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Abstract: This paper investigates the asymptotic and oscillatory properties of a distinctive class of
third-order linear differential equations characterized by multiple delays in a noncanonical case.
Employing the comparative method and the Riccati method, we introduce the novel and rigorous
criteria to discern whether the solutions of the examined equation exhibit oscillatory behavior or tend
toward zero. Our study contributes to the existing literature by presenting theories that extend and
refine the understanding of these properties in the specified context. To validate our findings and
demonstrate their applicability in a general setting, we offer two illustrative examples, affirming the
robustness and validity of our proposed criteria.
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1. Introduction

In this paper, our focus is on investigating the oscillatory characteristics exhibited by
solutions to a linear third-order delay differential equation (DDE), given by the form(

r2(s)
(
r1(s)x′(s)

)′)′
+

n

∑
i=1

qi(s)x(τi(s)) = 0, s ≥ s0, (1)

where

Hypothesis 1. r1, r2 ∈ C([s0, ∞),R),∫ ∞

s0

1
r1(θ)

dθ < ∞ and
∫ ∞

s0

1
r2(θ)

dθ < ∞; (2)

Hypothesis 2. qi ∈ C([s0, ∞), [0, ∞)), qi(s) ≥ 0, qi(s) does not vanish identically;

Hypothesis 3. τi ∈ C1([s0, ∞),R), τi(s) ≤ s, and lim
s→∞

τi(s) = ∞, i = 1, 2, ..., n.
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We define the operators for the sake of clarity and brevity:

L0x = x, L1x = r1x′, L2x = r2
(
r1x′

)′, L3x =
(

r2
(
r1x′

)′)′ on [s0, ∞).

A nontrivial function x ∈ C1([sx, ∞),R), sx ⩾ s0, is said to be a solution of (1) which has
the property L1x, L2x ∈ C1[sx, ∞), and it satisfies (1) on x ∈ [sx, ∞). We consider only those
solutions x of (1) which exist on some half-line [sx, ∞) and satisfy the condition

sup{|x(s)| : s ⩾ S} > 0, for all S ≥ sx.

A solution x(s) of (1) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory
if all its solutions oscillate.

Differential equations form the backbone of mathematical modeling, offering a power-
ful framework to describe the behavior of various dynamic systems across diverse fields.
These equations express relationships between a function and its derivatives, allowing
for the exploration of how a system evolves over time. Their applications span physics,
engineering, biology, economics, and more, making them an indispensable tool for under-
standing and predicting the behavior of complex phenomena, see [1–7].

In the realm of dynamic systems, delay differential equations of the third order in-
troduce an additional layer of complexity by incorporating time delays into the modeling
process. Unlike ordinary differential equations, these equations account for the influence of
both current and past values of variables. The consideration of third-order delays enhances
the ability to capture intricate temporal dependencies, providing a more accurate represen-
tation of systems exhibiting memory effects. The exploration of such equations is vital for
unraveling the dynamics of real-world phenomena characterized by delayed responses,
see [8–14].

Oscillatory theorems play a pivotal role in understanding the inherent vibrational
patterns within dynamic systems. Investigating the oscillatory behavior of solutions to
differential equations provides valuable insights into the stability and periodicity of the
systems under consideration. Such theorems are essential in predicting and controlling
oscillations, making them a cornerstone in the analysis of dynamic systems, see [15–20].

Although even-order delay differential equations have been more extensively investi-
gated than their odd-order counterparts, the overall exploration of DDEs has experienced
a notable surge in interest in recent years. For those interested, a wealth of literature
exists, with significant contributions from researchers such as Baculikova et al. [21–23],
Dzurina et al. [24,25], Chatzarakis et al. [26,27], Moaaz [28–32], Masood et al. [33,34], Al-
rashdi et al. [35], El-Gaber [36], and Hassan et al. [37,38]. Further details and additional
references can be found in the works mentioned above, providing a robust foundation for
delving into the expanding realm of DDE studies.

