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Abstract: Electroencephalogram (EEG) is the most preferred and credible source for emotion recogni-
tion, where long-short range features and a multichannel relationship are crucial for performance
because numerous physiological components function at various time scales and on different channels.
We propose a cascade scale-aware adaptive graph convolutional network and cross-EEG transformer
(SAG-CET) to explore the comprehensive interaction between multiscale and multichannel EEG
signals with two novel ideas. First, to model the relationship of multichannel EEG signals and
enhance signal representation ability, the multiscale EEG signals are fed into a scale-aware adaptive
graph convolutional network (SAG) before the CET model. Second, the cross-EEG transformer (CET),
is used to explicitly capture multiscale features as well as their correlations. The CET consists of
two self-attention encoders for gathering features from long-short time series and a cross-attention
module to integrate multiscale class tokens. Our experiments show that CET significantly outper-
forms a vanilla unitary transformer, and the SAG module brings visible gains. Our methods also
outperform state-of-the-art methods in subject-dependent tasks with 98.89%/98.92% in accuracy for
valence/arousal on DEAP and 99.08%/99.21% on DREAMER.

Keywords: EEG classification; emotion recognition; multiscale feature; cross attention

MSC: 92B20

1. Introduction

Affective computing is an umbrella term for human emotion, sentiment, and emotion
recognition. As emotion affects human daily behaviors and cognitive activities, emotion
recognition plays a crucial role in research fields such as artificial intelligence, medical
and health [1–6], and brain–computer interfaces (BCI). Generally, both nonphysiological
and physiological signals can be used to recognize human emotion [7]. The study con-
ducted by Cacioppo et al. [8] indicates that changes in emotions can lead to physiological
variations, including facial muscle movements, brain activity (EEG), and autonomic ner-
vous system (ANS) activity. In brain activity, highly excited or anxious emotional states
result in higher-frequency, more intense, and more irregular electrical activity in the brain.
Conversely, relaxed and calm emotional states may manifest as lower-frequency, weaker,
and more regular electrical activity. Compared to nonphysiological signals such as facial
expression, body behavior, speech signals, and textual information, physiological signals
have the advantage of being difficult to fake [9], making them more credible for emotion
recognition. Among physiological signals, the EEG signal directly reflects brain activity
during an emotional response, which is proved to be more effective than other noninvasive
physiological signals, such as electrocardiogram (ECG), electrooculogram (EOG), galvanic
skin response (GSR), electromyogram (EMG), humidity, and temperature.

In the early years, most of the works decoupled the EEG-based emotion recognition
as a feature extraction stage and a classification stage. Feature extraction is the vital stage
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of emotion recognition, which can be conducted on both the temporal domain and the
spectral domain. Temporal domain features mainly reflect the temporal information of EEG
signals, where typical ones include sample entropy [10] and fractal dimension feature [11].
Spectral domain features aim to capture emotion information in different frequency bands,
where commonly used ones include differential entropy (DE) [12], power spectral density
(PSD) [13], etc. These features mainly rely on researchers’ careful design with professional
knowledge, which can be biased and limited in representative ability.

Recently, with the great success of deep learning methods in most of the research
fields [14–16], deep learning-based EEG emotion recognition methods, which can unify
the feature extraction and classification stages in an end-to-end manner, emerged in large
numbers. Regarding the multiple channels of EEG signals as spatial information, a straight-
forward scheme is to apply 2D convolutional neural networks (CNNs) to these spatial–
temporal series [17,18]. Generally, a recurrent neural network (RNN) or long short-term
memory network (LSTM) can be further used to gather temporal information on CNN
feature maps [19–22]. Optionally, transformers [6,23] or 3D CNNs can be also applied if
EEG signals are viewed as temporal segments [24]. As the EEG signals are discontinuous
in the spatial domain, it is suggested that it may be not suitable to apply CNNs in this way
on images. More recently, there is a trend to build models based on graph theory, where the
graph is mainly designed or learnable, to describe the relation of multiple channels [25–29].

Among the aforementioned methods, almost all of them do not pay attention to multi-
scale EEG information. However, the physical sciences have indicated that numerous physi-
ological components function at various time scales [30,31], suggesting the importance of
multiscale information for EEG signals. To this end, there exist some other studies which fo-
cus on multiscale EEG features-based emotion recognition, where multiscale permutation en-
tropy (MPE) and multiscale convolutional kernels are commonly used [32–34]. Overall, there
is rare exploration on the views of both multiscale information and spatial relationships.

