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Abstract: As data continue to grow in complexity and size, there is an imperative need for more
efficient and robust storage solutions. DNA storage has emerged as a promising avenue to solve this
problem, but existing approaches do not perform efficiently enough on video data, particularly for
information density and time efficiency. This paper introduces VSD, a pioneering encoding method
for video segmentation and storage in DNA, leveraging the Reed–Solomon (RS) error correction code.
This method addresses these limitations through an innovative combination of segmentation and
encoding, accompanied by RS coding to bolster error resilience. Additionally, the method ensures
that the GC-content of the resultant DNA sequences remains around 50%, which further enhances the
storage robustness. The experimental results demonstrate the method has commendable encoding
efficiency and offers a solution to the prevailing issue of time inefficiency and error correction rates in
DNA storage. This groundbreaking approach paves the way for the practical and reliable storage of
large-scale video data in DNA, heralding a new era in the domain of information storage.

Keywords: DNA data storage; error correction; video storage; RS code; bio computing

MSC: 68U35

1. Introduction

Over the last two decades, rapid advancements in information technology have
triggered an unprecedented surge in data, creating a storage crisis. Scientific research
and social services generate large video datasets, with the proliferation of personalized
video creation and sharing on platforms like social networks contributing to this data
deluge. In the digital age, video content dominates, constituting 53.72% of global data
traffic. Predictions suggest that global data volume will reach 3 × 1021 bits by 2040 [1],
exceeding the capacity of existing silicon-based storage, which has a limited lifespan and is
unsuitable for long-term (~20 years) storage. Preserving valuable information for future
generations requires regular transfers to updated storage media. Hence, there is an urgent
need for alternative solutions to address the challenges posed by storing vast amounts of
data efficiently [2–4].

As a potential solution to the escalating data storage challenges, researchers have
turned to DNA (deoxyribonucleic acid), the carrier of biological and genetic information,
due to its advantages of significantly higher storage density (1 petabyte per gram of DNA),
an extended storage period of centuries, and notably lower maintenance costs [4,5]. Unlike
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traditional magnetic storage, which relies on binary encoding, DNA storage utilizes quater-
nary encoding, employing specific combinations of A, C, G, and T to encode computer files.
The DNA data storage system encompasses several processes [6–9], including binarization
(transformation of digital data into binary code), encoding (translation of binary code into
DNA code), DNA synthesis for data storage, DNA sequencing (to retrieve the nucleobase
code), and decoding for the restoration of the original digital data, as depicted in Figure 1.

The impetus for DNA storage research increased, particularly post-2012, when Har-
vard University’s Church group successfully stored a 650 KB book in DNA [10]. In 2013,
Goldman [11] introduced the rotation encoding model, utilizing ternary Huffman com-
pression coding to prevent homopolymer-induced nucleotide repeats in DNA sequences
while maintaining a 50% GC content. In 2015, Grass [12] pioneered the application of
Reed–Solomon (RS) error correction codes in DNA storage, introducing a ternary encod-
ing model based on Galois fields. In 2017, Erlich [13] presented the DNA fountain code,
incorporating Luby Transform for XOR operations on binary information with specific
random number seeds and selecting sequences meeting biochemical constraints. In 2022,
Ping [14] proposed the Yin-Yang dual encoding model, transforming two binary subse-
quences into one DNA subsequence based on the “Yin” and “Yang” rotation rules. These
innovative models enhance coding density, advancing DNA data storage technology and
its practical applications.
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Despite these advancements, numerous state-of-the-art encodings [11,12,15] faced
errors such as base deletions, mutations, etc., due to the limitations of DNA synthesis
and sequencing technologies. To ensure DNA storage reliability [8], the error correction
mechanism plays a crucial role, and researchers have developed various error correction
techniques to correct these errors and enhance the stored data’s accuracy and integrity.
For instance, Goldman et al. [11] used quadruple overlapping redundancy, which means
that each sequence generates three redundant sequences with 25% overlap. However,
this method has a storage density of only 0.33 bits/nt, and the synthesis cost is too high.
Bornholt et al. [15] utilized the method of heterodyne generation of a third sequence using
two consecutive binary sequences, which solved the sequence-loss error, but the method
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has extensive redundancy. Grass et al. [12] applied error correction techniques from the
traditional communication field to DNA storage, using a combination of internal and
external codes to improve the robustness of DNA storage; however, the method could not
balance the GC content of the sequences. Since then, various error correction codes, such
as RS codes [13,14,16–19], Hamming codes [20], LDPC codes [21,22], etc., have been used
to correct base substitution errors within DNA sequences. Among these, RS codes have
been applied widely. The error correction capability of these codes is positively correlated
with the redundancy level because they are error-corrected at the binary level. Therefore,
problems such as biochemical constraints [23] need to be considered when converting
these codes to quadrature. Typically, researchers perform the binary segmentation step by
adding RS codes before or after the segment, which are then converted together into DNA
sequences. Erlich’s code [13] can reproduce erroneous sequences with a storage density of
1.57 bits/nt; however, the decoding complexity is high and requires a lot of time for large
files. Press et al. [19] developed “HEDGES” to handle addition and deletion errors in DNA
synthesis and sequencing by using RS and convolutional codes for encoding and a tree
structure for decoding, but the encoding rate of this method is not sufficient. Therefore,
there is still a crucial demand for further improvements in error correction techniques to
balance storage density, encoding rate, and time efficiency.