Hartman and Wintner [39], and Erbe [40] investigated a specific instance of (1), specifi-
cally, the third-order differential equation

x′′′ + q(s)x(τ(s)) = 0.

Saker and Dzurina [41], Grace et al. [42], Baculíková and Džurina [22] explored the
oscillatory behavior of (

r(s)
(
x′′(s)

)α
)′

+ q(s)xα(τ(s)) = 0

under the conditions ∫ ∞

s0

1
r1/α(θ)

dθ = ∞ and
∫ ∞

s0

1
r1/α(θ)

dθ < ∞.
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Jadlovska et al. [43] and Chatzarakis et al. [26] delved into a specific case of (1), a third-order
delay differential equation(

r2(s)
(
r1(s)x′(s)

)′)′
+ q(s)x(τ(s)) = 0,

in the canonical scenario where∫ ∞

s0

1
r1(θ)

dθ = ∞ and
∫ ∞

s0

1
r2(θ)

dθ = ∞.

They discussed the criteria ensuring that all solutions oscillate or tend to zero. Subsequently,
Masood et al. [44] extended this study to encompass the third-order quasilinear delay
differential equation (

r2(s)
((

r1(s)x′(s)
)′)α)′

+ q(s)xα(τ(s)) = 0,

in the canonical case ∫ ∞

s0

1
rα

1(θ)
dθ = ∞ and

∫ ∞

s0

1
rα

2(θ)
dθ = ∞.

This paper explores the asymptotic and oscillatory characteristics of solutions to a
delayed differential Equation (1). Employing both the comparison method and the Riccati
method, we establish criteria that reveal whether the solutions to the examined equation
exhibit oscillatory behavior or converge to zero. Our approach extends the investigation
conducted in the literature [45], which specifically examined (1) under the case i = 1.

2. Main Results

In this paper, we assume that the functional inequalities discussed hold for sufficiently
large values of s. To simplify the study without losing the generality, we focus only on
the positive solutions of (1). Our analysis begins by examining the potential structure of
non-oscillatory solutions.

For convenience, we define the following notations:

π1(s) :=
∫ ∞

s

1
r1(θ)

dθ, π2(s) :=
∫ ∞

s

1
r2(θ)

dθ,

τ(s) = min{τi(s), i = 1, 2, ..., n},

τ̃(s) = max{τi(s), i = 1, 2, ..., n},

Q(s) =
n

∑
i=1

qi(s).

Definition 1 ([46]). We say that (1) has property A if any solution x of (1) is either oscillatory or
satisfies lims→∞ x(s) = 0.

Lemma 1 ([45]). Suppose that x is an eventually positive solution of (1). Then there exists
s1 ∈ [s0, ∞) such that the variable x satisfies one of the following cases:

(C1) : x(s) > 0, L1x(s) < 0, L2x(s) < 0, L3x(s) < 0,
(C2) : x(s) > 0, L1x(s) < 0, L2x(s) > 0, L3x(s) < 0,
(C3) : x(s) > 0, L1x(s) > 0, L2x(s) > 0, L3x(s) < 0,
(C4) : x(s) > 0, L1x(s) > 0, L2x(s) < 0, L3x(s) < 0,

for s ≥ s0.
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Lemma 2. If x′ > 0, then (1) implies

L3x(s) + Q(s)x(τ(s)) ≤ 0. (3)

Proof. Since x′ > 0, then x is increasing. From (1) we obtain

L3x(s) =
(

r2(s)
(
r1(s)x′(s)

)′)′
= −

n

∑
i=1

qi(s)x(τi(s))

≤ −x(τ(s))
n

∑
i=1

qi(s) = −Q(s)x(τ(s)).

Lemma 3. If x′ < 0, then (1) implies

L3x(s) + Q(s)x(τ̃(s)) ≤ 0. (4)

Proof. Since x′ < 0, then x is decreasing. From (1) we have

L3x(s) =
(

r2(s)
(
r1(s)x′(s)

)′)′
= −

n

∑
i=1

qi(s)x(τi(s))

≤ −x(τ̃(s))
n

∑
i=1

qi(s) = −Q(s)x(τ̃(s)).