In this paper, we jointly consider the multiscale information and the multichannel
relationship of raw EEG signals and propose a conceptually new yet simple method, termed
the cascade scale-aware adaptive graph and cross-EEG transformer (SAG-CET). Unlike the
recent transformer-based EEG emotion recognition methods that make efforts on single-
transformer architecture [6,23], our SAG-CET builds a scale-aware adaptive GCN and a
dual-stream transformer to integrate both the interchannel relation and multiscale informa-
tion. Specifically, EEG signals with multiple channels are first split into nonoverlapping
multichannel samples, as is common, and then we apply two division schemes on samples
to generate short-scale and long-scale patches. After linear projection, both kinds of patches
are fed into the SAG to enhance their representative abilities from the relation of different
EEG channels. Subsequently, these patches along with two class tokens are fed into the CET.
In the CET, different scale patches and tokens are first encoded by separated self-attention
(SA) encoders, and then the class tokens are exchanged twice in a cross-attention operation
to gather interscale correlation information. We apply several CETs to enhance model
capacity and performance and finally take both class tokens for classification.

Additionally, to deeply investigate the effects of different scale information, we con-
duct extensive evaluations on DEAP and DREAMER to answer the following questions:
(1) How does signal scale affect emotion recognition? (2) How does spatial correlation affect
emotion recognition? (3) What are the optimal scales for SAG-CET? We observe that our
SAG-CET significantly outperforms unitary transformer-based EEG emotion recognition
yet is better than feature concatenation strategy and late fusion. We finally set up new
state-of-the-art performance on two popular EEG emotion datasets. On DEAP, we achieve
98.89% and 98.92% in average subject-dependent accuracy of valence and arousal, and the
numbers are 99.03% and 99.21% on DREAMER.

Our contributions can be summarized as follows:

• We propose to jointly consider the spatial relationship and temporal scale for EEG-
based emotion recognition with a novel cascade framework.
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• With multiscale EEG patch signals, we introduce the SAG to learn the relationship of
multiple channels and propose the CET, which is superior to other fusion strategies,
to better integrate multiscale representations.

• We conduct extensive experiments on the issues of spatial relationship and tempo-
ral scale and set up new state-of-the-art performance on two popular EEG emo-
tion datasets.

2. Related Work
2.1. Valence–Arousal Model

The dimensional theory proposed by Russell et al. [35] categorizes emotions based on
dimensional space. This theory suggests that emotions are constantly changing. One ap-
proach represents emotions using two variables, valence and arousal. In most emotion
recognition studies, different emotions are mainly classified according to the valence–
arousal emotional model. As shown in Figure 1, the vertical axis signifies arousal, which
describes the progression of emotions from calm to excitement. The horizontal axis repre-
sents valence, reflecting emotions from low to high levels of positivity. Different emotions
can be indicated by various coordinates on the graph; for example, excitement corresponds
to positive arousal and positive valence, while sadness corresponds to negative arousal
and negative valence.

Figure 1. Valence–arousal model.

2.2. EEG Emotion Recognition

The initial emotion recognition is mainly dominated by traditional machine learning.
Li et al. [36] selected the frequency band in the spectral domain to extract relevant features
and used a common spatial pattern and support vector machine (SVM) for classification.
Bazgir et al. [37] used wavelet transform and principal component analysis to extract
the frequency domain features of EEG signals and, respectively, used machine learning
methods such as k-nearest neighbor (KNN) SVM to classify emotions. Smith K. Khare
et al. [38] proposed optimized variational mode decomposition for emotion recognition
using single-channel EEG signals. These methods based on traditional machine learning
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require good feature design methods, and as the amount of data increases, the performance
of the model is affected.

The subsequently developed deep learning algorithms performed well despite the
increasing data. For example, Zhong et al. [39] proposed a regionally related and attention-
driven bidirectional LSTM network (RA-BiLSTM) for classifying brain activity induced
by images. Li et al. [40] designed a hybrid deep learning model that combines CNN
and RNN to extract features. These methods achieved good results but encountered new
problems: Existing deep learning methods cannot focus on the important characteristic of
long-range correlation in the temporal scale of EEG signals. To solve the aforementioned
issue, researchers have attempted to use transformers. Li et al. [6] proposed an automatic
transformer neural architectures search (TNAS) framework based on a multiobjective
evolution algorithm (MOEA) for EEG-based emotion recognition.

