ [0, T], y(T) ∈ T . (2)

Here, T is a closed subset of Rn, which we call the target; h : R×Rn → R is the state
constraint function; and F : R×Rn × V × A → Rn is the dynamics function, where the
compact subset A ⊂ Rq and the bounded subset V ⊂ Rm are the sets of control values.
Indeed, with V denoting the closure of V, let us define the sets A, V , and W of admissible
control functions as follows

A := L1([0, T], A) V := L1([0, T], V) W := L1([0, T], V).

We call an extended process any triple (ω, α, y) ∈ A×W ×W1,1([0, T],Rn) that satisfies
the dynamic constraint (1). If ω ∈ V in particular, then we refer to (ω, α, y) as a strict-sense
process. Any process (either extended or strict-sense) that additionally fulfills the endpoint
and the state constraint in (2) is said to be feasible. The sets of feasible strict-sense and
feasible extended processes are denoted by Γs and Γe, respectively.

Given a cost function Ψ : Rn → R, we introduce the strict-sense optimal control problem

minimize Ψ(y(T)) over (ω, α, y) ∈ Γs (Ps)

and the extended optimal control problem

minimize Ψ(y(T)) over (ω, α, y) ∈ Γe. (Pe)

Note how the controls α and ω play different roles, given that only the control set V ,
to which ω belongs, is extended. The opportunity to consider both arises from applications.
For example, in impulsive problems, it is common that only certain control components can
take values in an unbounded set. In this case, which we clarify in Section 4, ω represents
these components while α represents the remaining ones (see, e.g., the model example
in [14]). Incidentally, this distinction is reflected in the hypotheses on the dynamics F ,
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which require continuity in α and, instead, a form of uniform continuity for both F and its
Clarke-generalized Jacobian DxF in the variable ω, as specified in Section 2.

Since Γs ⊆ Γe, it immediately follows that inf Γe Ψ(y(T)) ≤ inf Γs Ψ(y(T)). In fact, this
inequality might be strict, in which case we say that there is an infimum gap. In order to
introduce the notion of a local infimum gap, for any pair of extended processes (ω, α, y),
(ω′, α′, y′), we define the following control distance:

d((ω, α, y) , (ω′, α′, y′)) := ∥ω − ω′∥L1(0,T) + ℓ({t ∈ [0, T] : α(t) ̸= α′(t)}),

where ℓ is the Lebesgue measure. Hence, a feasible strict-sense [resp., extended] process
(ω̄, ᾱ, ȳ) is a local minimizer for (Ps) [resp., (Pe)] if there exists some δ > 0 such that
Ψ(ȳ(T)) ≤ Ψ(y(T)) for any (ω, α, y) in Γs [resp., Γe], satisfying d((ω̄, ᾱ, ȳ), (ω, α, y)) ≤ δ.

We distinguish the following two types of local infimum gaps according to whether
we focus on the strict-sense problem or the extended problem:

• Type-E local infimum gap, when the cost of a local minimizer (ω̄, ᾱ, ȳ) of (Pe) is strictly
smaller than the infimum of (Ps) in a d-neighborhood of (ω̄, ᾱ, ȳ),

• Type-S local infimum gap, if a local minimizer of (Ps) is not a local minimizer of (Pe).

Assuming the hypotheses provided in Section 2, and with reference to the maximum
principle of Definition 3 below, our main results are the following:

(i) If at (ω̄, ᾱ, ȳ) ∈ Γe, there is a type-E local infimum gap, then (ω̄, ᾱ, ȳ) satisfies the
maximum principle in abnormal form, i.e., for a set of multipliers with cost multiplier
equal to zero;

(ii) If (ω̄, ᾱ, ȳ) ∈ Γs is a local minimizer of (P), then it satisfies the same maximum
principle as the extended problem. If, in addition, at (ω̄, ᾱ, ȳ) ∈ Γs, there is a type-S
local infimum gap, then it is an abnormal extremal.

We emphasize that the choice of the distance d above, which plays a fundamental role
in the proof of these results, represents a novelty compared to the works we quoted above.
In fact, in these papers, they always consider L∞ local minimizers, where the L∞ distance
between the trajectories is used instead of d.

Furthermore, in Section 4, we illustrate a relevant application of the above results
to impulsive optimal control. There are significant examples in aerodynamics [14,15],
mechanics [16,17], and biology [18,19] where the evolution of the involved variables can
be modeled as a control system, in which controls can reach very high intensity in a very
short time interval, resulting in an abrupt change in the state of the system. The impulsive
extension is, therefore, a limit problem, in which the previous controls and trajectories are
replaced with their (suitably defined) limits. It is worth emphasizing that in the above-
mentioned applications to real-world problems, impulsive controls are only idealizations
of the original controls so results in relation to the impulsive problem are of interest only if
they provide information on the original problem, namely only if no gap of any type occurs.

As already mentioned, Warga was the first to study the correlation between the
presence of an infimum gap and the validity of the maximum principle in abnormal form
for a classical extension through relaxation in the measure of the controls. Specifically,
he announced the result for a type-S L∞-local infimum gap in his early paper [6], which
focused on state constraint-free optimal control problems with smooth data. Then, in his
monograph [13], Warga proved the relationship between the gap and abnormality for a type-
E L∞-local infimum gap in optimal control problems with state constraints (see also [11]).
His subsequent work [12] extended this result to include nonsmooth data, utilizing the
results in [20]. Vinter and Palladino [10] proved the above-mentioned correlation in the case
of both type-E and type-S L∞-local infimum gaps for the classical extension through convex
relaxation of a class of nonsmooth state-constrained optimal control problems, which
subsumed those considered by Warga and under less restrictive hypotheses on data. Their
techniques differed significantly from those of Warga, reflecting different approaches to the
maximum principle. In more detail, the method adopted in [11,12,20] involved constructing
approximating cones to reachable sets and using set separation arguments, whereas the
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technique adopted in [10] utilized perturbation and penalization procedures as well as
Ekeland’s variational principle. When applied to nonsmooth optimal control problems, it is
difficult to compare these methods as they require different assumptions on the dynamics
and target. More importantly, they give rise to distinct abnormality conditions. Indeed,
following Warga’s method, these conditions involve the use of ‘derivative containers’ as
generalized gradients from [12], whereas the second method relies on Clarke’s version
of the maximum principle, in which subdifferentials are considered (see [21,22]). More
recently, following the latter approach, results similar to those in [10] were established
in [7] for the impulsive extension of optimal control problems with unbounded dynamics
and state constraints (see also the references therein). Additionally, in [8,9], an abstract
extension including both relaxation and impulsive extension as special cases was addressed.
In particular, in [7,8], for the first time, we also provided sufficient conditions for the
nondegeneracy of the abnormality condition related to a type-E L∞-local infimum gap.

However, besides considering L∞-local minimizers, all these works focused primarily
on the type-E local infimum gap. Specifically, apart from Warga’s initial work, the type-S
local infimum gap was only studied in [10] for the extension through convexification of
the dynamics and in [9] for a more general extension. In both papers, the results were not
entirely satisfactory; however, it was shown that a strict-sense L∞-local minimizer that is not
also an extended local minimizer satisfies, in abnormal form, an ‘averaged version’ of the
maximum principle, which is much less informative than the actual maximum principle.

In this paper, for the extension under consideration, on the one hand, we fill the
gap in the previous literature regarding the results obtained for the type-E and type-S
local infimum gaps by showing that in both cases, the local minimizer is abnormal for
the maximum principle associated with the extended problem. On the other hand, we
extend the previous results for the type-E L∞-local infimum gap to the case of the local
minimizer based on the distance d described above. Note that from the continuity property
of the input-output map associated with the control system, it follows that the present
results imply the previous ones. With regard to the techniques used, we are inspired by
the approach proposed in [10], as generalized to the case of an abstract extension in [9].
In particular, this allows us to consider rather weak assumptions, including nonsmooth
dynamics and state constraint functions, and a target that is simply a closed set (see
Section 2).

This paper is organized as follows. In Section 2, we present the notations used, some
useful definitions, and precise assumptions. In Section 3, we rigorously introduce the
concepts of type-E and type-S local infimum gaps and state our main results, which are
proved in Section 5. Section 4 is devoted to applying these results to the impulsive extension
of a control-affine system with unbounded controls. We also give an example. Section 6
contains some concluding remarks.

