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Abstract: The motivation behind this study is to overcome the complex mathematical formulation
and time-consuming nature of traditional numerical methods used in solving differential equations.
It seeks an alternative approach for more efficient and simplified solutions. A Deep Neural Network
(DNN) is utilized to understand the intricate correlations between the oscillator’s variables and to
precisely capture their dynamics by being trained on a dataset of known oscillator behaviors. In this
work, we discuss the main challenge of predicting the behavior of oscillators without depending on
complex strategies or time-consuming simulations. The present work proposes a favorable modified
form of neural structure to improve the strategy for simulating linear and nonlinear harmonic
oscillators from mechanical systems by formulating an ANN as a DNN via an appropriate oscillating
activation function. The proposed methodology provides the solutions of linear and nonlinear
differential equations (DEs) in differentiable form and is a more accurate approximation as compared
to the traditional numerical method. The Van der Pol equation with parametric damping and the
Mathieu equation are adopted as illustrations. Experimental analysis shows that our proposed
scheme outperforms other numerical methods in terms of accuracy and computational cost. We
provide a comparative analysis of the outcomes obtained through our proposed approach and those
derived from the LSODA algorithm, utilizing numerical techniques, Adams–Bashforth, and the
Backward Differentiation Formula (BDF). The results of this research provide insightful information
for engineering applications, facilitating improvements in energy efficiency, and scientific innovation.

Keywords: deep neural network; harmonic oscillator; Mathieu equation; nonlinear dynamics; Van
der Pol equation

MSC: 97-04; 92B20

1. Introduction

There is a special place for dynamical systems [1], as well as for the identification
of dynamical systems [2], in assessing physical phenomena in the realm of experimental
science. Although many methods are used to model, simulate, and solve dynamical
systems [3] and to discuss their stability [4], neural network-based techniques [5,6] to
approximate the solution of DEs occurring in various systems [7] have, however, garnered
a reputation in recent years. Other analytical methods for ordinary DEs [8] and partial
DEs [9], semi-analytical methods [10], including the Variational Iteration Method (VIM) by
using the Laplace Transform [11], and numerical methods have their own shortcomings in
terms of convergence, precision, processing time, and computational complexity. However,
a DNN [12] resolves these problems and, rather than through direct calculation, features
are successfully acquired by the neural network through a training process in the layers
of connected neurons [13]. In this study, we have evaluated the overall performance of
a DNN for simulating the behavior of dependent variables occurring in the differential
equation governed by a dynamical system. Few researchers have used trial solutions in
their methodology which meet the initial or boundary conditions involved in the DEs [14].
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This methodology of using a neural network in the solution of DEs is frequently attributed
to them [15]. However, utilizing DNNs in different areas of daily life is challenging in
terms of modeling and simulation. Our main focus is on analysis of the performance of
the DNN-based methodology for harmonic oscillator simulation in a mechanical system.
This technique has undergone numerous changes in the past to increase precision, but, to
avoid the manual labor of computation, there must be computer software that enables less
manual computation and efficient time management.

Some researchers have used a feed-forward neural network and a local optimization
procedure in order to solve ordinary differential equations, systems of ordinary differential
equations, and partial differential equations [16]. For the solution of DEs, neural networks,
formed through grammatical evolution, were introduced by Tsoulos et al. [17]. This method
employs grammatical evolution techniques [18] to evolve both the neural network structure
and its parameters. Given the interest in developing neural networks for solving DEs,
a user-friendly software program that allows researchers to quickly set up and solve
questions would be very beneficial. We took advantage of the well-known programming
language Python [19], which is widely used by professionals in various fields, especially in
machine learning [20,21], and it plays an important role in solving DEs [22]. It gives users
the freedom to use it for both straightforward and challenging issues. By implementing
the outstanding Python program NeuroDiffEq [23], which was created specifically for the
modelling of differential equations, we utilized a cutting-edge methodology [24]. The
DNN-based strategy proposed in this study does not require explicitly feeding the problem
information, and there is no need to explicitly give the initial or boundary condition for
DEs. The trial solution satisfies initial and boundary conditions as well.