2.3. The Usage of Multichannel and Multiscale Information

The spatial distribution of EEG electrodes is adjacent. Due to the limitation of insuffi-
cient spatial resolution of EEG electrodes, the collected EEG signal of one electrode will
be affected by the EEG signals from other electrodes. Therefore, it is necessary to model
the influence of different spatial regions using spatial relationships [41]. To this end, some
researchers process EEG signals in a way similar to the field of computer vision to enable
the model to automatically capture spatial features by convolution operation, as shown
in the middle of Figure 2. For example, Tao et al. [42] proposed ACRNN, which maps
the EEG signals onto a matrix similar to an image to represent the spatial relationships
between multiple channels. However, the problem is that the interpolation of 2D matrix
mapping introduces noise at discontinuous points between different EEG channels and
cannot effectively represent the relationship between multiple channels. Some researchers
resorted to graph theory to construct the relationship of multiple channels, as shown in
the right of Figure 2. For example, Jia et al. [43] proposed a novel heterogeneous graph
recurrent neural network (HetEmotionNet), fusing multimodal physiological signals for
emotion recognition.

Figure 2. Previous usages of multichannel EEG signals. Left: the spatial distribution of EEG electrodes.
Middle: CNN for spatial relationship feature extraction and recognition. The disadvantage of this
approach is that there are a large number of interpolated 0 values as noise that interfere with the
spatial relationship features. Right: modeling spatial relation as graph.

In addition to using graph theory to model the relations of multiple channels, the uti-
lization of multiscale features also greatly improves the performance [30,31].
Jomaa et al. [44] introduced an MPE-based method that measures complexity in non-
stationary multivariate signals. Su et al. [45] proposed a 3D CNN model with multiscale
convolutional kernels to recognize emotional states. Although the aforementioned meth-
ods attempted to utilize the multiscale features of EEG signals and achieved satisfactory
performance, features like MPE and multiscale convolution kernels still need predesign
and computation. In addition, few studies combine multiscale features with multichannel
features constructed from a graph.
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Overall, although existing EEG emotion recognition methods have achieved good
performance, there is still a lack of comprehensive methods to address the aforementioned
issues. Our proposed method, SAG-CET, effectively utilizes a combination of graph
theory and a transformer. Additionally, SAG-CET aims to streamline and improve the
representation capabilities of EEG signals by capturing inherent time multiscale features.

3. Methodology
3.1. Preliminaries

Vision transformer: A vision transformer (ViT) is a variant architecture of the trans-
former [16] used in computer vision [14]. Different from the transformer that deals with
1D data in the field of NLP, the VIT applied in an image handles 2D data. The ViT is
composed of multiple multihead attention modules and multiple dense layers, which are
combined alternately.

The ViT divides a 2D image x ∈ RH×W×C into N patches xp ∈ RP1·P2·C. H, W, and C,
respectively, represent the height, width, and number of channels of the input image. P1
and P2, respectively, represent the height and width of the patch. The number of patches
is N = HW

P1P2
. Then, the xp is projected into a d dimension token sequence using a linear

projection layer. Meanwhile, a learnable CLS token xc ∈ R1×d is added to the first position
of the sequence to represent the global information of the image. Next, a 1D positional
embedding vector P ∈ R(N+1)×d is embedded into the token sequence to encode positional
information. After that, the token sequence is input into L stacked transformer encoders for
self-attention calculation. Finally, the first output representation which can achieve global
information integration is usually used for classification.

The transformer encoder is a key component of the transformer architecture, consisting
of multiple blocks that incorporate multihead self-attention (MSA) and a feed-forward
network (FFN). The FFN is composed of two layers of multilayer perceptrons (MLPs),
with a RELU activation function following the first linear layer. To ensure stable training
and improve performance, layer normalization is applied before the input of each block.
Additionally, residual connections are employed in the output of each block to facilitate the
flow of information through the network and mitigate the vanishing gradient problem.

The proposed SA encoder of SAG-CET utilizes the same components as a ViT, with the
key difference being that while images have height, width, and channel dimensions, brain-
wave signals have only two dimensions—time and channel number. Therefore, by reshap-
ing the brainwave signals and adding a padding dimension, they can be fully adapted for
use with the encoder component of the ViT.