2. Notations and Basic Assumptions
2.1. Notations and Preliminaries

Given T > 0 and X ⊆ Rk, we denote by W1,1([0, T], X), L1([0, T], X), and L∞([0, T], X)
the sets of absolutely continuous functions, Lebesgue integrable functions, and essentially
bounded functions defined on [0, T] and taking values in X, respectively. We do not write
domains and codomains when the meaning is clear, and we adopt ∥ · ∥L1(0,T), ∥ · ∥L∞(0,T),
or ∥ · ∥L1 , ∥ · ∥L∞ to denote the L1 and the ess-sup norm, respectively. Moreover, ℓ(X),
co(X), X, and ∂X denote the Lebesgue measure, the convex hull, the closure, and the
boundary of X, respectively. Given a closed set C ⊆ Rk and a point z ∈ Rk, we define the
distance of z from C as dC(z) := miny∈C |z − y|. For any a, b ∈ R, we set a ∨ b := max{a, b}.
We employ NBV+([0, T],R) to denote the set of monotone non-decreasing, real-valued
functions µ on [0, T] of bounded variation, vanishing at the point 0 and right continuous on
]0, T[. Each µ ∈ NBV+([0, T],R) defines a Borel measure on [0, T], denoted by µ; its total
variation is indicated by ∥µ∥TV or µ([0, T]); and its support is denoted by spt(µ). If (µi) ⊂
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NBV+([0, T],R), we say that µi ⇀
∗ µ ∈ NBV+([0, T],R) if

∫
[0,T] ψµi(dt) →

∫
[0,T] ψµ(dt)

for any continuous map ψ : [0, T] → R.
Let us present some notions from nonsmooth analysis (see [21,22] for more details). A

set K ⊆ Rk is a cone if, given k ∈ K and a > 0, then ak ∈ K. Let C be a closed subset of Rk,
and let x̄ ∈ C. Then, the limiting normal cone NC(x̄) of C at x̄ is given by

NC(x̄) :=
{

η ∈ Rk : ∃(xi, ηi) ⊂ C ×Rk s.t. (xi, ηi) → (x̄, η), lim sup
x→xi

ηi · (x − xi)

|x − xi|
≤ 0 ∀i

}
.

Let H : Rk → R be a lower semicontinuous map, and let z̄ ∈ Rk. Then, the limiting
subdifferential of H at z̄ is

∂H(z̄) :=
{

ξ: ∃ξi → ξ, zi → z̄ s.t. lim sup
z→zi

ξi · (z − zi)− H(z) + H(zi)

|z − zi|
≤ 0 ∀i

}
.

If k = h + l and z̄ = (x̄, ȳ) ∈ Rh × Rl , ∂x H(x̄, ȳ) and ∂y H(x̄, ȳ) denote the partial
limiting subdifferential of H at (x̄, ȳ) with respect to x, y, respectively. When H is differentiable,
∇H is the usual gradient operator, and ∇x H, ∇y H denote the partial derivatives of H. If
H is also locally Lipschitz continuous, the hybrid subdifferential of H at z̄ ∈ Rk is

∂>H(z̄) := co {ξ: ∃(zi)i ⊂ diff(H) \ {z̄} s.t. zi → z̄, H(zi) > 0 ∀i, ∇H(zi) → ξ},

where diff(H) is the set of differentiability points of H. Finally, if U : Rk → Rl is a locally
Lipschitz-continuous map and z̄ ∈ Rk, then DU(z̄) stands for the Clarke-generalized Jacobian,
given by

DU(ā) := co {ξ: ∃(zi)i ⊂ diff(U) \ {z̄} s.t. zi → z̄ and ∇U(zi) → ξ},

where ∇U refers to the Jacobian matrix of U. If k = h+ l and z̄ = (x̄, ȳ) ∈ Rh ×Rl, DxU(x̄, ȳ),
DyU(x̄, ȳ) denote the Clarke-generalized Jacobian of U at (x̄, ȳ) with respect to x, y, respectively.
We recall that the following relation holds:

q · DU(z) = co ∂(q · U)(z) ∀(z, q) ∈ Rk+k. (3)

2.2. Basic Assumptions

Now, we present the hypotheses we assume throughout this paper. In the following,
(ω̄, ᾱ, ȳ) is a feasible process, which we refer to as the reference process. Moreover, for a given
θ > 0, the set Σθ ⊂ R1+n is defined as

Σθ := {(t, x) ∈ R×Rn : t ∈ [0, T], x ∈ ȳ(t) + θ B}.

H1. The Borel set A ⊂ Rq is compact, and the Borel set V ⊂ Rm is bounded. Moreover, there
exists a sequence (Vi)i of closed subsets of V satisfying

Vi ⊆ Vi+1 ∀ i,
+∞⋃
i=1

Vi = V.

H2. The cost function Ψ is Lipschitz continuous on a neighborhood of ȳ(T). The target T ⊆ Rn is
closed. The state constraint function h is upper semicontinuous, and for some Kh > 0, it satisfies

|h(t, x)− h(t, x′)| ≤ Kh |x − x′| for any (t, x), (t, x′) ∈ Σθ .
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H3. For all (x, w, a) ∈ {x ∈ Rn : (t, x) ∈ Σθ for some t ∈ [0, T]} × V × A, the map
F (·, x, w, a) is Lebesgue measurable on [0, T]. Moreover, for some k ∈ L1([0, T], [0,+∞[), one has

|F (t, x, w, a)| ≤ k(t), |F (t, x′, w, a)−F (t, x, w, a)| ≤ k(t)|x′ − x|, (4)

for all (t, x, w, a), (t, x′, w, a) ∈ Σθ × V × A. Furthermore, there exists a continuous increasing
function φ : [0,+∞[→ [0,+∞[ vanishing at 0 and satisfying, for all (t, x, a) ∈ Σθ × A, the
following relations

|F (t, x, w′, a)−F (t, x, w, a)| ≤ k(t)φ(|w′ − w|) ∀w′, w ∈ V,

DxF (t, x, w′, a) ⊆ DxF (t, x, w, a) + k(t)φ(|w′ − w|)B ∀w′, w ∈ V.

Remark 1. Hypothesis (H1) holds whenever V is a relatively open set. Moreover, we observe that if
(H1) is satisfied, then V is a dense subset of W in the L1-norm. In particular, for any ω̄ ∈ W and
any ε > 0, there exists an integer iε for which dH(Vi, V) < ε/T for every i ≥ iε, where dH(Vi, V)
stands for the Hausdorff distance between Vi and V. Therefore, as a consequence of the selection
theorem [23] (Theorem 2, p. 91), it is possible to find a measurable function ωε(t) ∈ projViε

(ω(t))
a.e., satisfying

∥ωε − ω̄∥L1 ≤ T∥ωi − ω∥L∞ ≤ TdH(Vi, V) ≤ ε.

Remark 2. A sufficient condition for (H3) to be satisfied is that

F (t, x, w, a) = F1(t, x, a) +F2(t, x, w, a),

provided F1 and F2 meet relation (4), and F2 is continuous on the compact domain Σθ × V × A
and continuously differentiable with respect to the state variable. Hypothesis (H3) still holds if, for
some integer d ≥ 1, the dynamics function has the following control-polynomial structure

F (t, x, w, a) := f (t, x, a)(w1)
d +

d

∑
k=1

(
∑

2≤j1≤···≤jk≤m
gk

j1,...,jk (t, x) wj1 · · ·wjk (w1)
d−k

)
,

provided f is continuous and locally Lipschitz continuous in (t, x) uniformly with respect to a and
all the maps gk

j1,...,jk
are locally Lipschitz continuous.

3. Type-E or Type-S Local Infimum Gap and Abnormality

In this section, we first introduce the precise definitions of the two types of local
infimum gaps we may encounter, depending on whether the process we consider is a local
minimum of the extended or the strict-sense problem. Then, in Theorem 1 we establish
our main result, namely that the presence of any kind of local infimum gap implies the
abnormal extremal condition described in the second part of the section.