Applying a DNN-based method on DEs governed by a mechanical system is an inter-
esting means to examine the behavior of an oscillator with respect to different parameters.
We present two applications, the Van der Pol equation [25] and the Mathieu equation [26],
which are derived from nonlinear and linear harmonic oscillators [27], respectively, to
validate our approach of using a DNN to simulate a dynamical system. However, apart
from the dynamical system, the Mathieu Equation is also linked to other subjects, such as
applied and computational mathematics [28] and many engineering fields [29], due to the
wide variety of its uses and the methods needed for qualitatively analyzing it. The Van
der Pol equation, however, finds applications in many different industries like electronics,
communication systems, and biological systems because of its capacity to record intricate
dynamics [30].

A DNN solves a DE by considering it as an optimization problem [31]. The aim of a
DNN when solving a DE is to reduce the residuals of the DE. These residuals are quantified
by a loss function [32] that captures the discrepancy between the true and predicted values.
Various loss functions [33] can be used to calculate the residuals, such as mean absolute
error [34], L2 loss function [35], and A Unit Softmax loss [36].

To capture the periodic behavior effectively, the sine activation (SinActv) function [37]
is an appropriate choice of activation function [38,39]. It is the typical trigonometric function
( f (x) = sin(x)), that applies a sine to its input values. It gives the best results for problems
of an oscillatory nature, like harmonic oscillators. Closely similar modification in this way
is also favorable for solving a number of dynamical structures, including vibration and
dynamic control offered by [40], to analyze the impact of gyrotactic microorganisms [41]
and evaluate the periodicity of nano/microelectromechanical systems oscillators [42].

2. Structural Configuration and Method

NeuroDiffEq is a Python package constructed utilizing PyTorch, which employs ANNs
to tackle both ordinary and partial differential equations (ODEs and PDEs). NeuroDiffEq
streamlines problem-solving by emphasizing the problem domain for defining differential
equations and initial/boundary conditions. It also provides flexibility for users to explore
solution strategies, including ANN architecture and training parameters. NeuroDiffEq is
not limited to a fixed architecture, but is designed to be versatile, allowing users to construct
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various types of neural network architectures. In our approach, a Fully Connected Neural
Network (FCNN) [43], the most basic type of DNN [44], is leveraged as an approximating
tool for dependent variables. An FCNN is structured in such a way that all neurons
in a layer are fully connected to all neurons in the subsequent layer. This architecture
allows information to flow through the network without skipping any neurons, making it
a straightforward and densely interconnected structure. This network in the FCNN does
not have any restrictions on connections between neurons in different layers, allowing
for a comprehensive information flow throughout the network. Utilizing NeuroDiffEq
to assess the mathematical models of dynamical systems outlined in Sections 3.1 and 3.2,
we carried out various experiments. The working rule for NeuroDiffEq is that once the
network is fed with the input values, the NNs are trained to learn the underlying patterns
in the data generated by the differential equations by using a trial solution which takes
care of initial or boundary conditions as well. The differential equation is formulated as an
optimization problem which is to be minimized. The trial solution is fed into the residual
of the differential equation which is then minimized as much as possible to attain the
approximated solution of the differential equation. We split our experiments into distinct
instances based on the varying values of the parameters used in Equations (3) and (9).
Our methodology elucidates the process of approximating solutions to DEs through the
utilization of an FCNN in a more comprehensive manner, as illustrated in the flowchart in
Figure 1 below.
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Figure 1. Flowchart depicting the approach employed for harmonic oscillator simulation using
an FCNN.

In order to dive deeper into the proposed methodology, we shall discuss all the steps
mentioned in the above flowchart in detail. By ‘structural setting of the network’, we
mean the number of layers and the number of units in each layer, the number of epochs,
activation function, loss function, optimizer, learning rate, etc. The methodology consists
of following steps:

I. Preparation Provide a comprehensive dataset (X, Y), which consists of input features
X and corresponding dependent variable values Y, to train the FCNN with diverse
input signals and operational conditions. Split the dataset into training and testing
folders to validate the performance of the model. The situations included in this
dataset span a wide variety of amplitudes, frequencies, and nonlinearities.