Definition of graph: We define G = (V, E, A) as a graph, where V is the set of nodes.
Each element vi ∈ VC in the set represents a node of the graph, where C represents the
number of channels and the value of vi represents the feature of the node. E is a set of edges
used to represent the connections between nodes. A ∈ RC×C is a learnable adjacency matrix
used to represent the connectivity relationship between nodes. aij = 1 represents that node
i and node j are mutually connected. If a self-loop aii = 1 is added to the adjacency matrix,
it can be represented in matrix form as Â = A + I. The identity matrix is represented as
I ∈ RC×C. Define D as the degree matrix, where the degree matrix is a diagonal matrix with
values Di = ∑j∈C aij on the diagonal and zero in other regions. In the case of the adjacency
matrix containing self-loops, D̂ = D + I. Define the Laplacian operator to describe the
difference between a node and its adjacent nodes in a graph. Its matrix form L is defined
as follows:

∆ f = DX− AX = (D− A)X

L = D− A
(1)

The Laplacian matrix is a matrix representation of a graph, which can be used to
capture the relationships between nodes in the graph structure, as shown in Figure 3.
In order to ensure the weighted aggregation of the first-order neighbor information of
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nodes, the weight is inversely proportional to the degree of the node. The normalized
Laplacian matrix is defined as

Lsym = I − D−
1
2 AD−

1
2 (2)

Define the graph Fourier transformation and the graph inverse Fourier transformation
as follows:

x̂ = UTx

x = Ux̂
(3)

where U is the eigenvector matrix of the Laplacian matrix.

Figure 3. The Laplacian matrix represents the relationships within a graph.

3.2. Overview of Cascade Scale-Aware Adaptive Graph and Cross-Transformer Method

We propose a novel architecture named the cascade scale-aware adaptive graph and
cross-transformer (SAG-CET) method. As illustrated in Figure 4, SAG-CET consists of two
primary components: a scale-aware adaptive GCN (SAG) and a cross-EEG transformer (CET).

Figure 4. Overview of our SAG-CET. For each EEG sample, we first divide it into two kinds of
multichannel patches and then use linear projection layers to obtain patch embeddings and further
feed them into the proposed scale-aware adaptive GCN module, aiming to get channel-wise enhanced
features by modeling the spatial relationship. Subsequently, we flatten patch embeddings and add
a class token and position embedding for both short- and long-term patches. And then both patch
features are fed into a self-attention encoder and a cross-attention module. Finally, both class
token features are projected into the same dimension and averaged to form the final representation.
The cross-entropy loss is used after Softmax for training.



Mathematics 2024, 12, 1180 7 of 17

First, we divide an EEG signal sample into two signal sequences according to two
proportions and project them through the FC layer to form temporal patches. For an EEG
sample with L length, the default proportions used to divide are L/32 and L/4. Then, we
build a spatial electrode graph from the dual stream, where SAG is employed to learn
the graph representation that captures the shared spatial correlation of multichannel con-
nections between short and long temporal patches. After that, we use the self-attention
encoder and the proposed novel cross-attention module to capture two global representa-
tions, i.e., class tokens, from two scale streams. And the class tokens are reprojected into
the same dimension and averaged to a final representation for classification. Next, we will
introduce the main components of our model in detail.

3.3. Scale-Aware Adaptive GCN

Considering the low spatial resolution of EEG signals and the interaction between
multiple channels, it is imperative to account for the spatial correlation between these
signals to enhance the performance of the model. Therefore, we propose the SAG to
effectively learn and capture the spatial correlation present among various EEG channels.
In the SAG, a learnable adjacency matrix Â is used to construct the edge connections
between nodes, and then a learnable weight matrix W is used to update the weights of the
edges. The adjacency matrix Â represents the edge connections, and the weight matrix
W represents the edge weights, which together define the spatial relationships within
the graph.

Spatial electrode graph construction: In the definition of the graph G = (V, E, A),
the nodes vi ∈ VC of the spatial electrode graph represent EEG electrode channels, where
vi denotes the amplitude of the EEG signal at a single time step. The Â ∈ RN×N is a
learnable adjacency matrix, and it captures the connectivity between electrode channels in
EEG signals. E is a set of edges that connect the EEG electrode channels, and the values of
its elements are determined by Â.