Theorem 1. If ∫ ∞

s0

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv = ∞, (5)

then (1) possesses property A.

Proof. Firstly, it is crucial to emphasize that when both (H1) and (5) are satisfied, then∫ ∞

s0

1
r2(u)

∫ u

s0

Q(θ)dθdu =
∫ ∞

s0

Q(θ)dθ = ∞. (6)

Now, assume that for the sake of contradiction, that x is a nonoscillatory solution of (1)
on [s0, ∞). Without loss of generality, we can choose s1 ≥ s0 such that x(s) > 0 and
x(τi(s)) > 0 for s ≥ s1. According to Lemma 1 , there are four possible cases for s ≥ s1, and
we will analyze each of these cases separately.

Suppose that (C1) holds. In this scenario, due to L1x(s) < 0, we observe that x is
decreasing, that is, implying the existence of a finite constant c ≥ 0 such that lims→∞ x(s) = c.

We claim that c = 0. Assuming the contrary, c > 0 would imply the existence of
s2 ≥ s1 such that x(τi(s)) ≥ c for s ≥ s2, i = 1, 2, ..., n. Thus,

−L3x(s) =
n

∑
i=1

qi(s)x(τi(s)) ≥ c
n

∑
i=1

qi(s) = cQ(s), (7)

for s ≥ s2. Integrating (7) from s2 to s, we find

−L2x(s) ≥ −L2x(s2) + c
∫ s

s2

Q(θ)dθ

≥ c
∫ s

s2

Q(θ)dθ.
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Hence,

−(L1x)′(s) ≥ c
r2(s)

∫ s

s2

Q(θ)dθ. (8)

Integrating (8) once more from s2 to s, we obtain

−L1x(s) ≥ −L1x(s2) + c
∫ s

s2

1
r2(u)

∫ u

s2

Q(θ)dθdu

≥ c
∫ s

s2

1
r2(u)

∫ u

s2

Q(θ)dθdu.

Hence,

−x′(s) ≥ c
r1(s)

∫ s

s2

1
r2(u)

∫ u

s2

Q(θ)dθdu (9)

Integrating (9) from s2 to s the final time and considering (5) into account, we obtain

x(s) ≤ x(s2)− c
∫ s

s2

1
r1(v)

∫ v

s2

1
r2(u)

∫ u

s2

Q(θ)dθdudv → −∞ as s → ∞.

This contradicts the positivity of x. Therefore, we conclude that lims→∞ x(s) = 0.
Assume that (C2) holds. We follow a similar procedure as in (C1), to arrive at (7).

Integrating (7) from s2 to s, we observe that

L2x(s) ≤ L2x(s2)−
∫ s

s2

Q(θ)dθ → −∞ as s → ∞, (10)

where we utilized (6). This contradicts the positivity of L2x(s), and consequently, we
conclude that lims→∞ x(s) = 0.

Assume that (C3) holds. We define a function

w(s) :=
L2x(s)
x(τ(s))

, s ≥ s1.

Certainly, w is positive for s ≥ s1. According to (3), we find

w′(s) =
L3x(s)
x(τ(s))

− L2x(s)x′(τ(s))τ′(s)
x2(τ(s))

≤ L3x(s)
x(τ(s))

≤ −Q(s)x(τ(s))
x(τ(s))

= −Q(s).

Integrating the above inequality from s1 to s and considering (7) into account, we have

w(s) ≤ w(s2)−
∫ s

s1

Q(θ)dθ → −∞ as s → ∞,

which leads to a contradiction.
Assume that (C4) holds. Since x is increasing, integration (3) from s1 to s yields

−L2x(s) ≥ −L2x(s1) +
∫ s

s1

Q(θ)x(τ(θ))dθ

≥ x(τ(s1))
∫ s

s1

Q(θ)dθ.