Apart from this crucial scientific problem, this work also emphasizes the types of data
stored in DNA. As the source and importance of video data mentioned earlier, video is a
data-intensive media type containing many images and sound information. For videos such
as historical archives, documentaries, and important news reports, complete preservation
can leave a valuable historical and cultural heritage for future generations, and thus, it
requires long-term storage. However, traditional storage media usually require regular
maintenance and replacement, which consumes many resources. Although DNA storage
shows excellent potential, previous research has mainly focused on static data such as text
documents and images. To the best of our knowledge, none of the DNA encoding models
have efficiently stored the video data so far.

On the one hand, video contains a large amount of data, which requires efficient
coding strategies and robust error correction mechanisms to handle the large amount
of information, and the existing coding models are less time-efficient [13,14]. On the
other hand, video needs to ensure continuity. The video quality needs to be maintained
during storage and retrieval. The existing research encodes the video files in binary
segments [13,16,24]. Due to the continuity of the video data, the binary error in a small
segment may lead to catastrophic error propagation such that the video file is corrupted.
Therefore, developing a segmentation strategy that guarantees video continuity is crucial.

Overall, previous studies have reported many advanced coding methods; however,
when faced with large-volume data such as video, some coding models (Fountain [13]
and Yin-Yang [14]) require exponential filtering steps, and the time required for coding
is too long. In addition, it is critical to answer about how to add error correction codes
more efficiently. Although Grass et al. [12] combined RS code coefficients into the coding
process, which improved the efficiency of error correction to a certain extent, the method
cannot realize the regulation of GC content when the data volume is large, which triggered
more errors.

This study designs and tests a new coding method to deliver an effective solution for
Video Storage in DNA (VSD) by addressing the challenges of previous coding methods.
The proposed VSD method offers a novel video segmentation strategy that equates videos
at certain time intervals to address the problem of error propagation under binary data
segmentation. Additionally, VSD develops an innovative quadratic coding model based
on RS error-correcting codes to convert video files into hexadecimal codes and DNA
sequences, which significantly satisfies the biochemical constraints of DNA coding by
derived theorems and improves the computational runtime. Meanwhile, it also introduces
an efficient indexing mechanism for random video access. In the experiment, historically
significant video data (approximately 300 MB) were used for testing, with an overall
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encoding density of 1.75 bits/nt and a time efficiency improvement of over 30%, and it
performs better than previous works when the base substitution rate is 0.05%. Through
simulation sequencing and error correction, the original video is successfully decoded. By
extending the capabilities of DNA storage to encompass videos, the proposed VSD opens
up new possibilities for reliable video archival and storage applications. The data and
codes for this work are available at https://github.com/jork07/VSD (accessed on 12 March
2024). The significant contributions of this study are summarized as follows:

• A novel VSD method that relies on an innovative video segmentation strategy and a
quadratic coding model and uses efficient indexing to construct a video-based DNA
data storage system is proposed.

• The proposed encoding model based on the RS error-correcting code efficiently bal-
ances storage density, combinatorial bio-constraints, and time efficiency, reducing
overhead costs.

• The practicality of the proposed VSD method is evaluated by computer simulation,
which reports the significant performance over previous work.

The structure of the remaining paper is as follows: Section 2 elaborates on the literature
work on the overview of DNA storage and MPEG-4 format. Section 3 introduces the
proposed video segmentation strategy and DNA transcoding model, Section 4 delivers
experiments and results evaluations, and Section 5 concludes this study.

2. Literature Review
2.1. Error-Correcting DNA Codes

Error-correcting codes (ECCs) are crucial for DNA-based information storage due
to the high rate of errors that arise during DNA synthesis and sequencing. These errors
include substitutions of one base by another, as well as spurious insertions or deletions of
nucleotides in the DNA strand (indels).

Grass et al. [12] introduced RS codes from the information field into the DNA storage
system and designed a DNA data encoding method that includes inner and outer layers of
error correction codes to improve the processing ability for single base mutations and whole
sequence loss. This code can correct about 0.4% of sequences. Blawat et al. [16] proposed a
forward error correction mechanism based on RS code, which protects DNA storage data
blocks and block addresses by mapping binary to nucleotide sequences through modulation
strategies. They successfully stored a 22 MB compressed video. Erlich et al. [13] explored
the potential application of fountain coding in DNA storage by segmenting binary data
into multiple droplets and discarding droplets with high GC and homopolymer content.
They successfully converted 2.14 MB of data into 72,000 nt nucleotide chains stored in
DNA without error recovery. Bornholt et al. [15] proposed the “XOR” redundant encoding
scheme, which obtains a third payload by taking two payloads that are XOR each other. By
recovering any two of the three strands, the third strand can be restored, greatly reducing
error correction redundancy.