3.1. Type-E and Type-S Local Infimum Gaps

As already mentioned in Section 1, for any pair of extended processes z = (ω, α, y),
ẑ = (ω̂, α̂, ŷ), we consider the distance

d(z, ẑ) := ∥ω − ω̂∥L1 + ℓ{t ∈ [0, T] : α(t) ̸= α̂(t)}. (5)

Moreover, Γs and Γe are the sets of feasible strict-sense and feasible extended processes,
respectively.
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Definition 1 (Local minimizer). Let Γ̃ and (P̃) denote Γe and (Pe) or Γs and (Ps), respectively.
A process z̄ := (ω̄, ᾱ, ȳ) ∈ Γ̃ is a local Ψ-minimizer for problem (P̃) if, for some δ > 0, one has

Ψ(ȳ(T)) = inf
{

Ψ(y(T)) : z = (ω, α, y) ∈ Γ̃, d(z, z̄) < δ
}

.

The process z̄ is a Ψ-minimizer for problem (P̃) if Ψ(ȳ(T)) = inf
Γ̃

Ψ(y(T)).

Remark 3. Under hypothesis (H3), for each extended control (ω, α) ∈ W × A in a suitable
d-neighborhood of the reference control (ω̄, ᾱ), there is one and only one solution y := y[ω, α] of
(1). Furthermore, the input-output map (ω, α) 7→ y[ω, α] from W ×A to C0 is continuous in this
neighborhood, provided W ×A is endowed with the distance d and C0 is endowed with the distance
induced by the sup-norm. Consequently, if the process z̄ is an L∞-local minimizer, meaning that z̄
reaches the minimum over processes z = (ω, α, y) with ∥y − ȳ∥L∞ < δ for some δ > 0, then it is
also a local minimizer according to Definition 1. In general, the contrary is not true. This makes the
results in [8,9] concerning L∞-local minimizers not directly applicable to the present case.

It is now natural to provide the definitions of the local infimum gaps, depending on
whether the reference process is extended or strict-sense.

Definition 2 (Infimum gaps). Let Ψ : Rn → R be a continuous function.

(i) If z̄ := (ω̄, ᾱ, ȳ) ∈ Γe and for some δ > 0, it holds that

Ψ(ȳ(T)) < inf{Ψ(y(T)) : z = (ω, α, y) ∈ Γs, d(z, z̄) < δ},

we say that at z̄, there is a type-E local Ψ-infimum gap. If {z = (ω, α, y) ∈ Γs, d(z, z̄) < δ} = ∅,
we set inf{Ψ(y(T)) : z = (ω, α, y) ∈ Γs, d(z, z̄) < δ} = +∞.

(ii) If z̄ := (ω̄, ᾱ, ȳ) ∈ Γs is a local Ψ-minimizer for problem (Ps), which is not a local Ψ-
minimizer for problem (Pe), i.e., ∀ε > 0 ∃(ω, α, y) ∈ Γe satisfying

Ψ(y(T)) < Ψ(ȳ(T)) and d(z, z̄) < ε,

we say that at z̄, there is a type-S local Ψ-infimum gap.
(iii) We say that there is a Ψ-infimum gap if inf

Γe
Ψ(y(T)) < inf

Γs
Ψ(y(T)).

In cases where Ψ can easily be inferred from the context, we write infimum gap in place
of Ψ-infimum gap.

Remark 4. Given the continuity of the input-output map associated with control system (1), it
is easy to see that the notion of the type-E local Ψ-infimum gap at z̄ does not depend on the cost
function Ψ, as it is equivalent to the fact that

{z = (ω, α, y) ∈ Γs : d(z, z̄) < δ} = ∅ for some δ > 0 (6)

(see [8], Proposition 2.1). If z̄ satisfies (6), we say that it is an isolated process.

3.2. Main Results

We introduce a nonsmooth version of the Pontryagin maximum principle for (Pe), and
we provide the notions of normal and abnormal extremals. Then, we establish a link between
the abnormality and occurrence of a gap phenomenon.

Definition 3 (Pontryagin maximum principle). Let z̄ := (ω̄, ᾱ, ȳ) ∈ Γe, and let hypotheses
(H1)–(H3) be satisfied. We say that z̄ is a Ψ-extremal or satisfies the Pontryagin maximum principle
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if there exists a path p ∈ W1,1([0, T],Rn), γ ≥ 0, µ ∈ NBV+([0, T],R), and a Borel-measurable
and µ-integrable function m : [0, T] → Rn satisfying the following conditions:

∥p∥L∞ + ∥µ∥TV + γ ̸= 0, (7)

− ṗ(t) ∈ co ∂x{q(t) · F (t, ȳ(t), ω̄(t), ᾱ(t))} a.e. t ∈ [0, T]; (8)

−q(T) ∈ γ∂Ψ(ȳ(T)) + NT (ȳ(T)); (9)

for a.e. t ∈ [0, T], one has

q(t) · F
(
t, ȳ(t), ω̄(t), ᾱ(t)

)
= max(w,a)∈V×A q(t) · F

(
t, ȳ(t), w, a

)
;

(10)

m(t) ∈ ∂>x h(t, ȳ(t)) µ-a.e. t ∈ [0, T]; (11)

spt(µ) ⊆ {t ∈ [0, T] : h(t, ȳ(t)) = 0}, (12)

where

q(t) :=

{
p(t) +

∫
[0,t[ m(t′)µ(dt′) t ∈ [0, T[,

p(T) +
∫
[0,T] m(t′)µ(dt′) t = T.

We say that a Ψ-extremal z̄ is normal if all sets of multipliers (p, γ, µ, m), as described above,
have γ > 0. Conversely, we say that z̄ is abnormal when it is not normal. Clearly, abnormal
Ψ-extremals do not depend on Ψ so we refer to them simply as abnormal extremals.

Remark 5. By the start of the 1970s, it was commonly acknowledged that efforts to expand the
usefulness of existing necessary conditions were being hindered by a common problem: a dearth
of methods for examining the characteristics of nonsmooth functions and sets with nonsmooth
boundaries. One approach to extending the celebrated Pontryagin Maximum Principle [5] in this
direction is to use nonsmooth analysis, a branch of analysis that investigates precisely how to locally
approximate functions that are non-differentiable and sets with a non-differentiable boundary. The
maximum principle above is based on this approach, developed by Clarke and collaborators, for which
we refer to the books [21,22].

Theorem 1. Let z̄ := (ω̄, ᾱ, ȳ) ∈ Γe and assume that hypotheses (H1)–(H3) hold. Then, consider
the following statements:

(i) If z̄ is a local Ψ-minimizer for (Pe), then z̄ is a Ψ-extremal. If at z̄, there is a type-E local
Ψ-infimum gap, then z̄ is an abnormal extremal;

(ii) If z̄ ∈ Γs is a local Ψ-minimizer for (Ps), then z̄ is a Ψ-extremal. If at z̄, there is a type-S local
Ψ-infimum gap, then z̄ is an abnormal extremal.

The proof of Theorem 1 is given in Section 5.
The main novelty of Theorem 1 is statement (ii), concerning the case where z̄ is a local

minimizer of the original problem but not of the extended one. Indeed, in the previous
literature (see [9,10]), it was proven that in such cases, an L∞-local minimizer z̄ is an
abnormal extremal only for an ‘averaged version’ of the maximum principle, meaning that
the adjoint Equation (8) was replaced with the following weaker differential inclusion

− ṗ(t) ∈ co

{ ⋃
(w,a)∈V×A

∂x

(
q(t) · F (t, ȳ(t), w, a)

)}
a.e. t ∈ [0, T],

in which all information on optimal control is lost. Incidentally, note that the difference
between the two adjoint equations still holds even if F is C1 in the state variable.

Remark 6. It is worth mentioning that, despite hypothesis (H1) implying that V is a dense subset
of W in the L1-norm, it has been well known since the earliest work by Warga [12] and Kaskovz [11]
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that, in general, if only this latter condition is satisfied, the link between the gap and abnormality
established in Theorem 1 may fail (see, e.g., the example in [24], Section 9).

A straightforward corollary of Theorem 1 is that the normality of an extremal turns
out to be sufficient for any type of local infimum gap not to occur.