II. Launching the model Initialize the model parameters of the FCNN, including weights,
biases, learning rate, and number of epochs. Set the number of input units correspond-
ing to the input features and output units in the layer according to the dependent
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variable. Our suggested neural network design has one input unit of network because
there is only one independent variable in each DE presented in Sections 3.1 and 3.2.
The number of output units is also one, depending upon the dependent variable
which is only one (for each DE). Three hidden layers are involved in our network,
making it a deep neural network. Each hidden layer contains 16 units of neurons
in total.

III. Forward propagation For each epoch, perform forward propagation to obtain the out-
put of the model, including applying the activation function to introduce nonlinearity.
The choice of SinActv facilitated smooth transitions and continuous gradients during
training because SinActv is continuous and smooth. The sine function’s smoothness
enables effective optimization and aids in avoiding problems, such as disappear-
ing or bursting gradients, which can impede training. Moreover, it accelerates the
convergence rate.

IV. Estimating loss Calculate the loss between the true and predicted values of the output
of the training set. Update the cumulative loss using an appropriate loss function. To
calculate residuals, we used the L2 loss function, which is the average of the squared
difference between the true and predicted values.

V. Backpropagation Compute the gradients of weights and biases with respect to loss
by performing backpropagation, propagating the gradients backward and updating
weights and biases accordingly.

VI. Optimization Use an optimization algorithm to update the parameters. Utilizing the
dataset, the FCNN is trained using cutting-edge training methods, including regular-
ization and optimization algorithms, to improve its performance and generalization
skills. This step helps to minimize the loss calculated during the training process.
An Adam algorithm [45] with a learning rate of 0.001 is adapted to train on distinct
points for each epoch that is produced by adding Gaussian noise [46] to the evenly
distributed points on the t domain.

VII. Assessment of the model After training a specified number of epochs, analyze the
performance of the model using a testing set, which includes calculation of the average
loss and evaluation of the accuracy of the model.

VIII. Prediction Pass the input characteristics once the training procedure is complete to
forecast the dependent variable’s output for unseen data.

The outlined strategy is translated into a structured algorithm proposed to estimate
the dependent variables inherent in the intricate dynamics of the system under examination.
This algorithm, Algorithm 1, serves as a precise computational framework, enabling
accurate approximations crucial for in-depth analysis and modeling.

Algorithm 1: FCNN Training and Prediction.

I. Preparation
# Load and Split dataset (X, Y) into training and testing sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = n1, random_state = n2)
II. Launching the model
# Initialize FCNN parameters
input_units = X_train.shape [1], N1
output_units = N2
hidden_units = [N3, N4,N5]
learning_rate = L
epochs = E
visualization_frequency = M
W = initialize_ W (N1, [N3, N4,N5], N2)
B = initialize_ B ([N3, N4,N5], N2)
III. Forward Propagation
for epoch in range(epochs):
hidden_layers_output, model_output = forward_propagation(X_train, W, B)
y = A(model_output, A_ f unc
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Algorithm 1: Cont.

IV. Estimating Loss
L = calculate_ L (Y_train, y, L_ f unc
V. Backpropagation
G = calculate_ G (X_train, hidden_layers_output, Y_train, y)
VI. Optimization
W, B = update_parameters (W, B, G, L)
# Visualization
if E % M == 0:
print (f’Epoch: { E }, L: { L }’)
VII. Assessment of the Model
hidden_layers_output, test_predictions = forward_propagation(X_test, W, B)
test_ L = calculate_ L (Y_test, test_predictions, L_ f unc)
accuracy = evaluate_accuracy(Y_test, test_predictions)
print (f’Average Test, L: {test_, L}’)
print (f’Accuracy: {accuracy}%’)
VIII. Prediction
# Pass input characteristics for prediction
unseen_data = load_unseen_data()
y = predict_output(unseen_data, W, B)
print (y for Unseen Data: { y }’)