Press et al. [19] proposed the “HEDGES” error correction encoding algorithm, which
uses RS and convolutional codes for encoding and a tree structure for decoding. They
synthesized 5865 nucleotides with a length of 300 bp, then artificially introduced errors
into these DNA nucleotides and sequenced them on the Illumina platform. The decoding
results showed that HEDGES was able to handle a total of approximately 1.2% addition
and deletion errors at the expense of a certain coding density.

2.2. Potential Challenges in Prior Studies

In contrast to text and image data, video data possess a greater and more intricate
capacity. Previous approaches [12–14,16] frequently involved converting video data into
binary format, employing encoding techniques that mirrored solutions for other datasets.
However, such uniform approaches have proven to be problematic. The following provides
succinct descriptions of these methodologies:

https://github.com/jork07/VSD
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1. Blawat [16] transformed a compressed video of 22 MB into binary and then used
their defined “bit-base” rules to convert it into a DNA sequence. However, this kind
of storage is not practical for large-capacity video data. Firstly, the ability to play
a video relies on accurate metadata. However, errors such as base substitutions,
insertions, and deletions can occur during DNA data storage. If the video metadata
are misread or lost, it would directly result in the video being unplayable by a video
player. Therefore, it is necessary to provide special protection for metadata during the
DNA storage process.

2. Secondly, existing high-density encoding methods, such as Fountain [13] and Yin-
Yang [14], have slow processing speeds, especially when encoding large files, due to
the “Screening” step involved. Since video files typically have a large amount of data,
using these methods for video storage would lead to low time efficiency. Hence, there
is a need for a compromise method that balances coding density and time efficiency.

3. During the DNA storage process, the error rate has led researchers to introduce error
correction codes from the field of information transmission into the encoding process.
In this context, the work of Grass [12] is worth mentioning. They incorporated
Reed–Solomon error correction codes into the encoding and decoding algorithms.
They transformed the digital sequence into coefficients in the Galois field GF(47) and
assigned each coefficient to a triplet of bases. Finally, these triplets were concatenated
to form a DNA sequence. This method effectively avoids the occurrence of single-base
repeat sequences since it specifies that the last two nucleotides of each triplet cannot
be the same. This ensures that the repeated bases during concatenation do not exceed
three. It is worth noting that this method may not maintain a constant GC content in
certain cases. This could affect DNA data storage’s stability and read accuracy, for
instance, when encountering secondary structures or errors in the sequencing process.
Excessive errors may render the recovery of the original data impossible, even with
the addition of error correction codes. Therefore, exploring a suitable solution to
generate DNA sequences with a constant GC content is necessary.

Therefore, to ensure metadata integrity during the DNA storage process, it is essential
to implement specialized protection measures. Balancing coding density and time effi-
ciency is a critical compromise that must be sought, driving the exploration of optimal
methods. Specifically, investigating solutions for maintaining a consistent GC content
in DNA sequences is indispensable for the practical archival of video data within DNA
storage systems. These initiatives represent significant advancements in the development
of secure and efficient methodologies for data storage.

3. Proposed Methodology

In this research endeavor, we present an innovative methodology to address the
identified challenges in Section 2.2. Our approach aims to enhance the practical archival of
video data within DNA storage, ensuring metadata integrity, balancing coding density and
time efficiency, and satisfying the bio-coding constraints. The structured delineation of our
proposed methodology (depicted in Figure 2), Video Storage in DNA (VSD), unfolds across
three pivotal stages.

1. Dynamic Video Parsing: The dynamic video file is segmented into multiple indepen-
dent video segments; each video segment is parsed individually to separate the video
metadata from the media information,

2. DNA Quaternary Coding: Hexadecimalizing the data and using a quaternary coding
model based on RS codes to encode and decode, and satisfy the constraints with
derived theorems,

3. DNA Synthesis, Storage, and Sequencing: DNA sequences are synthesized using
existing techniques and preserved in a suitable environment, and the original sequence
is obtained using sequencing techniques.
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The comprehensive details are explicitly presented in the following subsections. It
must be noted our novelty and primary contribution lie within the initial two stages. The
third stage serves the purpose of providing a brief elaboration on end-to-end DNA data
storage systems.
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3.1. Dynamic Video Parsing

Most existing video data are compressed and stored based on MPEG-4 format. MPEG-
4 (Moving Pictures Expert Group 4) is a digital multimedia compression standard designed
to provide efficient methods for compressing, transmitting, and storing multimedia con-
tent. Compared to previous MPEG standards, MPEG-4 provides excellent compression
capabilities and offers diverse functionalities such as multi-view video, transparent video,
object recognition and coding, dynamic scene description, interactivity, and more. It makes
MPEG-4 widely used in various fields [25,26]. In order to store video data efficiently in
DNA, the VSD strategy dynamically parses videos, which mainly includes three steps:
video segmentation, video parsing, and hexadecimal conversion.