This leads to
−(L1x)′(s) ≥ k

r2(s)

∫ s

s1

Q(θ)dθ, where k = x(τ(s1)). (11)
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Integrating (11) from s1 to s and using (7), we have

L1x(s) ≤ L1x(s1)− k
∫ s

s1

1
r2(u)

∫ u

s1

Q(θ)dθdu → −∞ as s → ∞, (12)

This leads to a contradiction, completing the proof.

Remark 1. It is clear that any nonoscillatory solution mentioned in Theorem 1 satisfies either case
(C1) or (C2) as stated in Lemma 1.

In the subsequent result, we present more robust supplementary details regarding the
monotonic behavior of solutions that adhere to (C2).

Lemma 4. Consider x satisfying (C2) as described in Lemma 1 on the interval [s1, ∞) for some
s1 ≥ s0. Define the function

π(s) :=
∫ ∞

s

π2(θ)

r1(θ)
dθ. (13)

If the condition ∫ ∞

s
Q(θ)π(τ̃(θ))dθ = ∞, (14)

is satisfied, then there exists s2 ≥ s1 such that

x(s)
π(s)

↓ 0, (15)

for s ≥ s2.

Proof. Assume that x satisfies (C2) as stated in Lemma 1 on the interval [s1, ∞) for some
s1 ≥ s0. Firstly, we demonstrate that (11) implies

lim
s→∞

x(s)
π(s)

= 0. (16)

By applying L’Hôpital’s rule, we obtain

lim
s→∞

x(s)
π(s)

= lim
s→∞

−L1x(s)
π2(s)

= lim
s→∞

L2x(s).

As L2x(s) is decreasing, there is a finite constant c1 ≥ 0 such that lims→∞ L2x(s) = c. We
claim that c > 0. If not, then L2x(s) > c and consequently, x(s) ≥ cπ(s) eventually, say for
s ≥ s2 with s2 ∈ [s1, ∞). Substituting this relation into (4) , we deduce that

−L3x(s) ≥ Q(s)x(τ̃(s)) ≥ c1Q(s)π(τ̃(s)).

Integrating the above inequality from s2 to s, we obtain

L2x(s) ≤ L2x(s2)− c
∫ s

s2

Q(θ)π(τ̃(θ))dθ → −∞ as s → ∞.

This contradiction implies that (16) holds and consequently

lim
s→∞

x(s) = lim
s→∞

L1x(s) = 0, (17)

due to the decreasing nature of π(s) and π2(s), respectively. Using the monotonicity of
L2x(s) alongside (17), we derive
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−L1x(s) = L1x(∞)− L1x(s)

=
∫ ∞

s

1
r2(θ)

L2x(θ)dθ

≤ π2(s)L2x(s),

which implies, (
L1x(s)
π2(s)

)′
=

π2(s)L2x(s) + L1x(s)
r2(s)π2

2(s)
≥ 0.

Thus, L1x(s)/π2(s) is increasing on [s3, ∞). Combining this information with (17) leads to

x(s) = x(s)− x(∞)

= −
∫ ∞

s

π2(θ)

r1(θ)

L1x(θ)
π2(θ)

dθ

≤ − L1x(s)
π2(s)

π(s).

Therefore (
x(s)
π(s)

)′
=

π(s)L1x(s) + π2(s)x(s)
r1(s)π2(s)

≤ 0,

and we conclude that x(s)/π(s) is monotonically decreasing. This, along with (16), im-
plies (15), completing the proof.

Corollary 1. Consider x satisfying (C2) as described in Lemma 1 on the interval [s1, ∞) for some
s1 ≥ s0. Define the function π(s) as given by (13). If (14) is satisfied, then there exists s2 ≥ s1
such that

x(s) ≤ cπ(s),

for every constant c > 0 and s ≥ s2.

Theorem 2. If

lim inf
s→∞

∫ s

τ̃(s)

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv >
1
e

, (18)

and
lim sup

s→∞

∫ s

τ̃(s)

1
r1(v)

∫ s

v

1
r2(u)

∫ s

u
Q(θ)dθdudv > 1, (19)

then (1) is oscillatory.