Spatial electrode graph embedding: We learn the embedding of each node in the
spatial electrode graph with the SAG, aiming to fully exploit the connections between the
dual streams. First, the node sequences from each stream are projected using the functions
f (x)l and f (x)s to align their dimensions. The dimension alignment functions f (x)l and
f (x)s are fully connected layers that are used to transform the large-scale signal dimensions
into small-scale signal dimensions. Subsequently, the resulting multiscale graph node
sequence is fed into the SAG to compute the average weight. More specifically, the graph
convolution process for the signals x and y is as follows:

x ∗g y = U
((

UTx
)
⊙

(
UTy

))
(4)

where ⊙means the Hadamard product. Suppose g(·) is a filtering function (convolutional
kernel); then, the signal x filtered by g(L) can be expressed as

y = g(L)x = g
(
UΛUT)x = Ug(Λ)UTx (5)

where the convolutional kernel g(Λ) = diag([ŷ1, ŷ2, · · · , ŷn]) is a diagonal matrix. To sim-
plify computations, we use K-order Chebyshev polynomials [46] to replace the polynomial
expansion of g(L). and we replace the convolution kernel with

g(Λ) = ∑K−1
k=0 θkTk(Λ) (6)

Here, the coefficients of the Chebyshev polynomials are given by θk, and the eigen-
vector obtained by performing eigenvalue decomposition on the Laplacian matrix is
Λ = diag([λ1, λ2, · · · , λN ]). Tk(Λ) can be calculated according to the following formula:{

T0(x) = 1, T1(x) = x
Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 2

(7)
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According to (6), we can rewrite the graph convolution operation defined in (5) as

y = Ug(Λ)UTx

=
K−1

∑
k=0

U

 θkTk(λ0) · · · 0
...

. . .
...

0 · · · θkTk(λN−1)

UTx

=
K−1

∑
k=0

θkTk(L)x

(8)

3.4. Cross-EEG Transformer

Due to the physical sciences indicating that numerous physiological components
function at multiple scales [30,31,47–49] and the ability of attention mechanisms to capture
long-range temporal correlations, we propose the CET to integrate EEG signals of varying
temporal scales.

In the initial stage, each stream undergoes spatial feature extraction via the SAG to
initialize a learnable class token to represent global temporal features. Subsequently, each
class token captures temporal features from other patches within the stream through the
SA encoder. The CET incorporates multiple fusion and information exchange mechanisms
within the cross-attention block, facilitating the class tokens to effectively capture multiscale
features within the EEG signals. Finally, the class tokens obtained through the CET are
utilized for emotion prediction.

The cross-attention block plays a pivotal role in information exchange between dual
streams. Specifically, it facilitates the exchange of information between the class tokens and
the temporal patches from the other stream, followed by the projection of the exchanged
class tokens back to their respective streams. As a result, each stream is able to incorporate
relevant information from the other stream, thereby significantly enhancing its ability
to comprehend and handle multiscale inputs. Figure 5 illustrates the cross-attention
block for the long stream. First, the class token of the long stream xl

cls is subject to an
alignment projection function denoted as f l(x), resulting in the transformed vector x′lcls as
defined in Equation (9). Subsequently, x′lcls is utilized to generate the query by means of
WQ ∈ RC×(C/h). Simultaneously, x′lcls is concatenated with the temporal patches of the short
stream xs

p to yield x′l , which is employed to derive the key and value via WK ∈ RC×(C/h)

and WV ∈ RC×(C/h), respectively. The attention weights are calculated using the query,
key, and value.

x′lcls = f l
(

xl
cls

)
(9)

x′l =
[

x′lcls∥x
s
p

]
(10)

Figure 5. Illustration of the cross-attention module. Both short- and long-term class tokens are first
projected to the same dimension of the other token, and then they integrate information from the other
scale features by self-attention operation, and finally, each is reprojected into its original dimension.



Mathematics 2024, 12, 1180 9 of 17

The process of the cross-attention (CA) block can be expressed as

Q = x′lclsW
Q, K = x′lWK, V = x′lWV

A = softmax
(
QKT/

√
C/h

)
, CA

(
x′l

)
= AV

(11)

where C is the dimension of embedding and h is the number of heads. Cross-attention
also uses multihead cross-attention (MCA) by referring to the SA mechanism, but unlike a
vanilla unitary transformer, it does not use a feed-forward network after MCA. Specifically,
the process of MCA can be represented as follows:

yl
cls = f l

(
xl

cls

)
+ MCA

(
LN

([
f l
(

xl
cls

)
∥xs

p

]))
zl =

[
gl
(

yl
cls

)
∥xl

p

] (12)

where gl(x) is the inverse projection function, which is used to reproject the class token
that has undergone information fusion back to its original dimension for concatenation
with temporal patches. Finally, the pseudocode of the SAG-CET is shown in Algorithm 1.