Activation function = A, Predicted output = y, Weights = W, Gradients = G, Biases = B

Utilizing the above-mentioned algorithm, the DNN-based simulator shows amazing
precision in predicting the behavior of both linear and nonlinear harmonic oscillators once it
has been trained. NeuroDiffEq, a state-of-the-art Python package developed using PyTorch
and designed to answer both ordinary and partial DEs of either a linear or nonlinear nature,
is used to model the findings. It boosts efficiency and creates a comfortable environment
for users so they can focus on the key aspect of concern. All these settings can be adjusted
by the user, according to the nature of the given problem.

3. Application: Mathematical Models

It is observed that the neural network structure is favorable for handling a number
of challenges in the area of computer vision and dynamical systems. Dynamical systems
are constructed on the basis of modeling physical phenomena, and the mathematical
models are considered to predict the behavior of a real structure. While a neural network-
based structure is flexible to deal with standard linear and nonlinear problems, a complex
nonlinear structure is considered a challenging problem for a neural network. We have
found a way to deal with these challenges, a kind of blueprint for our neural networks.
What is special about it is that it is designed to tackle these complex, nonlinear problems
head-on. It is not just a theoretical idea; it is practical and can be put into action straight
away. Our proposed architecture is favorable, directly implementable, and is not rigid; we
can adjust and fine-tune various aspects of this blueprint based on what we need, whether
it is the initial or boundary conditions of our problem or the limits we want to set. So, it
is a bit like having a really smart, adaptable assistant that helps us solve these complex
puzzles effectively.

In our study we considered linear and nonlinear DEs governed by harmonic oscillators
from a mechanical system. To adopt the proposed structure, we used a modified form of the
highly nonlinear mathematical model from a mechanical system, having the general form

x′′ (t) + ζx′(t) + ωn
2x = 0 (1)

where x ∈ Rn, ζ (0 < ζ < ∞ ) is a positive real number acting as a scaling factor to control
the damping effect, ensuring the system’s behavior aligns with real-world mechanical
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constraints, ωn is a positive real number (0 < ωn < ∞) representing natural frequency, and
′ represents the derivative with respect to ‘t’.

To consider it a complex problem, the nonhomogeneous part should be in the shape of

x′′ (t) + ζx′(t) + ωn
2x = F(t) (2)

F(t) is the external forcing function; it may be a constant function, an exponential or
sinusoidal function, or any other mathematical function. The captivating aspect of our
study emerged when we explored the intriguing effects of F(t) by infusing sinusoidal
behavior into the mix.

Extending this strategy, in Sections 3.1 and 3.2 we explore two distinct mathematical
models regulated by differential equations (DEs) describing linear and nonlinear oscillatory
behaviors in harmonic oscillators.

We considered two examples of oscillators for linear and nonlinear DEs and configured
the neural network for each problem according to the abovementioned algorithm. Table 1
provides a detailed summary of the specific settings used in the neural network for every
problem we studied. These settings are like the unique instructions we give to the neural
network to help it solve each particular problem accurately and efficiently. Table 1 offers a
clear view of these essential details, allowing us to understand how the neural network is
configured for different tasks.

Table 1. Overview of the parametric settings in the neural network configurations for each respec-
tive problem.

Parameters For Oscillator 1 For Oscillator 2

Input units (N1) 1 1
Hidden units ([N3, N4,N5]) (64, 64, 64) (16, 16, 16)

Output units (N2) 1 1
Learning rate (L) 0.001 0.001

Activation function (A) SinActv SinActv
Number of epochs (E) 20,000 10,000

Loss function (L) L2 L2
Optimizer (
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3.1. Van der Pol Equation (Oscillator 1)

The Van der Pol equation is a second order nonlinear differential equation that traces the
motion of a nonlinear harmonic oscillator and is represented mathematically in Equation (3).