Theorem 2. Let z̄ := (ω̄, ᾱ, ȳ) ∈ Γe, and assume that hypotheses (H1)–(H3) hold. Then, consider
the following statements:

(i) If z̄ is a local Ψ-minimizer for (Pe), which is a normal Ψ-extremal, at z̄, there is no type-E local
Ψ-infimum gap. If, in addition, z̄ is a Ψ-minimizer for (Pe), then there is no Ψ-infimum gap;

(ii) If z̄ ∈ Γs is a local Ψ-minimizer for (Ps), which is a normal Ψ-extremal, at z̄, there is no type-S
local Ψ-infimum gap, namely z̄ is a local Ψ-minimizer for (Pe) as well.

4. An Application: The Impulsive Extension

In this section, we describe how the previous results can be used to investigate the
gap phenomenon in a case relevant to applications: the impulsive extension of an optimal
control problem with endpoint and state constraints. We also provide an example of an
impulsive problem in which both a type-E and a type-S local infimum gap occur, and we
explicitly show the abnormality condition in this case.

4.1. An Impulsive Optimization Problem

Let us consider the following free end-time optimization problem with unbounded,
control-affine dynamics:

(P)



minimize Ψ(S, x(S), v(S))

over S > 0, u ∈ L1([0, S], U), (x, v) ∈ W1,1([0, S],Rn+1), s.t.

(ẋ(s), v̇(s)) =
(

f (s, x(s)) + ∑m
j=1 gj(s, x(s))uj(s)), |u(s)|

)
a.e. s ∈ [0, S],

(x(0), v(0)) = (x̌0, 0),

h(s, x(s)) ≤ 0 for all s ∈ [0, S], (S, x(S)) ∈ T ∗, v(S) ≤ K,

in which U ⊆ Rm, T ∗ ⊂ R1+n, f : R1+n → Rn, gj : R1+n → Rn for any j = 1, . . . , m,
Ψ : R1+n+1 → R, and h : R1+n → R.

We make the following assumptions on the data:

H4. K ∈]0,+∞[ (i.e., K might be +∞); the (unbounded) set of control values U is a closed cone;
the target T ∗ is a closed set; and the dynamics functions f , gj, the constraint function h, and the
cost function Ψ are locally Lipschitz continuous.

Note that v(s), sometimes called fuel or energy, is simply the L1-norm of the control
function u on [0, s]. Assuming, as usual, that the function v 7→ Ψ(s, x, v) is merely monotone
nondecreasing, this problem is non-coercive, i.e., there are no conditions that prevent a
minimizing sequence of trajectories from having increasing velocities and converging to
a discontinuous path. It is well known that it is possible to embed the original problem
(P) into the space-time or extended problem (Pe) below, where the time becomes a new
state variable and the trajectories are reparameterizations of the limits of the graphs of
the trajectories of (P) in the L∞-norm [25–28] (we recall that (P) can be analyzed using
a distributional approach, meaning that u is substituted by a Radon measure, only if the
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coefficients gi are autonomous and commute, i.e., the Lie brackets [gi, gj] are equal to 0 for
any i, j = 1, . . . , m (see, e.g., [25,29])):

(Pe)



minimize Ψ(y0(T), y(T), ν(T))

over T > 0, (ω0, ω) ∈ W(T), (y0, y, ν) ∈ W1,1([0, T],R1+n+1), s.t.

ẏ0(t) = ω0(t) a.e. t ∈ [0, T],

ẏ(t) = f (y0(t), y(t))ω0(t) + ∑m
j=1 gj(y0(t), y(t))ω j(t) a.e. t ∈ [0, T],

ν̇(t) = |ω(t)| a.e. t ∈ [0, T],

(y0, y, ν)(0) = (0, x̌0, 0),
(
y0(T), y(T), ν(T)

)
∈ T ∗×]− ∞, K],

h(y0(t), y(t)) ≤ 0 for all t ∈ [0, T],

where W(T) := L1([0, T], W), with W the set of control values given by

W :=
{
(w0, w) ∈ [0,+∞[×U : w0 + |w| = 1

}
.

Let (S, u, x, v) be an original process, i.e., it satisfies the dynamics constraint together
with the initial condition of problem (P), and let σ : [0, S] → [0,+∞[ be defined as follows

σ(s) := s + v(s) for any s ∈ [0, S].

We observe that (T, ω0, ω, y0, y, ν) := (σ(S), ẏ0, (u ◦ y0)ẏ0, σ−1, x ◦ y0, v ◦ y0) results in
an extended process, i.e., it satisfies the dynamics constraint together with the initial condition
of problem (Pe), and ω0 = ẏ0 > 0 a.e. Actually, the map that associates with each original
process an extended process with ω0 > 0 a.e. turns out to be a bijection, so that problem
(P) is in correspondence with the strict-sense problem (Ps), namely the optimal control
problem that arises when in (Pe), we limit ourselves to consider strict-sense processes only,
i.e., extended processes with ω0 > 0 a.e. Therefore, the extension involves allowing the
control variable ω0 to vanish on some non-trivial intervals contained in [0, T]. There, y0

remains constant, whereas y evolves instantaneously according to ẏ = ∑m
j=1 gj(y0, y)ω j(t).

This is the reason why (Pe), despite being an ordinary optimal control problem with controls
taking values in compact sets, is usually labeled as the impulsive extension of (P). Indeed,
problem (Pe) is also equivalent to another generalization of (P) where the controls are
vector-valued measures and the trajectories are bounded variation paths [14,30–34].

Adopting the terminology of the present paper, we say that an extended or strict-sense
process (T, ω0, ω, y0, y, ν) is feasible [resp. an original process (S, u, x, v) is feasible] if it
additionally fulfills all the endpoint and the state constraint of (Pe) [resp. (P)]. The sets of
feasible original, feasible extended, and feasible strict-sense processes are denoted by Γ∗,
Γe, and Γs, respectively. Given z = (T, ω0, ω, y0, y, ν) and ẑ = (T̂, ω̂0, ω̂, ŷ0, ŷ, ν̂) ∈ Γe, we
define the distance:

dimp(z, ẑ) := |T − T̂|+ ∥(ω0, ω)− (ω̂0, ω̂)∥L1(0,T∧T̂). (13)

Note that dimp is equivalent to the distance obtained by replacing T ∧ T̂ with T ∨ T̂
in the L1-norm (possibly extending the controls to R constantly equal to 0), as ∥(ω0, ω)−
(ω̂0, ω̂)∥L1(0,T∨T̂) − ∥(ω0, ω)− (ω̂0, ω̂)∥L1(0,T∧T̂) ≤ M|T − T̂| for some constant M > 0. At
this point, the definitions of the local minimizer and type-E and type-S local Ψ-infimum
gaps (see Definitions 1 and 2) can be easily adapted to the impulsive extension by replacing
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the distance d defined in (5) with the distance dimp given in (13). The unmaximized
Hamiltonian associated with problem (Pe) above is given by

H(s, x, p0, p, π, w0, w) := p0w0 + p ·
(

f (s, x)w0 +
m

∑
j=1

gj(s, x)wj)+ π|ω|

for all (s, x, p0, p, π, w0, w) ∈ R1+n+1+n+1 × W.

Definition 4. We say that (T̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) ∈ Γe is a Ψ-extremal if there exists a path (p0, p) ∈
W1,1([0, T̄],R1+n), γ ≥ 0, π ≤ 0, µ ∈ NBV+([0, T̄],R), and Borel-measurable and µ-integrable
functions (m0, m) : [0, T̄] → R1+n satisfying the following conditions:

∥p0∥L∞ + ∥p∥L∞ + µ([0, T̄]) + γ ̸= 0 (14)

−( ṗ0, ṗ)(t) ∈ co ∂s,x H(ȳ0(t), ȳ(t), q0(t), q(t), π, ω̄0(t), ω̄(t)) a.e. t (15)

−(q0(T̄), q(T̄), π) ∈ γ∂Ψ(ȳ0(T̄), ȳ(T̄), ν̄(T̄)) + NT ∗×]−∞,K](ȳ
0(T̄), ȳ(T̄), ν̄(T̄)) (16)

H(ȳ0(t), ȳ(t), q0(t), q(t), π, ω̄0(t), ω̄(t))
= max

(w0,w)∈W
H(ȳ0(t), ȳ(t), q0(t), q(t), π, w0, w) = 0 a.e. t (17)

(m0, m)(t) ∈ ∂>s,xh(ȳ0(t), ȳ(t)) µ-a.e. t (18)

spt(µ) ⊆ {t ∈ [0, T̄] : h(ȳ0(t), ȳ(t)) = 0}, (19)

where (q0, q) : [0, T̄] → R1+n is given by

(q0, q)(t) :=

{
(p0, p)(t) +

∫
[0,t[(m0, m)(t′)µ(dt′) t ∈ [0, T̄[,

(p0, p)(T̄) +
∫
[0,T̄](m0, m)(t′)µ(dt′) t = T̄.