Proof. Suppose for the sake of contradiction, that x is a nonoscillatory solution of (1) on
[s0, ∞). Without the loss of generality, we can choose s1 ≥ s0 such that x(s) > 0 and
x(τi(s)) > 0 for s ≥ s1. According to Lemma 1 , there are four possible cases for s ≥ s1, and
and we will analyze each of these cases separately.

Assume that (C1) holds. Integrating (4) from s1 to s and using the fact that x is
decreasing, we obtain

−L2x(s) ≥ −L2x(s1) +
∫ s

s1

Q(θ)x(τ̃(θ))dθ

≥ x(τ̃(s))
∫ s

s1

Q(θ)dθ. (20)

This leads to

−(L1x)′(s) ≥ x(τ̃(s))
r2(s)

∫ s

s1

Q(θ)dθ. (21)
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Integrating (21) from s1 to s, we obtain

−L1x(s) ≥
∫ s

s1

x(τ̃(u))
r2(u)

∫ u

s1

Q(θ)dθdu

≥ x(τ̃(s))
∫ s

s1

1
r2(u)

∫ u

s1

Q(θ)dθdu. (22)

or

x′(s) +
(

1
r1(s)

∫ s

s1

1
r2(u)

∫ u

s1

Q(θ)dθdu
)

x(τ̃(s)) ≤ 0.

However, according to Theorem 2.1.1 in [15], condition (18) ensures that the above inequal-
ity does not have a positive solution, which contradicts our initial assumption.

Assume that (C2) holds. Integrating (4) from u to s (> u) and utilizing the monotonicity
of x , we obtain

L2x(u) ≥ L2x(u)− L2x(s)

≥
∫ s

u
Q(θ)x(τ̃(θ))dθ

≥ x(τ̃(s))
∫ s

u
Q(θ)dθ.

This leads to

(L1x)′(u) ≥ x(τ̃(s))
r2(s)

∫ s

u
Q(θ)dθ.

Iterating the integration process outlined above from u to s (> u) twice, we derive

x(u) ≥ x(τ̃(s))
∫ s

u

1
r1(v)

∫ s

v

1
r2(κ)

∫ s

κ
Q(θ)dθdκdv. (23)

Substituting u = τ̃(s) in (23), we arrive at a contradiction with (19).
Lastly, by noting that (5) is necessary for the validity of (18), it follows immediately

from Remark 1 that cases (C3) and (C4) are impossible. This concludes the proof.

The next result is a straightforward consequence of Theorem 2 and Corollary 1. It is
noteworthy that this result furnishes more robust information about solutions compared to
property A.

Theorem 3. If (14) and (18) are satisfied, then any positive solution of (1) satisfies (15) for every
c > 0 when s is sufficiently large..

In what follows, we present various results which can serve as alternatives to Theorem 2.

Theorem 4. If

lim sup
s→∞

π1(s)
∫ s

s0

1
r2(u)

∫ u

s0

Q(θ)dθdu > 1, (24)

and (19) hold, then (1) is oscillatory.

Proof. Suppose for the sake of contradiction, that x is a nonoscillatory solution of (1)
on [s0, ∞). Without loss of generality, we can choose s1 ≥ s0 such that x(s) > 0 and
x(τi(s)) > 0 for s ≥ s1. According to Lemma 1, there are four possible cases for s ≥ s1.

Assume that (C1) holds. Then

x(s) = x(∞)−
∫ ∞

s

1
r1(θ)

L1x(θ)dθ ≥ −π1(s)L1x(s). (25)
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Employing the monotonicity of x and (25) in (22), we observe that

−L1x(s) ≥ x(s)
∫ s

s1

1
r2(u)

∫ u

s1

Q(θ)dθdu

≥ −π1(s)L1x(s)
∫ s

s1

1
r2(u)

∫ u

s1

Q(θ)dθdu.