3.1.1. Video Segmentation

Video segmentation is a crucial process in handling large amounts of video data.
Traditionally, the video segmentation strategy divides videos into binary information
segments [24,27]. However, this study proposes a novel approach to video segmentation
by leveraging the organizational characteristics of MPEG-4.

Unlike traditional methods [24,27], the segmentation strategy employed in this study
divides the video into segments based on time. These segments are not binary information
segments but rather independently playable small segments akin to clips. By utilizing the
inherent structure of MPEG-4, the video is divided into smaller units that retain their playa-
bility individually, offering advantages in terms of storage and retrieval. This innovative
approach to video segmentation has several benefits: Firstly, it allows for more efficient
storage and retrieval of video content. Instead of dealing with a single large file, the video
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is divided into smaller segments, enabling faster access to specific parts of the video. Addi-
tionally, based on the organizational characteristics of MPEG-4, each segmented segment
has common information that can be stored only once during the quaternary transcoding
process. Each segment can reuse this information, improving storage density and storing
videos more efficiently.

Overall, the proposed video segmentation strategy based on MPEG-4 organizational
characteristics offers a novel and efficient approach to handling large video data. Dividing
the video into independently playable segments enhances the storage and retrieval of video
data in DNA.

3.1.2. Video Parsing

The MPEG-4 format uses a box-based structure where different types of data and
metadata are organized into a series of nested boxes or containers, as shown in the left half
(MP4 file) of Figure 3; an MPEG-4 file consists of four main boxes: file type (ftyp), movie
fragment (moof), movie (moov), media data (mdat), and free space (free). This structure
enables MPEG-4 to package and transmit various media content effectively [28,29].
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The FMP4 format (Fragmented MP4) is a video streaming format that extends the
MPEG-4 Part 12 standard [30]. In contrast to the traditional MP4 format, the FMP4 format
divides media files into several fragments. Each fragment constitutes a complete MP4
file containing media data, metadata, and index information, as illustrated in Figure 3a.
Specifically, the initialization segment includes fundamental video information such as
ftyp and moov, while subsequent multiple media segments encapsulate individual video
streams, encompassing moof (movie fragment) and mdat boxes. Drawing inspiration from
this format, our study proposes a novel strategy for parsing video data for DNA storage.
Our aim is to bolster the resilience of video data storage and enhance data access efficiency.

Specifically, after the segmentation in the previous stage, each small segment is parsed
into the form of the left half (MP4 file) of Figure 3. These segments all contain initialization
information for the original video, so some metadata remain consistent. Storing these
metadata (e.g., ftyp, mvhd (movie header), udat (user data), etc.) only once is sufficient to
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decode and access these small segments, even the original video. In order to increase the
coding density, all the small segments are divided into metadata and media data, as shown
in Figure 3b, which are converted into hexadecimal data to be applied to the subsequent
coding process.

3.1.3. Hexadecimal Conversion

Hexadecimal conversion is a common practice when working with MPEG-4 files, as it
provides an intuitive way to observe the structure and content of the video files. Repre-
senting MPEG-4 data in hexadecimal format allows easy identification of file headers, data
blocks, metadata, and other components. By examining the hexadecimal representation
of a file, researchers and developers can analyze its features, parse data structures, and
perform further processing and operations.

In the context of this study, we first perform hexadecimal conversion on the source
data of the MPEG-4 video. Let X be the source binary data of the MPEG-4 video. The hex-
adecimal representation H(X) is obtained by converting the binary data X to hexadecimal
as follows:

H(X) = Hex(X) (1)

This conversion transforms the binary data into a hexadecimal representation, making
it easier to identify specific elements. For example, let Bi denote the ith box identifiers
through hexadecimal representation. The hexadecimal identifier for each box is denoted
by I(Bi),

I(Bi) = HexId(Bi) (2)

By using hexadecimal identifiers, such as “66 74 79 70” for “ftyp”, we can locate
different boxes within each video segment. If Mi represents the metadata data and Di
represent the media data within the i − th segment, the separation can be represented as:

Mi, Di = Sep(Bi) (3)

Identifying these boxes through their hexadecimal representations can effectively
separate the metadata and media data within each segment. The metadata and media
data are separated and segmented into fixed lengths for subsequent DNA quaternary
transcoding. The segmented metadata and media data are denoted by {I, j} and {Ii, j},
respectively, where j represents the j-th segment within i-th segment.