Moreover, if γ∂νΨ(ȳ0(T̄), ȳ(T̄), ν̄(T̄)) = 0 and ν̄(T̄) < K, then π = 0. Furthermore, if
ȳ0(0) < ȳ0(T̄), then (14) can be strengthened with

∥p∥L∞ + µ([0, T̄]) + γ ̸= 0. (20)

We say that (T̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) is normal if all sets of multipliers (p0, p, γ, π, µ, m0, m), as
described above, have γ > 0. Conversely, we say that (T̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) is abnormal when it is not
normal.

From Theorem 1, we deduce the following result.

Theorem 3. Let z̄ := (T̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) ∈ Γe, and assume that hypothesis (H4) holds. Then,
consider the following statements:

(i) If z̄ is a local Ψ-minimizer for (Pe), then z̄ is a Ψ-extremal. If at z̄, there is a type-E local
Ψ-infimum gap, then z̄ is an abnormal extremal;

(ii) If z̄ ∈ Γs is a local Ψ-minimizer for (Ps), then z̄ is a Ψ-extremal. If at z̄, there is a type-S local
Ψ-infimum gap, then z̄ is an abnormal extremal.

Proof. The impulsive extended problem (Pe) has a free end time, so the results of the
previous sections concerning fixed end-time problems do not apply straightforwardly.
However, through a standard time-rescaling procedure that applies to free end-time prob-
lems with Lipschitz-continuous time dependence, we can embed problem (Pe) into a fixed
end-time optimization problem, satisfying all the assumptions of Theorem 1 and for which,



Mathematics 2024, 12, 943 12 of 21

for example, z̄ is still a local minimizer if it was so for (Pe). Precisely, let W := W(T̄),
D := L1([0, T̄], [−1/2, 1/2]), and consider the rescaled problem :

(Pr
e )



minimize Ψ(y0(T̄), y(T̄), ν(T̄))

over (ω0, ω) ∈ W , d ∈ D, (y0, y, ν) ∈ W1,1([0, T̄],R1+n+1), s.t.

ẏ0(t) = (1 + d(t))ω0(t) a.e. t ∈ [0, T̄],

ẏ(t) = (1 + d(t))F (y0(t), y(t), ω0(t), ω(t)) a.e. t ∈ [0, T̄],

ν̇(t) = (1 + d(t)) |ω(t)| a.e. t ∈ [0, T̄],

(y0, y, ν)(0) = (t1, x̌0, 0),

h(y0(t), y(t)) ≤ 0 for all t ∈ [0, T̄],
(

y0(T̄), y(T̄), ν(T̄)
)
∈ T ∗×]− ∞, K],

where, for any (t, x, w0, w) ∈ R1+n × W, we have the set

F (t, x, w0, w) := f (t, x)w0 +
m

∑
j=1

gj(t, x) wj.

Any element (ω0, ω, d, y0, y, ν) satisfying all constraints in (Pr
e ) is referred to as a

feasible rescaled extended process. If ω0 > 0 a.e., then (ω0, ω, d, y0, y, ν) is called a feasible
rescaled strict-sense process. For any pair of feasible rescaled extended processes ζ :=
(ω0, ω, d, y0, y, ν), ζ̂ := (ω̂0, ω̂, d̂, ŷ0, ŷ, ν̂), we define the distance as

dr(ζ, ζ̂) := ∥(ω0, ω, d)− (ω̂0, ω̂, d̂)∥L1(0,T̄).

Let us associate the (feasible) rescaled process ζ̄ := (ω̄0, ω̄, d̄ = 0, ȳ0, ȳ, ν̄) with the
given reference process z̄ = (T̄, ω̄0, ω̄, ȳ0, ȳ, ν̄). From a straightforward application of the
chain rule and standard calculations, we deduce that for any δ > 0, there exists some
ε ∈]0, δ[ such that with each feasible rescaled extended process ζ := (ω̃0, ω̃, d̃, ỹ0, ỹ, ν̃)
satisfying dr(ζ, ζ̄) < ε, using the time change

τ(s) =
∫ s

0

ds′

1 + d̃(s′)
, s ∈ [0, T̄],

we can associate the following feasible extended process

z = (T, ω0, ω, y0, y, ν) := (τ(T̄), (ω̃0, ω̃, ỹ0, ỹ, ν̃) ◦ τ).

satisfying dimp(z, z̄) < δ. Moreover, Ψ((ỹ0, ỹ, ν̃)(T̄)) = Ψ((y0, y, ν)(T)).
As a consequence, if z̄ is a local Ψ-minimizer for (Pe), then ζ̄ is a local Ψ-minimizer

for (Pr
e ), at which there is a type-E local infimum gap as soon as at z̄, there is a type-E local

infimum gap. At this point, the proof of Theorem 3 can be derived by applying Theorem 1
to the rescaled problem. We omit the details, which follow the same line as the proofs in
[22] (Theorem 8.7.1), and [8] (Theorem 4.1).

Remark 7. Using similar arguments to those in [8], what we have done in this section can be easily
generalized to control-polynomial impulsive problems, by which we mean that the dynamics of the
original problem (P) can be replaced with

(ẋ, v̇)(t) =

(
f (t, x) +

d

∑
k=1

(
∑

1≤j1≤···≤jk≤m
gk

j1,...,jk (t, x) uj1 · · · ujk
)

, |u|d
)

a.e. t,

where d is an integer ≥ 1. This generalization may be relevant for some applications to Lagrangian
mechanics, where dynamics are usually control-polynomial with a degree of d = 2 (see [17]).
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4.2. An Example

The following example tells us that both a type-S local infimum gap and a type-E local
infimum gap may occur. Moreover, we exhibit sets of abnormal multipliers, which exist in
accordance with Theorem 3.

Consider the optimization problem with scalar, unbounded controls:

(P)



minimize |x1(1)− 1|

over u ∈ L1([0, 1], [0,+∞[), (x1, x2) ∈ W1,1([0, 1],R2) s.t.

(ẋ1(s), ẋ2(s)) = (u(s), 2) a.e. s ∈ [0, 1],

(x1, x2)(0) = (−1,−1), x2(1) = 1,
∫ 1

0 u(s) ds ≤ 3,

h(x1(s), x2(s)) := 1 − |x1(s)| ∨ |x2(s)| ≤ 0 for all s ∈ [0, 1].

Let W :=
{
(w0, w) ∈ [0,+∞[×[0,+∞[: w0 + w = 1

}
. Then, the space-time extension

of the above problem is given by

(Pe)



minimize |y1(T)− 1|

over T > 0, (ω0, ω) ∈ L1([0, T], W), (y0, y1, y2, ν) ∈ W1,1([0, T],R4) s.t.

(ẏ0, ẏ1, ẏ2, ν̇)(t) = (ω0, ω, 2ω0, ω)(t) a.e. t ∈ [0, T],

(y0, y1, y2, ν)(0) = (0,−1,−1, 0), y0(T) = 1, y2(T) = 1, ν(T) ≤ 3,

h(y1(t), y2(t)) = 1 − |y1(t)| ∨ |y2(t)| ≤ 0 for all t ∈ [0, T].

Type-S local infimum gap. Let z̄ := (T̄, ω̄0, ω̄, ȳ0, ȳ1, ȳ2, ν̄) be the following strict-sense
process, where T̄ = 1, the control (ω̄0, ω̄) is given by the constant pair

(ω̄0, ω̄)(t) = (1, 0) ∀t ∈ [0, 1],

and
(ȳ0, ȳ1, ȳ2, ν̄)(t) = (t,−1,−1 + 2t, 0) ∀t ∈ [0, 1].