x′′
(
t
)
+ ϵ

(
c0 + c1cos

(
ωt

)
+ αx2)x′

(
t
)
+ ωn

2x = f0 + f1sin
(
ωt

)
(3)

The initial conditions are
u(0) = 0, u′(0) = 2 (4)

If we relate Equation (3) with Equation (2), F(t) = f0 + f1sin(ωt) is the external
force term and ζ = ϵ(c0 + c1cos(ωt )+αx2)x′ introduces the damping effect. The terms
involved in a parametrically damped Van der Pol Equation (3) are x′′ , which represents
acceleration of the system, while the whole term (c0 + c1cos(ωt )+αx2)x′(t) is responsible
for the damping force which depends on three factors, c0, which describes resistance due
to linear damping, c1cos(ωt ), which is responsible for the sinusoidal variation of the
damping coefficient, and αx2, which introduces nonlinear damping due to the square of
the displacement of system. In this case, ϵ is the scaling factor that regulates the damping
effect’s intensity, while the term ωn

2x is the spring force which involves the stiffness of
the system. The displacement term, ω, is the excitation frequency, and ωn is the natural
frequency. The right side of Equation (3) involves external forces, f0 the constant force and
f1sin(ωt) the sinusoidal force.
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We conducted a comparative analysis between the oscillatory behavior generated by
the solution of Equation (1) using a DNN-based approach and the results acquired by the
implementation of the LSODA algorithm [47]. Our experimental setting comprises two
major cases: parametric excitation in the absence of external excitation and parametric
excitation in the presence of external excitation.

3.2. Mathieu Equation (Oscillator 2)

Consider a vertically forced pendulum governed by the Mathieu Equation, a linear
second order differential equation in its classical version drawn from a harmonic oscillator,

u′′ (t) + (a + βcos t)u(t) = 0 (5)

The corresponding initial conditions are

u(0) = 1, u′(0) = 0 (6)

where the term a is the stiffness parameter, the term β is responsible for the parametric
excitation, and u is the dependent variable for amplitude. If the parametric excitation term
is present, the pendulum undergoes forced vibrations, which may be stable or unstable
depending upon the relationship of the parameters a and β. Figure 2 represents the physical
interpretation of the vertically forced pendulum.

Figure 2. Physical interpretation of the vertically forced pendulum.

In Equations (5) and (6) if the parametric excitation term is set equal to zero, i.e., β = 0,
then this harmonic oscillator resembles the simple harmonic oscillator [48] with a stiffness
coefficient a.

4. Results
4.1. Behavior of Oscillations for Parametric Excitation (Oscillator 1)

In this particular case, we did not encounter external excitation governed by the right
side of Equation (3). With incrementally varying values of the coefficient of sinusoidal
damping represented by c1, we conducted experiments to examine the effect of increasing
c1 on the behavior of oscillations, as depicted in Figure 3a,b. The illustrations in Figure 3a,b

show graphically that the oscillatory patterns produced by the governing equations have
quasiperiodic properties.
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ω = 0.12, c0 = −1, c1 = 3, and loss during learning process.

In the absence of external excitation, the behavior of the oscillations is solely deter-
mined by the interplay between the damping forces and the restoring spring force. The
system will exhibit natural oscillations around its equilibrium position. These oscillations
occur due to the initial conditions and the inherent properties of the system, without any
external force driving the motion. We set the values of all the parameters occurring in
Equation (3) such that f0 = 0, f 1 = 0, ϵ = 0.2, α = 1, c0 = −1. The frequencies are ωn = 1,
ω = 0.12. For case 1, we used c1 = 1. The terms on the right side of Equation (3) vanish,
and the resulting equation takes the following form

x′′
(
t
)
+ 0.2

(
− 1 + cos

(
0.12t

)
+ x2)x′

(
t
)
+ x = 0 (7)

For case 2, we used c1 = 3, while all other parameters are the same as for case 1, and
the resulting equation becomes

x′′
(
t
)
+ 0.2

(
− 1 + 3 cos

(
0.12t

)
+ x2)x′

(
t
)
+ x = 0 (8)