{Mi, j}, {Di, j} = Seg(Mi, Di, L), (4)

where L is the fixed length for segmentation.

3.2. DNA Quaternary Coding

This study improves the mapping rules from digital data to bases based on Grass
et al.’s encoding and decoding method. It addresses the issue of the previously uncontrolled
GC content by achieving similar coding density. In the original encoding process, a 16-bit
binary bit sequence from every 2 bytes was converted into a numeric sequence in a base-47
system (473 > 216). Then, a simple mapping between the base-47 sequence and triplet
bases was used to transform the binary bit sequence into a DNA sequence. This study
first redesigned the mapping rules for triplet bases to maintain a constant GC content
in the base sequence as much as possible. Tables 1–3 illustrate the partitioning of the
original set of 48 triplets. Table 1 collects triplets with an equal count of A and T, while
Table 2 includes triplets with an equal count of G and C. Moreover, this study switched
to using Reed–Solomon (RS) error correction codes based on the Galois field GF(41) for
encoding [31]. The choice of GF(41) was motivated by two reasons. Firstly, 41 is the nearest
prime number to 40, which is the total number of elements in the AT and GC tables. This
allows for a cross-mapping between the AT and GC (Tables 1 and 2) to control the GC
content of the DNA sequence around 50%. Secondly, GF(41) satisfies 413 > 216, ensuring
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that two bytes can still be represented by three base-41 numbers while maintaining the
same coding density.

Table 1. Mapping of A and T nucleobases.

Index 0 1 2 3 4 5 6 7 8 9
Triplet ACA TCA AGA TGA CTA GTA AAC TAC ATC TTC
Index 10 11 12 13 14 15 16 17 18 19
Triplet AAG TAG ATG TTG CAT GAT ACT TCT ACT TGT

Table 2. Mapping of G and C nucleobases.

Index 0 1 2 3 4 5 6 7 8 9
Triplet CCA GCA CGA GGA CAC GAC AGC TGC CTC GTC
Index 10 11 12 13 14 15 16 17 18 19
Triplet CAG GAG ACG TCG CTG GTG CCT GCT CGT GGT

Table 3. Remaining triplet for DNA encoding.

Remain_AT_triplet ATA TTA AAT TAT
Remain_GC_triplet CGC GGC CCG GCG

The pseudo-code for the quaternary coding process is presented in Algorithm 1, which
has the following significant steps:

1. Step 1: The video data, divided in the previous stage, are converted into a hexadecimal
sequence data H. To control the length of the DNA sequence, these sequence data are
divided into several equally sized segments of hexadecimal sequences hi .

2. Step 2: For each hi , starting from the beginning, every 4 hexadecimal digits are
converted into 3 base-41 numbers by performing a modulo operation, resulting in a
base-41 sequence di.

3. Step 3: k RS error correction blocks are added to the base-41 sequence di. The error-
correcting capability of the sequence is determined by k, which means the sequence
can tolerate k/2 errors.

4. Step 4: Calculate the median of the base-41 sequence di and use that median as the
offset. Define boolean indicator variables F1 and F2. Set up the triplet EO, Ee, ZO, and
Ze. Define the default mapping Table 4.

5. Step 5: For each element n in the base-41 sequence di, if n == 40, perform alternating
mapping using an indicator variable F1 to add additional base triplet EO or Ee to the
result sequence si’s end, we have designed an integrated Algorithm 2, which can be
stated as follows:

• When the o f f set is 0, if n equals 0, perform alternating mapping using the in-
dicator variable F2 to add additional base triplet ZO or Ze to the end of si; if n
belongs to the range (0, 20), add the n-th element from table AT to the end of si.
Otherwise, add the (n − 20)th element from table GC to the end of si.

• When the o f f set is less than 20, if n belongs to the range [0, o f f set), add the nth
element from table AT to the end of si. If n belongs to the range [o f f set + 20, 39],
add the (n − 20)th element from table AT to the end of si. Otherwise, add the
(n − o f f set)th element from table GC to the end of si.

• When the o f f set is greater than 20, if n belongs to the range [o f f set, 39], add
the (n − 20)th element from table GC to the end of si. If n belongs to the range
[0, o f f set − 20), add the n-th element from table GC to the end of si. Otherwise,
add the (o f f set − n − 1)th element from table AT to the end of si.

• When the o f f set is 20, if n belongs to the range [0, 20), add the n-th element
from table AT to the end of si. Otherwise, add the (n − 20)th element from table
GC to the end of si.
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6. Step 6: Process the offset by adding the offset-th element from the default mapping
table D to the end of the result sequence si. Output the resulting sequence si

Algorithm 1. DNA encoding method.