Taking lim sup on both sides of the above inequality, one obtains a contradiction with (24).
The proof of (C2) follows a similar approach to that of Theorem 2. To establish the

impossibility of (C3) and (C4), it is enough to note that (6) is necessary for the validity
of (24). The rest of proof proceeds in the same manner as that of Theorem 1. The proof is
complete.

Theorem 5. If (19) and

lim sup
s→∞

∫ s

s0

[
π1(θ)

r2(θ)

∫ θ

s0

Q(u)du − 1
4r1(θ)π1(θ)

]
dθ = ∞, (26)

hold, then (1) is oscillatory.

Proof. Suppose for the sake of contradiction, that x is a nonoscillatory solution of (1)
on [s0, ∞). Without loss of generality, we can choose s1 ≥ s0 such that x(s) > 0 and
x(τi(s)) > 0 for s ≥ s1. According to Lemma 1, there are four possible cases for s ≥ s1.

Assume that (C1) holds. Define the function

w(s) =
L1x(s)

x(s)
, s ≥ s1. (27)

Clearly, w < 0 on [s0, ∞). Since L1x(s) is decreasing, we have

x(s) = x(l)−
∫ l

s

1
r1(θ)

L1x(θ)dθ ≥ −L1x(s)
∫ l

s

1
r1(θ)

dθ.

Putting l → ∞ in the above inequality, we obtain

x(s) ≥ −π1(s)L1x(s). (28)

From this and the definition of w, it is easy to see that

−1 ≤ π1(s)w(s) < 0. (29)

On the other hand, as in the proof of Theorem 2, we arrive at (20), which implies

L2x(s)
x(s)

≤ −
∫ s

s1

Q(θ)dθ, (30)

Differentiating w and using (27) and (30), we have

w′(s) =
L2x(s)

r2(s)x(s)
− x′(s)L1x(s)

x2(s)

≤ −1
r2(s)

∫ s

s1

Q(θ)dθ − 1
r1(s)

w2(s). (31)

Multiplying both sides of (31) by π1(s) and integrating the resulting inequality from s1 to s,
we have
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π1(s)w(s) ≤ π1(s1)w(s1)−
∫ s

s1

w(θ)

r1(θ)
dθ

−
∫ s

s1

π1(θ)

r2(θ)

∫ θ

s1

Q(u)dudθ −
∫ s

s1

π1(θ)

r1(θ)
w2(θ)dθ

= π1(s1)w(s1)−
∫ s

s1

π1(θ)

r2(θ)

∫ θ

s1

Q(u)dudθ

−
∫ s

s1

π1(θ)

r1(θ)

[(
w(θ) +

1
2π1(θ)

)2
− 1

4π2
1(θ)

]
dθ

≤ π1(s1)w(s1)−
∫ s

s1

[
π1(θ)

r2(θ)

∫ θ

s1

Q(u)du − 1
4r1(θ)π1(θ)

]
dθ.

However, in view of (26), this inequality contradicts (29).
Assume that (C2) holds. As in the proof of Theorem 2, one arrives at contradiction

with (19).
To show that (C3) and (C4) are impossible, it is sufficient to note that∫ s

s0

π1(θ)

r2(θ)

∫ θ

s0

Q(u)dudθ = ∞ (32)

is necessary for the validity of (26). Furthermore, since π1(s) is decreasing due to (H1),
then (32) implies that the function∫ s

s0

1
r2(θ)

∫ θ

s0

Q(u)dudθ,

is unbounded, and so (6) holds. The rest of proof proceeds in the same manner as that of
Theorem 1. This completes the proof.

Theorem 6. Assume all conditions of Theorem 2 (Theorems 4 and 5) are met except for (19). If (14)
and

lim sup
s→∞

1
π(τ̃(s))

∫ s

τ̃(s)

1
r1(v)

∫ s

v

1
r2(u)

∫ s

u
Q(θ)π(τ̃(θ))dθdudv > 1, (33)

hold, then (1) is oscillatory.