It is easy to see that z̄, which corresponds to the process of (P) associated with the
control ū ≡ 0, is trivially a strict-sense minimizer, as (ȳ0, ȳ1, ȳ2, ν̄) is the unique feasible
strict-sense trajectory. However, z̄ is not a local minimizer for the extended problem
(Pe). Indeed, let us fix ε > 0 sufficiently small, and let us consider the extended process
zε = (Tε, ω0

ε , ωε, y0
ε , y1

ε , y2
ε , νε), where Tε = 1 + ε and (ω0

ε , ωε) is given by

(ω0
ε , ωε)(t) :=

{
(1, 0) if t ∈ [0, 1]
(0, 1) if t ∈]1, 1 + ε],

so that one has

(y0
ε , y1

ε , y2
ε , νε)(t) =

{
(t,−1,−1 + 2t, 0) if t ∈ [0, 1]
(1,−2 + t, 1, t − 1) if t ∈]1, 1 + ε].

For any ε > 0, this is the description in the state space of a discontinuous state
trajectory (x1

ε , x2
ε ) for problem (P), which first reaches the point (−1, 1) using the control

u = 0 and then jumps to the position (−1 + ε, 1) with an impulse. Note that z̄ε is a feasible
extended process that satisfies

dimp(zε, z̄) = |Tε − T̄|+ ∥(ω0
ε , ωε)− (ω̄0, ω̄)∥L1(0,1∧(1+ε)) = ε
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whose cost is strictly less than the cost corresponding to z̄ because it holds that

|y1
ε (1 + ε)− 1| = 2 − ε < 2 = |ȳ1(1)− 1|.

Thus, by the arbitrariness of ε > 0, at z̄, there is a type-S local infimum gap. Indeed,
a set of abnormal multipliers corresponding to z̄ is given by (p0, p, γ, π, µ, m0, m), where
γ = π = 0, p0 ≡ 0, µ ≡ 0, p = (p1, p2) ≡ (0, 1), m0 ≡ 0, and m(t) = (m1, m2)(t) ∈
∂>h(ȳ1(t), ȳ2(t)) for any t ∈ [0, 1].

Type-E local infimum gap. Now consider the following extended process ẑ :=
(ω̂0, ω̂, ŷ0, ŷ1, ŷ2, ν̂), where T̂ = 3 and (ω̂0, ω̂) is given by

(ω̂0, ω̂)(t) :=

{
(1, 0) t ∈ [0, 1]
(0, 1) t ∈]1, 3],

so that one has

(ŷ0, ŷ1, ŷ2, ν̂)(t) =

{
(t,−1,−1 + 2t, 0) t ∈ [0, 1]
(1,−2 + t, 1, t − 1) t ∈]1, 3].

It is easy to see that ẑ is a minimizer for (Pe) as it is feasible, and its corresponding
cost is equal to zero. Moreover, at ẑ, there is a type-E local infimum gap since z̄ defined
in the previous step is the unique feasible strict-sense process. Indeed, a set of abnormal
multipliers corresponding to ẑ is given by (p0, p, γ, π, µ, m0, m), where γ = π = 0, p0 ≡ 0,
µ({0}) = 2, µ(]0, 1]) = 0, p = (p1, p2) ≡ (−2, 0), m0 ≡ 0, m(0) = (m1, m2)(0) = (1, 0),
and m(t) = (m1, m2)(t) ∈ ∂>h(ȳ1(t), ȳ2(t)) for any t ∈]0, 1[.

5. Proof of Theorem 1

First, we point out that by utilizing standard cutoff procedures, we may assume.
without loss of generality. that hypotheses (H2) and (H3) hold, replacing Σθ with R1+n.
In the proofs, we utilize extended trajectories lying in an L∞-tube around the reference
trajectory ȳ, and the control functions take values in compact sets. Therefore, the input-
output map (ω, α) 7→ y[ω, α] associated with (1) is well defined and continuous (actually,
uniformly continuous).

5.1. Proof of Statement (i)

If z̄ is a local Ψ-minimizer for (Pe), the fact that it is an extremal can be easily derived
from [22] (Theorem 9.3.1). Proving that whenever there is a type-E local infimum gap at z̄,
it is an abnormal extremal, instead requires a careful adaptation of the reasoning employed
in the proof in [8] (Theorem 2.1), where the same result was obtained for the notion of
a type-E local infimum gap, in which the distance d between the controls was replaced
with the L∞-distance of the trajectories. Specifically, the proof is structured as follows.
In the first step, we construct a sequence of optimization problems (P̂i) over strict-sense
processes with the controls taking values in Vi × A, where Vi is as in (H1) and the cost
function penalizes processes that violate the endpoint and the state constraint. Hence, we
build another sequence of optimal control problems, say (Pi), by suitably perturbing (P̂i).
Finally, by applying the Ekeland principle, we find a sequence (zi) of minimizers for (Pi)
that converges to the reference process z̄ = (ω̄, ᾱ, ȳ). In the second step of the proof, we
write the necessary conditions satisfied by each zi, whereas in the third step, we pass to the
limit in these conditions, obtaining a set of abnormal multipliers for z̄.

Step 1. Define the function Φ : Rn+1 → R, given by

Φ(x, c) := dT (x) ∨ c
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and for any y ∈ W1,1([0, T],Rn) we set

J (y) := Φ
(

y(T), max
t∈[0,T]

h(t, y(t))
)

.

Let (εi)i be a sequence converging to 0, and let (ρi)i be such that

ρ2
i = sup{J (y) : z = (ω, α, y) ∈ Γs, d(z, z̄) ≤ εi}.

By the uniform continuity of the input-output map and the Lipschitz continuity of Φ,
it follows that limi→+∞ ρ2

i = 0. Moreover, ρi > 0 as soon as i is sufficiently large, as z̄ is an
isolated process by Remark 4.

By (H1) and Remark 1, for any i, there exists a closed subset Vεi ⊂ V and a control
ω̂i ∈ Vεi := L1([0, T], Vεi ) such that ∥ω̂i − ω̄∥L1 ≤ εi. Hence, let ẑi = (ω̂i, α̂i, ŷi) be such
that α̂i ≡ ᾱ and ŷi = y[ω̂i, α̂i]. As a consequence, ẑi is a ρ2

i -minimizer for the optimization
problem (P̂i), given by (

P̂i
){ Minimize J (y)

over z = (ω, α, y) ∈ Γi

where
Γi := { (ω, α, y) ∈ Vεi ×A× W1,1([0, T],Rn) satisfying (1) }.

It is easy to show that if we equip Γi with the distance d, it turns out to be a complete
metric space. Accordingly, by applying Ekeland’s variational principle, we deduce that
there exists zi = (ωi, αi, yi) ∈ Γi, which is a minimizer for the optimal control problem (Pi),
given by

(Pi)

{
Minimize J (y) + ρi

∫ T
0 [|ω(t)− ωi(t)|+ ϑi(t, α(t))] dt

over z = (ω, α, y) ∈ Γi,

where ϑi : [0, T]× A is defined as

ϑi(t, a) :=

{
0 if a = αi(t)
1 otherwise.

Moreover, one has d(zi, ẑi) ≤ ρi so d(zi, z̄) ≤ ρi + εi → 0. In particular, it holds that

ωi → ω̄ in L1, ℓ({t ∈ [0, T] : αi(t) ̸= ᾱ(t)}) → 0. (21)

Furthermore, since the input-output map (ω, α) 7→ y[ω, α] is continuous, one has

yi → ȳ in L∞, ẏi ⇀ ˙̄y weakly in L1. (22)

By the previous convergence analysis and, since z̄ is isolated, one has J (yi) > 0 for
any i. Therefore, possibly passing to a subsequence, for any i, we have

either dT (yi(T)) > 0 or ci := max
t∈[0,T]

h(t, yi(t)) > 0. (23)

Step 2. From the above reasoning, it follows that

(zi, ci) = (ωi, αi, yi, max
t∈[0,T]

h(t, yi(t)))
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is a minimizer for the optimal control problem (Qi), given by

(Qi)



Minimize
(

dT (y(T)) ∨ c(T)
)
+ ρi

∫ T
0 [|ω(t)− ωi(t)|+ ϑi(t, α(t))] dt

over (ω, α, y, c) ∈ Vεi ×A× W1,1([0, T],Rn+1) satisfying
(ẏ(t), ċ(t)) = (F (t, y(t), ω(t), α(t)), 0) a.e. t ∈ [0, T],
y(0) = x̌0,
h̃(t, y(t), c(t)) := h(t, y(t))− c(t) ≤ 0 ∀t ∈ [0, T].