Input: Video hexadecimal data H(h0, h1, h2, . . . , hn), RS error correction blocks k;
Output: DNA sequence set of one video S(s0, s1, s2, . . . , sn).
1 for hi in H do
2 for each 4 hexadecimal numbers in hi do
3 convert 4 hexadecimal numbers to a decimal number.
4 perform 3 remainder operations on n over 41 to obtain 3 residues a, b, c.
5 add 3 residues a, b, c to the decimal list di in order.
6 end for
7 add k RS error correction blocks for di.
8 o f f set = median(di).
9 si = Mapping_triplet(di , o f f set).
10 S.append(si)
11 end for
12 return S

Algorithm 2. Mapping triplet algorithm.

Input: Decimal list d, o f f set, odd triplet table AT, even triplet table GC, default triplet table D,
odd extra triplet EO, even extra triplet Ee, odd zero triplet ZO, even zero triplet Ze, extra flag
F1 = True, zero flag F2 = True.
Output: DNA sequence set s.
1 for each number n in d do
2 if n == 40 then
3 if F1 == True then si.append(EO), F1 = False
4 else si.append(Ee), F1 = True
5 else
6 if o f f set == 0 then
7 if n == 0 then
8 if F2 == True then si.append(ZO), F2 = False
9 else si.append(Ze), F2 = True
10 else if n < 20 then si.append(AT[n])
11 else si.append(GC[n − 20])
12 else if o f f set < 20 then
13 if n < o f f set && n ≥ 0 then si.append(AT[n])
14 else if n ≥ 20 + o f f set then si.append(AT[n − 20])
15 else si.append(GC[n − o f f set])
16 else if o f f set > 20 then
17 if n ≥ o f f set then si.append(GC[n − 20])
18 else if n < o f f set − 20 then si.append(GC[n])
19 else si.append(AT[o f f set − n − 1])
20 else
21 if n < 20 then si.append(AT[n])
22 else si.append(GC[n − 20])
23 end for
24 s.append(si)
25 return s.

The computational complexity of the proposed VSD strategy is O(n*m), where n is
the number of hexadecimal data sequences H, and m is the number of 4-digit hexadecimal
numbers in each sequence.
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Table 4. Default triplet table.

Index 0 1 2 3 4 5 6 7 8 9
Triplet ACA CCA TCA GCA AGA CGA TGA GGA CTA CAC
Index 10 11 12 13 14 15 16 17 18 19
Triplet GTA GAC AAC AGC TAC TGC ATC CTC TTC GTC
Index 20 21 22 23 24 25 26 27 28 29
Triplet AAG CAG TAG GAG ATG ACG TTG TCG CAT CTG
Index 30 31 32 33 34 35 36 37 38 39
Triplet GAT GTG ACT CCT TCT GCT AGT CGT TGT GGT

3.2.1. Integration of RS Codes

Our study’s proposed DNA quaternary coding uses RS codes to add redundancy and
facilitate error correction. The use of RS codes based on the Galois field GF(41) allows
for efficient mapping between the digital data and the four nucleotides of DNA while
maintaining a balanced GC content. Our method encodes the data into hexadecimal form,
then decimal, and finally into residues of 41 to comply with the RS code over GF(41). The
core idea of RS codes is to encode data into polynomials over a finite field (also known as a
Galois field). The key parameters of an RS code are denoted as RS(n, k) with n symbols,
meaning that the encoder takes k data symbols and adds n − k parity symbols to make an
n-symbol codeword. Each symbol can be seen as a base-41 value, and therefore, the RS
code operates over GF(41). A k-symbol message is represented as a polynomial M(x) of
degree k − 1 [32]:

M(x) = mk−1xk−1 + mk−2xk−2 + · · ·+ m1x + m0 (5)

where each coefficient mi represents a symbol from the field GF(41).
The generator polynomial G(x) is used to encode the message and is of degree n − k:

G(x) =
(

x − α1
)(

x − α2
)
· · ·

(
x − αn−k

)
(6)

where α1, α2, . . . , αn−k are called the roots of the generator polynomial and are chosen from
the field GF(41).

The encoding process involves creating a generator polynomial, which is multiplied
by x raised to the power of n − k (to make space for the parity symbols) and then divided
by the generator polynomial G(x).

C(x) =
(

M(x) ∗ xn−k
)

mod G(x) (7)

where the resulting polynomial C(x) represents the encoded message.
When errors occur during transmission, the received polynomial R(x) differs from the

transmitted polynomial C(x). The decoder uses various methods, such as the Berlekamp–Massey
algorithm [33] or the Euclidean algorithm [34], to correct the error locations. The decoder
calculates the syndrome polynomial S(x) by evaluating R(x) at the roots of the genera-
tor polynomial:

S(x) = R
(

α1
)
+ R

(
α2
)

x + · · ·+ R
(

αn−k
)

xn−k (8)

By finding the roots of the syndrome polynomial, the decoder identifies the error
locations and corrects the received polynomial R(x) accordingly. Finally, the errors are
corrected, and the original message is recovered.