Proof. Suppose for the sake of contradiction that x is a nonoscillatory solution of (1) on
[s0, ∞). Without the loss of generality, we may take s1 ≥ s0 such that x(s) > 0 and
x(τi(s)) > 0 for s ≥ s1. By Lemma 1 , four possible cases may occur for s ≥ s1.

The proof of (C1), (C3) and (C4) proceeds in the same manner as that in Theorem 2
(Theorems 4 and 5).

Now suppose that (C2) holds. Integrating (4) from u to s (> u) and using the fact the
monotonicity of x/π , we have

L2x(u) ≥ L2x(u)− L2x(s) ≥
∫ s

u
Q(θ)x(τ̃(θ))dθ

≥
∫ s

u
Q(θ)

x(τ̃(θ))
π(τ̃(θ))

π(τ̃(θ))dθ

≥ x(τ̃(s))
π(τ̃(s))

∫ s

u
Q(θ)π(τ̃(θ))dθ

that is,

(L1x)′(u) ≥ x(τ̃(s))
π(τ̃(s))

1
r2(s)

∫ s

u
Q(θ)π(τ̃(θ))dθ.
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Repeating the above process of integration from u to s (> u) twice, we obtain

x(u) ≥ x(τ̃(s))
π(τ̃(s))

∫ s

u

1
r1(v)

∫ s

v

1
r2(κ)

∫ s

κ
Q(θ)π(τ̃(θ))dθdκdv. (34)

Setting u = τ̃(s) in (23), we obtain a contradiction with (33). The proof is complete.

Example 1. Let us consider the third-order delay differential equation of Euler type(
sb(sax′(s)

)′)′
+

n

∑
i=1

q0sa+b−3x(τis) = 0, s ≥ 1, (35)

where a > 1, b > 1, q0 > 0, and τi ∈ (0, 1], i = 1, 2, . . . , n. By comparing (1) and (35), we observe
that r1(s) = sa, r2(s) = sb, q(s) = q0sa+b−3, τi(s) = τis. It is straightforward to find that

π1(s) =
1

(a − 1)sa−1 , π2(s) =
1

(b − 1)sb−1 , π(s) =
1

(b − 1)(a + b − 2)sa+b−2 ,

τ(s) = max{τi(s), i = 1, 2, ..., n} = τs,

τ̃(s) = min{τi(s), i = 1, 2, ..., n} = τ̃s,

and
Q(s) = nq0sa+b−3.

Now, condition (5) leads to∫ ∞

s0

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv =
∫ ∞

s0

1
va

∫ v

s0

1
ub

∫ u

s0

nq0θa+b−3dθdudv

=
nq0

a + b − 2

∫ ∞

s0

1
va

∫ v

s0

ua−2dudv

=
nq0

(a + b − 2)(a − 1)

∫ ∞

s0

v−1dv

=
nq0

(a + b − 2)(a − 1)
lim
s→∞

ln s = ∞.

Then by by Theorem 1, we conclude that (35) has property A.
On the other hand, condition (18) leads to

lim inf
s→∞

∫ s

τ̃(s)

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv

= lim inf
s→∞

∫ s

τ̃s

1
va

∫ v

s0

1
ub

∫ u

s0

nq0θa+b−3dθdudv

=
nq0

(a + b − 2)(a − 1)
ln

1
τ̃

,

which is satisfied when

q0 >
(a + b − 2)(a − 1)

n ln 1
τ̃ e

1, (36)

and condition (19) leads to
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lim sup
s→∞

∫ s

τ̃(s)

1
r1(v)

∫ s

v

1
r2(u)