Possibly passing to a subsequence, only one of the following two cases occurs:

Case (a) : ci > 0 for any i.

Case (b) : ci ≤ 0 for any i.

Let us first analyze Case (a). Since from h(t, yi(t))− ci > 0 it follows that h(t, yi(t)) > 0,
one has ∂>x,c h̃(t, x, c) = ∂>x h(t, x)× {−1}. Moreover, by the max rule for subdifferentials
(see, e.g., [22] (Section 5)), if (β1

i , β2
i ) ∈ ∂Φ(yi(T), ci), there exists σ1

i , σ2
i ≥ 0 such that

σ1
i + σ2

i = 1, β1
i ∈ σ1

i (∂dT (yi(T)) ∩ ∂B) and β2
i = σ2

i . Furthermore, σ1
i = 0 [resp. σ2

i = 0]
whenever dT (yi(T)) < dT (yi(T)) ∨ ci [resp. ci < dT (yi(T)) ∨ ci]. Thanks to the above
reasoning, if we write the necessary conditions of the maximum principle satisfied by
the minimizer (zi, ci), we deduce that there exists (pi, πi) ∈ W1,1([0, T],Rn+1), λi ≥ 0,
µi ∈ NBV+([0, T],R), σ1

i , σ2
i ≥ 0 such that σ1

i + σ2
i = 1 and a Borel-measurable and

µi-integrable map mi : [0, T] → Rn satisfying conditions (i)′–(vi)′ below:

(i)′ ∥pi∥L∞ + λi + µi([0, T]) + ∥πi∥L∞ = 1;
(ii)′ − ṗi(t) ∈ co ∂x{qi(t) · F (t, yi(t), ωi(t), αi(t)) and π̇i(t) = 0 for a.e. t ∈ [0, T];

(iii)′ −qi(T) ∈ λiσ
1
i

(
∂Φ(yi(T)) ∩ ∂B

)
, π(0) = 0, −π(T) + µi([0, T]) = λiσ

2
i ;

(iv)′ mi(t) ∈ ∂>x h(t, yi(t)) µi-a.e. t ∈ [0, T];
(v)′ spt(µi) ⊂ {t ∈ [0, T] : h(t, yi(t))− ci = 0};

(vi)′
∫ T

0 qi(t) · F (t, yi(t), ωi(t), αi(t)) dt
l ≥

∫ T
0 [qi(t) · F (t, yi(t), ω(t), α(t))− ρiλi(|ωi(t)− ω(t)|) + ϑi(t, α(t))] dt

l ≥
∫ T

0 [qi(t) · F (t, yi(t), ω(t), α(t))− ρiλi(1 + diam(V))] dt
for any (ω, α) ∈ Vεi ×A,

where diam(V) is the diameter of the compact set V and qi : [0, T] → Rn is defined as

qi(t) :=

{
pi(t) +

∫
[0,t] mi(t′)µi(dt′) if t ∈ [0, T[,

pi(T) +
∫
[0,T] mi(t′)µi(dt′) if t = T.

(24)

From (ii)′ and (iii)′, we deduce that πi ≡ 0 and µi([0, T]) = λiσ
2
i . Since ∥mi∥L∞ ≤ Kh ,

from (iii)′, we also have λiσ
1
i = |qi(T)| ≤ ∥pi∥L∞ + Kh µi([0, T]). By summing up these

relations and (i)′, we obtain

2∥pi∥L∞ + (2 + Kh)µi([0, T]) + λi ≥ 1 + λiσ
1
i + λiσ

2
i ,

which implies ∥pi∥L∞ + µi([0, T]) ≥ 1
2+Kh

. By rescaling the multipliers, one obtains

∥pi∥L∞ + µi([0, T]) = 1 and λi ≥ 2 + Kh .
If instead, Case (b) occurs, then dT (yi(T)) > 0 for any i by (23). Hence, for δ > 0

small, the process (zi, ci + δ) is still a minimizer for (Qi), and h(t, yi(t))− (ci + δ) < 0 for all
t ∈ [0, T]. If we also write in this case the necessary conditions of optimality satisfied by the
minimizer (zi, ci + δ), we deduce the existence of pi ∈ W1,1([0, T],Rn) and λi > 0, fulfilling
relations (i)′–(vi)′ above for µi ≡ 0, σ2

i = 0 (hence, σ1
i = 1). Indeed, if it were λi = 0, then

qi(T) = pi(T) = 0, so the linearity of the adjoint equation (ii)′ implies pi ≡ 0, contradicting
(i)′. In this case, from (iii)′, we deduce 0 < λi = |qi(T)| ≤ ∥pi∥L∞ . By summing up this
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relation with (i)′, we obtain 2∥pi∥L∞ + λi > 1 + λi, which implies ∥pi∥L∞ > 1
2 . By rescaling

the multipliers, we have ∥pi∥L∞ = 1 and λi ≤ 2 ≤ 2 + Kh .
Step 3. For both Case (a) and Case (b), we have proved that for any i, there exists

pi ∈ W1,1([0, T],Rn), µi ∈ NBV+([0, T],R), and a Borel-measurable and µi-integrable map
mi : [0, T] → Rn satisfying relations (i)–(vi) below:

(i) ∥pi∥L∞ + µi([0, T]) = 1;
(ii) − ṗi(t) ∈ co ∂x{qi(t) · F (t, yi(t), ωi(t), αi(t)) a.e. t ∈ [0, T];

(iii) −qi(T) ∈ [0, 2 + Kh ]
(

∂Φ(yi(T)) ∩ ∂B
)

;

(iv) mi(t) ∈ ∂>x h(t, yi(t)) µi-a.e. t ∈ [0, T];
(v) spt(µi) ⊂ {t ∈ [0, T] : h(t, yi(t))− ci = 0};

(vi)
∫ T

0 qi(t) · F (t, yi(t), ωi(t), αi(t)) dt
l ≥

∫ T
0 [qi(t) · F (t, yi(t), ω(t), α(t))− ρi(2 + Kh)(1 + diam(V))] dt

for any (ω, α) ∈ Vεi ×A,

where qi : [0, T] → Rn is given by (24). Employing a standard convergence analysis (see [7]
for more details), we deduce the existence of (p, µ) ∈ W1,1([0, T],Rn)× NBV+([0, T],R)
and a Borel-measurable and µ-integrable map m : [0, T] → Rn satisfying, up to a subse-
quence, the following conditions:

µi ⇀
∗ µ, mi(t)µi(dt) ⇀∗ m(t)µ(dt),

pi → p in L∞, qi → q in L1, ṗi ⇀ ṗ weakly in L1. (25)

Therefore, using (22) and passing to the limit in conditions (i), (iv), and (v), we obtain

∥p∥L∞ + µ([0, T]) = 1, m(t) ∈ ∂>x h(t, ȳ(t)) µ-a.e. t ∈ [0, T],

spt(µ) ⊂ {t ∈ [0, T] : h(t, ȳ(t)) = 0}.

Moreover, using the basic properties of subdifferentials and the fact that ∂dT (x) =
NT (x) ∩B for any x ∈ T (see [22]), by (iii), we deduce that

−q(T) ∈ NT (ȳ(T)),

where q : [0, T] → Rn is given by

q(t) :=

{
p(t) +

∫
[0,t] m(t′)µ(dt′) if t ∈ [0, T[

p(T) +
∫
[0,T] m(t′)µ(dt′) if t = T.