3.2.2. DNA Coding Constraints

Furthermore, the generated DNA sequences undergo validation based on biological
coding constraints, specifically focusing on GC and homopolymer constraints in our study.
We applied newly derived theoretical models from our previous work [23], emphasizing
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the limitations of GC content ω within the range of 40–60% and homopolymer ≤ 4 based
on benchmark studies [35–38]. Analogously, GC can be represented as AGC

4 (n, d, ω)
for the four nucleobases, ensuring that all DNA segments adhere to the desired code ω
and constraints. The ensuing lower bounds constraints for constructing the DNA library
are articulated in Theorem 1 [23,39], incorporating variables for sequence length n and
Hamming distance d. The concise proof is provided in this work due to these variables.

Theorem 1. For DNA sequence having the number of segments n > 0, with constraint 0 ≤ d ≤ n
and 0 ≤ ω ≤ n for the bound,

AGC
4 (n, d, 0) = A2(n, d) (9)

AGC
4 (n, d, ω) = AGC

4 (n, d, n − ω) (10)

AGC
4 (n, 1, ω) =


1
2

((
n
ω

)
2n −

(
n/2
ω/2

)
2n/2

)
, i f n is even and ω is even

1
2

(
n
ω

)
2n , i f n is odd or ω is odd

(11)

Proof. Equation (9) signifies an equivalence between DNA codes AGC
4 with zero GC content

and binary codes A2. It illustrates that transforming binary codes by replacing 0s with As
and 1s with Ts maintains Hamming distance and thus establishes a bijection between these
two sets. This transformation establishes a one-to-one correspondence, demonstrating the
interchangeability of binary and DNA codes with specific GC content, which is crucial in
DNA storage. In Equation (10), the interchange operation is demonstrated to uphold the
equality between the sets with different GC-contents (n and n − ω). Swapping comple-
mentary nucleobases in a DNA sequence preserves the constant GC content, illustrating
symmetry within the set of DNA codes. Equation (11) establishes a formula for the count
of DNA codes AGC

4 with specific GC-content ω and Hamming distance of 1 (n − 1). The
proof considers two scenarios:

1. When n and ω are both even: in this case, the Equation calculates the count of words
with GC-content ω that are their own reverse complements.

2. When either n and ω is odd: the formula simplifies to 1
2

(
n
ω

)
2n, signifying that no

DNA codes possess the property of being their own reverse complement.

It succinctly states that when both n and ω are even, there are
(

n/2
ω/2

)
2n/2 words with

GC content that are their own reverse complements; otherwise, there are none. □

Eventually, we demonstrated an example of quaternary transcoding, in which we
define EO = TAT, Ee = CGC, ZO = ATA, Ze = GCG; Figure 4 is illustrated. The original
video is segmented into a fixed-length sequence after hexadecimal conversion, using
Equation (4). In this sequence, four hexadecimal bits are used as a unit, and each unit is
first converted to a decimal number. Then, the remainder of 41 is calculated one by one
to obtain three residues. For example, 60223/41 = 1468 (35), 1468/41 = 35 (33), 35/41 = 0
(35), where the remainder is enclosed in parentheses. By analogy, when all units are
converted into three residues, RS codes are added later to obtain a base-41 sequence. Next,
calculate the median of the sequence as the offset. In the above example, the median is
30 (round down). According to Algorithm 2, number 35 corresponds to line 23 and is
therefore converted to a triplet (GTG) with GC table index 15; number 33 conforms to
line 25 and is converted to a triplet (CTA) with an AT table index of 4; number 3 conforms
to line 24 and is converted to a triplet (GGA) with GC table index 3; number 40 conforms
to line 7 and is converted to a triplet EO(TAT). Finally, the triad was integrated into a
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sequence called “GTGTCGGTGCTAGGAGAGCGTCGCTTGATCTTCTCAGAT”, which
showed homopolymer < 3, and a GC content of 54%.
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3.3. DNA Synthesis, Storage and Sequencing

Our primary focus is on computer simulations and computational biology, and it is
important to clarify that our work does not directly involve the experimental processes
of DNA synthesis, storage, and sequencing. Nevertheless, we present a concise overview
of these procedures for the benefit of early researchers and readers seeking a general
understanding of DNA manipulation techniques.

In the synthesis phase, oligo pools are synthesized by companies to provide DNA
gel for subsequent sequencing. When considering storage options, DNA fragments in-
tended for in vivo storage undergo careful segmentation into subfragments and further
division into blocks. These blocks consist of synthesized 80-nt oligos and are assembled
using polymerase cycling assembly. Subsequently, they are cloned into vectors for Sanger
sequencing, validating their sequence accuracy. The sequencing-verified blocks are then
further assembled into subfragments using overlap extension PCR. Finally, the complete
full-length DNA fragment, approximately 10 MB in size, is obtained by introducing the
subfragments into yeast through homologous recombination, enabling in vivo storage.