Algorithm 1 Training procedure of SAG-CET
Input:raw signal data D
Output:Network θ(N)

Initialize:Â(0), xl(0)
cls , xs(0)

cls ,θ(0)

1: Patchs, Patchl = SplitPatch(D, ssize, lsize)
2: Nodes, Nodel = PatchToNode(Patchs, Patchl)
3: NodeSet = align_cat(Nodes, Nodel)
4: for i = 0 ... N − 1 do
5: Node

′
s, Node

′
l = SAG(NodeSet, Â(i))

6: Patch
′
s, Patchl = NodeToPatch(Node

′
s, Node

′
l)

7: xl(i)
cls , xs(i)

cls = CET(Patch
′
s, Patch

′
l , xl(i)

cls , xs(i)
cls )

8: output = classifier(xl(i)
cls + xs(i)

cls )
9: AccSub = acc(label, output)

10: loss = nn.CrossEntropyLoss(output, label)
11: Â(i), xl(i)

cls , xs(i)
cls ← loss.backward()

12: end for
13: return θ(N)

4. Experiments
4.1. Datasets and Experiment Setting

We conducted subject-dependent experiments on two widely used public datasets,
namely, DEAP [50] and DREAMER [51], which have been extensively studied by re-
searchers in the field of emotion recognition, as shown in Table 1. DEAP is a multimodal
physiological signals dataset, which comprises recordings from 32 subjects. The dataset
includes 32 channels of EEG signals and 8 channels of peripheral physiological signals
(PPS), with an EEG signal sampling rate of 512 Hz. The remaining eight channels of PPS
consist of signals for EMG, EOG, GSR, blood volume pulse (BVP), temperature, and res-
piration. The subjects were instructed to rate their valence, arousal, and dominance on a
scale of 1 to 9 for the four emotional dimensions. DREAMER includes EEG signals from
14 channels and ECG signals from 2 channels of 23 subjects. The EEG signals were sampled
at a rate of 128 Hz. The subjects were asked to rate four emotional dimensions, namely,
valence, arousal, dominance, and liking, on a scale of 1 to 5.
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Table 1. The details of DEAP and DREAMER.

Dataset Subjects Label Experiments Signals (Channel)

DEAP 32 Valence, arousal,
dominance 40/subject

EEG (32), EMG (2), EOG (2),
GSR (1), BVP (1), temperature
(1), respiration (1)

DREAMER 23 Valence, arousal,
dominance, liking 18/subject EEG (14), ECG (2)

To ensure consistency and comparability between the two datasets, we downsampled all
EEG signals to 128 Hz and extracted a 60-second segment from each signal. We filtered EEG
signals to 4–45 Hz and performed blind source separation to remove EOG artifacts [50,51]. To
enhance the characterization ability of the EEG signals, we performed baseline correction on
the DEAP and DREAMER datasets by subtracting the average of each second for three and
four seconds, respectively [52]. To increase the scale of our training set, we augmented the
dataset by extracting nonoverlapping 1-s signal segments as samples [53]. Finally, following
the common setting [6,54], we categorized the valence and arousal labels in the DEAP and
DREAMER datasets as either high or low using thresholds of 5 and 3, respectively.

For each EEG sample with length L, we split it into long-term patches as L/4 and
short-term patches L/32 by default. For our experiments, we set the initial learning rate to
0.001 and the batch size to 64. We utilized Adam as the optimizer and set the β1 and β2
parameters to 0.5 and 0.9, respectively. To ensure the reliability of our results, we employed
a random 10-fold cross-validation approach and trained our model for 100 epochs for each
fold. We evaluated the performance of our model using accuracy metrics. All experiments
were conducted on Tesla A100 GPUs.

4.2. Comparisons to State of the Art

On DEAP and DREAMER, we compared our model with the SOTA methods, which use
different backbones. The used models contain CRAM [20], ACRNN [42], MMResLSTM [55],
DGCNN [56], IAG [26], V-IAG [29], SSTemotionNet [57], HetEmotionNet [43], EeT [54], and
TNAS [6], as shown in Table 2. To ensure the comprehensiveness of the comparative experi-
ments, these models adopt different feature selection strategies, including spatial–temporal
domain features [20,55], spatial–spectral domain features [26,29,56], and the integration of
spatial–spectral–temporal domain features [43,57]. Apart from this, we chose a wide range of
models which include architectures featuring different combinations of CNN, RNN, LSTM,
GRU, GCN, transformer, and others to comprehensively demonstrate the difference of our
model compared to previous works. To ensure a fair comparison, we applied identical data
preprocessing steps to both our model and the selected baseline models on both datasets and
conducted comparative experiments under the same experiment conditions.

Table 2. Comparison of the input features and backbones in state-of-the-art methods.