∫ s

u
Q(θ)dθdudv

= lim sup
s→∞

∫ s

τ̃s

1
va

∫ s

v

1
ub

∫ s

u
nq0θa+b−3dθdudv

=
nq0

a + b − 2
lim sup

s→∞

∫ s

τ̃s

1
va

∫ s

v

1
ub

(
sa+b−2 − ua+b−2

)
dudv

=
nq0

a + b − 2
lim sup

s→∞

∫ s

τ̃s

1
va

∫ s

v

(
sa+b−2

ub − ua−2

)
dudv

=
nq0

a + b − 2
lim sup

s→∞

∫ s

τ̃s

1
va

((
1

1 − b

(
sa−1 − sa+b−2

vb−1

))
− 1

a − 1

(
sa−1 − va−1

))
dv

=
nq0

a + b − 2
lim sup

s→∞

∫ s

τ̃s

((
1

1 − b

(
sa−1

va − sa+b−2

va+b−1

))
− 1

a − 1

(
sa−1

va − 1
v

))
dv

=
nq0

(a + b − 2)(a − 1)

[(
1

a − 1
+

1
b − 1

)(
1 − 1

τ̃a−1

)
+ ln

1
τ̃

]
+

nq0

(1 − b)(a + b − 2)2

(
1 − 1

τ̃a+b−2

)
which is satisfied when

nq0

(a − 1)

[(
1

a − 1
+

1
b − 1

)(
1 − 1

τ̃a−1

)
+ ln

1
τ̃

]
+

nq0

(1 − b)(a + b − 2)

(
1 − 1

τ̃a+b−2

)
> (a + b − 2) . (37)

By Theorem 2, Equation (35) is oscillatory if both (36) and (37) hold.

Example 2. Consider the specific instance of Equation (35), given by(
s2
(

s2x′(s)
)′)′

+ q0s
(

x
(

1
2

s
)
+ x
(

1
3

s
)
+ x
(

1
4

s
))

= 0, s ≥ 1, (38)

By comparing (1) and (38), we see that r1(s) = s2, r2(s) = s2, q(s) = q0s. It is straightforward to
find that

π1(s) =
1
s

, π2(s) =
1
s

, π(s) =
1

2s2 ,

τ(s) =
1
2

s, τ̃(s) =
1
4

s,

and
Q(s) = 3q0s.

Now, condition (5) leads to∫ ∞

s0

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv =
∫ ∞

s0

1
v

∫ v

s0

1
u

∫ u

s0

3q0θdθdudv

=
3q0

2

∫ ∞

s0

1
v2

∫ v

s0

dudv

=
3q0

2

∫ ∞

s0

v−1dv

=
3q0

2
lim
s→∞

ln s = ∞.
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Then by by Theorem 1, we conclude that (38) has property A.
On the other hand, condition (18) leads to

lim inf
s→∞

∫ s

τ̃(s)

1
r1(v)

∫ v

s0

1
r2(u)

∫ u

s0

Q(θ)dθdudv

= lim inf
s→∞

∫ s

1
4 s

1
v2

∫ v

s0

1
u2

∫ u

s0

3q0θdθdudv

=
3q0

2
ln 4,

which is satisfied when
q0 > 0.176 91, (39)

and condition (19) is satisfied when
q0 > 0.07018. (40)

By Theorem 2, Equation (38) is oscillatory if both (39) and (40) hold.

3. Conclusions

This paper has presented a comprehensive investigation into the asymptotic and
oscillatory properties of a certain type of third-order linear differential equation with
multiple delays, in a noncanonical case. By applying the comparative method and the
Riccati method, we have established new and stringent criteria to determine whether
the solutions of the studied equation exhibit oscillatory behavior or approach zero. Our
results not only enhance the understanding of this particular differential equation but also
contribute to the broader literature on delay differential equations.

Furthermore, in light of future research directions, we recognize the potential for
extending the scope of this study. Specifically, we propose exploring the application of the
same techniques to establish criteria for determining the oscillatory or convergent behavior
of solutions for half-linear neutral differential equations of the form(

r2(s)
(

r1(s)
(
(x(s) + p(s)x(σ(s)))′

)α)′)′
+

n

∑
i=1

qi(s)xα(τi(s)) = 0.

Such an expansion of our study could significantly enhance the applicability of the meth-
ods employed in this paper to a wider range of differential equations, thereby fostering
continued advancement in the field.
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