In case 1, the oscillations behave like sinusoids and are less jerky than in case 2. The
coefficient of sinusoidal damping, c1, plays a crucial role in shaping the quasiperiodic
properties of the oscillations. Increasing c1 leads to amplitude modulation in the oscil-
lations. By increasing the value of c1 (case 2), oscillations are shown to be disrupted;
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the amplitude is reduced for a period of time. The presence of c1 in the damping term
ϵ(c0 + c1cos(ωt )+αx2)x′(t ) contributes to nonlinear damping. Moreover, the oscillations
exhibit abrupt peaks at the beginning and end of the graph.

The training and validation losses for both cases are displayed in Figure 3 to give
insight into the model’s performance during the learning process. A comparison between
the DNN-based scheme and a numerically approximated solution using LSODA is pre-
sented in Figure 4a,b. It is obvious from the figures that there is a high degree of agreement
between the approximations made by the DNN and those obtained by LSODA, which
guarantees the exactness and accuracy of the proposed methodology.
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4.2. Behavior of Oscillations for External Excitation (Oscillator 1)

For the second illustration of nonlinear harmonic oscillator 1, we took into account the
effect of external excitation along with parametric excitation. Again, we divided this case
into two subcases on the basis of values of f1. The setting of parameters in the presence of
external excitation is done in such a way that c0 = −1, c1 = 1, ϵ = 0.2, α = 1, f0 = 0.4
and ωn = 1, ω = 0.12.

For case 3, using f1 = 1, Equation (3) takes the following form

x′′
(
t
)
+ 0.2

(
− 1 + cos

(
0.12t

)
+ x2)x′

(
t
)
+ x = 0.4 + sin

(
0.12t

)
(9)

while f1 = 1.7 is used for case 4 and the resulting equation becomes

x′′
(
t
)
+ 0.2

(
− 1 + cos

(
0.12t

)
+ x2)x′

(
t
)
+ x = 0.4 + 1.7 sin

(
0.12t

)
(10)

For cases 3 and 4, Equations (9) and (10) are plotted in Figure 5a,b. As depicted
in Figure 5a,b, nonlinear harmonic oscillator 1 is richer in distortions in the presence of
external excitation. Additionally, for Equations (9) and (10) more nonlinearity is observed
in the graph.

Figure 6a,b give a comparative demonstration of the proposed DNN-based methodol-
ogy and the numerical solution using the LSODA algorithm. The outstanding performance
of the DNN-based method is clear from the graphical representation. Another noticeable
point of the quasiperiodic oscillations is damping, which is greater in the presence of
external force as compared to the case when external excitation is not present. An increase
in the value of f1 from 1 to 1.7 causes an increase in damping.
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4.3. Effects of Parameters on the Oscillations of Oscillator 2

In this section, we examine the results obtained from our proposed technique in depth
and we also provide a graphical comparison between the DNN-based method and the
numerical solution obtained from LSODA. For harmonic oscillator 2, three different cases
in our experiment are described below in detail.

As a case 1, we used a = 3 and β = 1.2, and observed the results as shown in Figure 7a.
Case 2 was created using a = 2 and β = 1, and the outcomes are depicted graphically in
Figure 7b. Lastly, for case 3 we further decreased the values of the parameters, using
a = 0.25 and β = 0.05. The graph for the third case is shown in Figure 7c.
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Figure 7. (a) DNN-based approximation of the solution of Equation (5) and the loss in the training
and validation process for case 1 (a = 3, β = 1.2). (b) DNN-based approximation of the solution of
Equation (5) and the loss in the training and validation process for case 2 (a = 2, β = 1). (c) DNN-
based approximation of the solution of Equation (5) and the loss in the training and validation process
for case 3 (a = 0.25, β = 0.05).
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The rhythmic behavior of oscillations is examined in Figure 7a–c for a range of pa-
rameter values. The training and validation losses are shown in the figures above for each
time up to 10,000 epochs. By changing the network’s weights during the training process,
this loss can be reduced; optimization methods are useful in this context. A comparison
between the DNN-based approach and the numerical method is shown in Figure 8a–c.
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The dotted lines in Figure 8a–c representing the DNN-based solution are fitted very
well on the solid lines which represent the numerical solution of the differential equation for
the three cases of our problem. All of the panels in Figure 8 show that, for the range of time
and parametric values taken into consideration for this research, the DNN-based solutions
for our problem compare favorably with those obtained from the LSODA algorithm. This
guarantees the accuracy of the suggested method.