Model Feature Modality Backbone

CRAM [20] Raw signal EEG CNN + LSTM + attention
SSTemotionNet [57] Raw signal + DE EEG CNN + attention
ACRNN [42] Raw signal EEG CNN + LSTM + attention
DGCNN [56] PSD EEG GCN
IAG [26] PSD EEG + PPS GCN + LSTM
V-IAG [29] PSD EEG + PPS GCN + LSTM
HetEmotionNet [43] Raw signal + DE EEG + PPS GCN + GRU
MMResLSTM [55] Raw signal EEG + PPS LSTM + ResNet
EeT [54] Raw signal EEG Transformer
TNAS [6] Raw signal EEG Transformer
SAG-CET (ours) Raw signal EEG GCN + transformer
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4.3. Experiment on DEAP

Table 3 presents the average accuracy and standard deviations of the models on the
DEAP dataset. Figure 6 shows the average accuracy per subject. Our model achieves
an accuracy of 98.89% and 98.92% in valence and arousal, respectively, while the other
baseline methods ranged between 84.46% and 98.68%. In these models, TNAS, which has a
performance (98.66% for valence, 98.68% for arousal) similar to SAG-CET, combines the
advantages of transformer and MOEA to build a backbone network. However, the perfor-
mance of TNAS on DREAMER is far inferior to SAG-CET, indicating that SAG-CET has
better generalization ability and model robustness than TNAS. Additionally, the proposed
model demonstrates satisfactory stability, as evidenced by its lowest standard deviation.
The results demonstrate that our proposed model achieves better performance than SOTA
baselines on DEAP. Figure 7 provides a confusion matrix to illustrate the correctness of the
model. The sample size of the DEAP dataset is 60 × 40 × 32, and the sample size of the
DREAMER dataset is 60 × 23 × 18.

Table 3. The mean accuracies (ACC) and standard deviations (STD) on the DEAP dataset.

Model Valence (%) Arousal (%)

CRAM [20] 87.09 ± 7.49 84.46 ± 9.27
DGCNN [56] 90.44 ± 3.01 91.70 ± 3.46
MMResLSTM [55] 92.30 ± 1.55 92.87 ± 2.11
EeT [54] 93.34 ± 2.12 92.86 ± 2.35
ACRNN [42] 93.72 ± 3.21 93.38 ± 3.73
SST-EmotionNet [57] 95.54 ± 2.54 95.97 ± 2.86
HetEmotionNet [43] 97.66 ± 1.54 97.30 ± 1.65
TNAS [6] 98.66 ± 0.94 98.68 ± 0.98

SAG-CET (ours) 98.89 ± 0.84 98.92 ± 0.81

Figure 6. Subject-dependent classification accuracy on DEAP.

4.4. Experiment on DREAMER

Table 4 showcases the performance of the proposed model and other baseline models
on the DREAMER dataset. Figure 8 shows the average accuracy per subject. In general,
our SAG-CET achieves the best performance with an accuracy of (99.08% for valence and
99.21% for arousal) on the DREAMER dataset compared to all previous SOTA methods,
with the lowest standard deviation.

Notably, although ACRNN seems to have achieved a slightly lower performance
(97.39% for valence, 97.98% for arousal) on the DREAMER than SAG-CET, compared to
performance on the DREAMER dataset, SAG-CET far outperforms ACRNN on the DEAP
dataset, which indicates that SAG-CET has excellent generalization ability.
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Table 4. The mean accuracies (ACC) and standard deviations (STD) on the DREAMER dataset.

Model Valence (%) Arousal (%)

DGCNN [56] 86.23 ± 3.25 84.54 ± 3.16
IAG [26] 90.75 ± 2.27 91.03 ± 1.65
CRAM [20] 92.27 ± 2.95 93.03 ± 1.87
V-IAG [29] 92.82 ± 2.16 93.09 ± 1.44
TNAS [6] 96.95 ± 3.35 96.41 ± 3.61
ACRNN [42] 97.39 ± 1.37 97.98 ± 1.92

SAG-CET (ours) 99.08 ± 0.51 99.21 ± 0.72

Figure 7. Accuracy fusion matrices of DEAP and DREAMER.

Figure 8. Subject-dependent classification accuracy on DREAMER.