Let us now derive the adjoint Equation (8). Let Ωi := {t ∈ [0, T] : αi(t) = ᾱ(t)}, so
that ℓ(Ωi) → 0 by (21). Using (3) and hypothesis (H3), for a.e. t ∈ Ωi, we obtain

(− ṗi(t), ẏi(t)) ∈
(

co ∂x{qi(t) · F (t, yi(t), ωi(t), ᾱ(t))}, F (t, yi(t), ωi(t), ᾱ(t))
)

⊆
(

qi(t) · DxF (t, yi(t), ω̄(t), ᾱ(t)) + |qi(t)|k(t)φ(|ωi(t)− ω̄(t)|)B,

F (t, yi(t), ω̄(t), ᾱ(t)) + k(t)φ(|ωi(t)− ω̄(t)|)B
)

⊆
(

co ∂x{q(t) · F (t, yi(t), ω̄(t), ᾱ(t)), F (t, yi(t), ω̄(t), ᾱ(t))}
)
+ ri(t)B

where, since ∥qi∥L∞ ≤ ∥pi∥L∞ + Kh µi([0, T]) ≤ 1 + Kh , the map ri : [0, T] → R is given by

ri(t) = |qi(t)− q(t)|k(t) + 2(1 + Kh)k(t)φ(|ωi(t)− ω̄(t)|).
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By the continuity of φ, (21), and (25), we deduce that, up to a subsequence, ri(t) → 0
for a.e. t ∈ [0, T]. Moreover, it holds that

|ri(t)| ≤ 2(1 + Kh)(1 + φ(diam(V)))k(t) ∈ L1.

Hence, by the dominated convergence theorem, ri → 0 in L1 (in particular, φ(|ωi −
ω̄|) → 0 in L1). From the compactness of trajectories theorem (see [22], Theorem 2.5.3), it
follows that for a.e. t ∈ [0, T], it holds that

(− ṗ(t), ˙̄y(t)) ∈
(

co ∂x{q(t) · F (t, ȳ(t), ω̄(t), ᾱ(t))},F (t, ȳ(t), ω̄(t), ᾱ(t))
)

Now, we conclude the proof by demonstrating (10). Let (ω, α) ∈ W ×A and, as a
consequence of hypothesis (H1), let (vi)i ⊂ V satisfy vi ∈ Vεi for each i, and ∥ω − vi∥L1 ≤
εi ↓ 0. Condition (vi) implies that∫ T

0
qi(t) · ˙̄yi(t)dt ≥

∫ T

0
[qi(t) · F (t, yi(t), vi(t), α(t))− ρi(1 + diam(V))(2 + Kh)]dt

Up to a subsequence, the term on the right in the above relation converges to
∫ T

0 [q(t) ·
F (t, ȳ(t), ω(t), α(t))] dt by the dominated convergence theorem. At the same time, it holds
that∫ T

0
qi(t) · ẏi(t)dt =

∫ T

0
q(t) · ˙̄y(t)dt +

∫ T

0
(qi(t)− q(t)) · ẏi(t)dt +

∫ T

0
q(t) · (ẏi(t)− ˙̄y(t))dt.

But now the second term on the right tends to zero by the dominated convergence
theorem, whereas the third one converges to zero because of (22) and since q is bounded.
Therefore, we have proved that for any (ω, α) ∈ W ×A, one has∫ T

0
q(t) · ˙̄y(t) dt ≥

∫ T

0
q(t)F (t, ȳ(t), ω(t), α(t)) dt.

From a measurable selection theorem, (10) immediately follows.

5.2. Proof of Statement (ii)

Let z̄ = (ω̄, ᾱ, ȳ) ∈ Γs be a local Ψ-minimizer for (Ps). We can derive that it is an
extremal of the Pontryagin maximum principle from [22] (Theorem 9.3.1). In particular, the
maximality condition (10) still holds with the maximum taken over V × A since we assume
that the dynamics function is continuous with respect to the w-variable.

If z̄ is a local Ψ-minimizer for (Ps), which is not a local Ψ-minimizer for (Pe), then, on
the one hand, there exists δ > 0 such that Ψ(ȳ(T)) ≤ Ψ(y(T)) for any z = (ω, α, y) ∈ Γs
such that d(z, z̄) ≤ 2δ. On the other hand, taken (εi)i ⊂]0, δ[ with εi ↓ 0, for each i, there
exists some zi = (ωi, αi, yi) ∈ Γe such that d(zi, z̄) ≤ εi < δ and Ψ(yi(T)) < Ψ(ȳ(T)).
Hence, for any z = (ω, α, y) ∈ Γs such that d(zi, z) ≤ δ, one has d(z, z̄) ≤ 2δ, so by
construction, we have

Ψ(yi(T)) < Ψ(ȳ(T)) ≤ Ψ(y(T)).

Since the strict-sense process z is arbitrary, this proves that at zi, there is a type-E local
infimum gap for any i. Hence, by Theorem 1.(i), for any i, there exists pi ∈ W1,1([0, T],Rn),
µi ∈ NBV+([0, T],R), and a Borel-measurable and µi-integrable map mi : [0, T] → Rn

satisfying conditions (i)–(vi) below:

(i) ∥pi∥L∞ + µi([0, T]) = 1;
(ii) − ṗi(t) ∈ co ∂x{qi(t) · F (t, yi(t), ωi(t), αi(t)) a.e. t ∈ [0, T];
(iii) −qi(T) ∈ NT (yi(T));
(iv) mi(t) ∈ ∂>x h(t, yi(t)) µi-a.e. t ∈ [0, T];
(v) spt(µi) ⊂ {t ∈ [0, T] : h(t, yi(t))− ci = 0};
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(vi) qi(t) · F (t, yi(t), ωi(t), αi(t)) = max
(w,a)∈V×A

qi(t) · F (t, yi(t), w, a) a.e. t,

where qi : [0, T] → Rn is as in (24). We observe that our construction implies d(zi, z̄) → 0, so
(21) and (22) hold true. We can thus conclude the proof employing a standard convergence
analysis similar to that in Step 3 of the proof of Theorem 1.(i).

6. Concluding Remarks

In this paper, we investigate infimum gap phenomena that may occur when we pass
from an optimal control problem with nonsmooth data, endpoint, and state constraints to
an extended version of it in a framework that includes the impulsive extension of a class
of non-coercive problems with unbounded dynamics. In particular, we consider type-E
and type-S local infimum gaps. In the former, an extended minimizer has a cost that is
strictly smaller than the infimum cost over close feasible strict-sense processes. In the latter,
a local strict-sense minimizer does not locally minimize the extended problem. Following
on from Warga’s previous research but utilizing more recent perturbation techniques from
nonsmooth analysis, which allow us to obtain results for non-differentiable data and an
arbitrary closed set as the target, we prove that whenever there is either a type-E or a type-S
local infimum gap at a process for a notion of local minimizer based on the control distance
d defined in (5), it satisfies a nonsmooth constrained version of the Pontryagin maximum
principle in abnormal form. In contrast to previous results, where there was an ‘asymmetry’
between the necessary abnormality conditions derived for type-E and type-S local infimum
gaps, for the extension under consideration, we obtain the same condition for both.

As a corollary, we provide sufficient conditions in the form of a normality test for the
absence of local infimum gap phenomena. Although a normality test for gap avoidance
might seem completely theoretical and hardly verifiable, it can actually be very useful
because in certain situations, normality follows from easily verifiable criteria. These criteria
take the form of constraint and endpoint qualification conditions for normality and have
been extensively explored in the literature (see, e.g., [35–38] and the references therein). As
shown in [7] (see also the references therein), where several explicit conditions for normality
in control-affine impulsive extensions were presented, these criteria are generally weaker
than those previously established for directly determining the absence of a gap.

The framework introduced in this paper may have implications for future infimum
gap research in several directions. On the one hand, it may be the starting point for
some generalizations, including the following: (i) Determining a higher-order maximum
principle for local minimizers of the strict-sense problem and proving that in the case of a
type-S local infimum gap, abnormality of the higher-order conditions also occurs. So far,
results of this kind are only known for extended minimizers and type-E infimum gaps,
limited to the impulsive extension case (see [39]). (ii) Exploring infimum gap phenomena for
the impulsive extension of optimal control problems involving control-affine systems with
time delays. Necessary optimality conditions for such systems were recently established
in [40]. We point out that this line of research, conducted in collaboration with R.Vinter,
could have important implications for many applications modeled as a sort of impulsive
problem with delays, where impulses may occur only at some prescribed instants. For
instance, applications in fed-batch fermentation [41,42] and in the impulsive control of
delayed neural networks [43].

Another interesting problem might be to consider different extension procedures for
classes of control systems not considered in this paper (such as distributed parameters
systems or multistage problems).
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