5. Discussion

In this paper, we have been concerned with analyzing how a DNN simulates the
behavior of a differential equation governed by a mechanical system in the realm of dynam-
ical systems. DNNs demonstrate enhanced accuracy in simulating complex mathematical
models, showcasing their potential in capturing intricate patterns and behaviors within
these systems, while LSODA, being a traditional numerical method, might struggle with
highly complex systems. DNNs can potentially provide more accurate results in such cases.
DNNs learn patterns directly from data, enabling them to adapt to underlying structures
in the dataset. This data-driven approach can be advantageous in scenarios where the
underlying equations are unknown or difficult to formulate. DNNs optimize computa-
tional resources and time by exhibiting faster convergence rates and enable quicker model
training and prediction. Through DNNs, we gained deep insights into the underlying
dynamics of the mathematical models. This knowledge helps in understanding the complex
relationships within these systems. The overall findings of our study presented in this
paper are listed below.

i. We successfully applied the proposed algorithm of using an FCNN as the fundamen-
tal architecture of the DNN for approximating the solution of differential equations
governed by linear and nonlinear harmonic oscillators. The ability of DNNs to
make accurate predictions, even in nonlinear and dynamic scenarios, highlights
their robustness in handling complex, real-world problems.

ii. Trained DNN models can generalize well to unseen data patterns, making them
useful for predicting responses in scenarios not encountered during training.
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iii. The proposed algorithm gives the best results using an appropriate architectural
setting for the network, including number of units in input, output, and hidden
layers, SinActv as the activation function, and Adam as the optimizer.

iv. During both the training and validation process, loss is evaluated. The observed
loss values from graphical results are notably minimal, signifying the efficiency of
the network’s performance during the training and validation procedures.

v. To validate the proposed methodology, we performed a comparison of the DNN-
based methodology with the LSODA algorithm, which is based on the numerical
Adams–Bashforth method. It shows the discrepancy between the two methodologies.

Our study not only demonstrated the ability of DNNs in understanding complex math-
ematical models but also opened doors for their widespread application in research and
practical domains. The insights gained from this study provide motivation for researchers
to apply the proposed DNN-based scheme in different areas of dynamical systems, span-
ning diverse scientific domains such as physics, engineering, biology, climate science, and
economics. The versatility of this approach offers the potential to revolutionize modeling
and analysis techniques in these fields, fostering advancements and discoveries in each
domain. However, DNNs, especially deep architectures, suffer from overfitting, where the
model performs exceptionally well on the training data but poorly on new, unseen data.
Techniques like regularization and validation are necessary to address this issue.

6. Conclusions

This study focuses on the simulation and analysis of linear and nonlinear dynamical
systems using a flexible and reliable form of the DNN method. A refined neural structure
is presented, based on a modified architecture of deep neural networks and an oscillating
activation function to optimize the simulation of harmonic oscillators in mechanical systems.
We specifically applied this approach to solving the Mathieu Equation and Van der Pol
equation, representing linear and nonlinear harmonic oscillators. Comparing our DNN-based
method to traditional numerical techniques, we concluded that the DNN-based approach,
with carefully selected architecture and parameters, exhibited superior accuracy, ease of use,
and faster convergence. The primary benefit of the suggested method is that, after the network
has been trained, it enables instantaneous assessment of the solution at any desired number
of points while consuming very little computational time. This cutting-edge method excels
over other numerical methods in terms of accuracy and computational cost.
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