4.5. Results Analysis

Figure 9 shows the average weight matrix of MHA of each stream in each subject before
performing cross-attention calculation, which indicates the distribution of attention in the
input embedding. The i-th row of each attention weight matrix corresponds to the attention
distribution of class token of i-th subject over the entire embedding sequence. In the long
stream, attention mainly focuses on the middle to the posterior part of temporal patches, while
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in the short stream, attention focuses on the anterior part of temporal patches. This indicates
that the features of the EEG signals in temporal patches at different scales are complementary.

Figure 9. Example of average weight matrix of MHA head of each stream. The proportions of
temporal patch size are 1/4 and 1/16 in (a) and (b), respectively. The i-th row of each attention
weight matrix corresponds to the attention distribution of class token of i-th subject over the entire
embedding sequence.

To more intuitively describe the ability of EEG signals to represent emotion at various
scales, we explored the impact of different patch sizes on the performance of EEG emotion
recognition using the single-stream input transformer. As shown in Figure 10, results
indicate that the accuracy gradually improves with the increase in patch size. However,
it is worth noting that the growth rate of accuracy is negatively correlated with the patch
size. This suggests that although larger patch sizes can capture more temporal information,
there is a limit to the improvement in accuracy through this approach. In order to find
the optimal scale for using SAG-CET for EEG emotion recognition, we conducted a set
of experiments to evaluate the optimal combination of patch proportion in a segment of
an EEG signal sample. As shown in Figure 10, when the patch sizes for short-stream
and long-stream inputs are, respectively, 1/32 and 1/4 of the EEG signal sample, CET
achieves the best performance on both datasets. Furthermore, our proposed CET model
overcomes the limitation shown in Figure 10 by fusing features from two different patch
sizes, demonstrating the effectiveness of multiscale features in EEG emotion recognition.

Figure 10. (a) The horizontal axis represents the proportion of patch size in a single sample, and the
proportions selected for this experiment are 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2. (b) The coordinates
pair (s, l) on the horizontal axis represents the combinations of patch size proportion in a single
sample for short and long streams.
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4.6. Ablation Study

In order to verify the effectiveness of the proposed model, we conducted two types of
ablation studies on two datasets: (1) Ablation studies to validate the effectiveness of the
SAG in extracting spatial features. (2) Ablation studies to verify if the dual-stream structure
and CET can effectively perform multiscale feature fusion. The single-stream input only
uses an SA encoder, and the dual-stream input additionally uses a cross-attention block.
The results are as shown in Figures 11 and 12; we have the following observations:

• By comparing the results of experiments conducted solely using long-stream, short-
stream, or dual-stream input on two datasets, we can observe that dual-stream input
performs better than long-stream or short-stream input, which fully explains the
effective promotion with the application of the cross-attention block.

• By comparing the results of experiments conducted on the SAG block, removing
the SAG component from the SAG-CET reduces the performance. The CET with
SAG outperforms the CET without SAG, which indicates that the SAG is effective
in constructing the spatial correlations of multiple channels. Notably, our analysis
showed that the best performance was achieved by combining all the aforementioned
factors across all the experiments.

Figure 11. Ablation studies for CET structure on DEAP (left) and DREAMER (right).

Figure 12. Ablation studies for SAG structure on DEAP (left) and DREAMER (right).

4.7. Limitations and Future Work

In this study, as a common setting, we adopt a conventional binary classification to clas-
sify the valence and arousal of emotions and only conduct subject-dependent experiments.
Thus, the generalization of a subject-independent setting is unknown, and multiclass tasks
on valence and arousal can be further explored. In addition, since EEG can represent
extensive physiological states, another future work is to adapt our method to other states
like mental fatigue as well as sleep monitoring, epilepsy monitoring, depression treatment,
and other aspects.

5. Conclusions

In this paper, we propose a novel approach to EEG signal emotion recognition using
end-to-end deep learning with an emphasis on multiscale and multichannel feature extrac-
tion. The proposed model, SAG-CET, utilizes a scale-aware adaptive GCN, dual-stream
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input with varying scale EEG signal patches, and a cross-attention block that enables the
fusion of features from signals of different scales. Extensive experiments comparing our
approach with various backbone network models on the DEAP and DREAMER datasets
demonstrated that our model achieves SOTA performance, outperforming existing meth-
ods by a significant margin. Additionally, we conducted experiments to demonstrate the
complementary nature of signal patches at different temporal segmentation scales. Through
extensive experimentation, we discovered the optimal combinations of multiple scale ratios,
contributing to the development of a multiscale segmentation strategy in the temporal
dimension for EEG signals. Finally, we performed ablation experiments by removing
two key modules to demonstrate the effectiveness of the proposed modules.
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