However, in addition to in vivo storage, an alternative approach is in vitro storage.
For in vitro storage, DNA fragments are not transferred into living organisms but instead
preserved in laboratory conditions. This method offers advantages such as ease of manipu-
lation and reduced reliance on living systems. In this context, the storage process entails
carefully preserving the DNA fragments in a controlled environment, typically using tech-
niques like cryopreservation or freeze-drying. These methods ensure the long-term stability
and integrity of the DNA molecules, allowing for extended storage periods without the
need for living organisms.

The choice between in vivo and in vitro storage depends on various factors. In vivo
storage is preferred when DNA fragments need to be maintained and propagated within
a living organism. It allows researchers to utilize the host organism’s cellular machinery,
making it useful for studying complex genetic interactions. In contrast, in vitro storage
is selected when the primary goal is preserving DNA fragments themselves without
immediate utilization in a living system. It offers long-term stability and easy accessibility,
enabling straightforward manipulation such as retrieval and amplification. In vitro storage
is more suitable for archiving. These methodologies are crucial in genetic research, synthetic
biology, and biotechnological applications.
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4. Experiments and Results Validation

All experiments were conducted under Windows 10 × 64, Intel Core i7 3.41 GHz,
RAM 16 GB, and Python 3.8.13v language. To begin with, the data used in the experiments
were obtained from the Internet, and the segmentation and integration of video data
were realized using ffmpeg 6.1 (a cross-platform audio/video processing framework) [40].
Additionally, the data processing involved utilizing two Python packages, codecs (https:
//docs.python.org/3/library/codecs.html, accessed on 1 March 2024), and binascii (https:
//docs.python.org/3/library/binascii.html, accessed on 1 March 2024), which played a
crucial role in data processing tasks. For RS code generation and error correction, we use
the galois (https://galois.readthedocs.io/en/v0.3.6/, accessed on 1 October 2023) package.

In order to evaluate the performance of the proposed VSD method, we first encoded a
series of digital files and analyzed the biological constraints on the encoding results. We
tested the encoding on video files and other types of files and compared them compre-
hensively with previous studies. (For other types of files, we apply VSD method without
the video segmentation and parsing steps). We have also compared the efficiency of error
correction and encoding time efficiency.

4.1. Biological Constraint Validation

Most errors that occur during DNA storage are caused by sequences that do not
conform to biological constraints. Researchers are most concerned with homopolymer
and GC content among the many biological constraints. For this reason, we performed
extensive tests using proposed quaternary coding with computational theorems to satisfy
the constraints.

For homopolymers, we encoded several digital files, totaling 177,360 sequences of
length 100 nt, and counted the number of repetitions of homopolymers of three different
lengths; as shown in Figure 5, there is no homopolymer of length > 3 in the resultant se-
quences encoded by the VSD method. In addition, the number of times that homopolymers
of length 2 or 3 occur in the four bases does not differ much. The results show that the VSD
method can avoid the generation of longer homopolymers.
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VSD method’s effective base triplet mapping, which ensures a more balanced distribution
of G and C nucleotides throughout the sequences. By avoiding longer homopolymers and
achieving a more balanced GC content, the VSD method can reduce non-specific hybridiza-
tion during DNA sequence synthesis, thereby improving the robustness of DNA storage.
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4.2. Encoding Efficiency Validation

The evaluation of the computer simulations (Table 5) reveals insightful findings re-
garding the proposed VSD method for video data storage. Notably, the density of DNA
sequences, a crucial metric for assessing storage efficiency, exhibits varying trends across
different file types and sizes.

In our test video file, the maximum duration of a single video is “Macao1999”, which
is 12 min and 18 s. The total duration of all videos is 25 min and 51 s. To our knowledge,
there has been no research on encoding videos of this duration. The highest density is
observed in the “FoundingCeremony” MP4 file at 1.79 bits/nt, while the lowest density is
recorded in the “Les Miserables” TXT file at 1.73 bits/nt. The average density across all
files is consistently competitive, showing the robustness of the VSD method. Intriguingly,
the results illustrate that density tends to increase with larger file sizes, emphasizing the
scalability of the proposed approach. The observed fluctuations in density among different
file types underscore the nuanced impact of file format on storage efficiency. The VSD
method demonstrates efficacy in achieving favorable density levels, coupled with reduced
computational time, affirming its potential as a promising solution for video data storage.
This is particularly noteworthy given the method’s unique features, including the novel
video segmentation strategy, quadratic coding model, and efficient indexing mechanism,
all contributing to improved storage density and computational complexity.
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Table 5. Comparative analysis of VSD encoding efficiency across multiple parameters after video
segmentation.

Data File Type Size (MB) Sequence Length Density GC Time (s)

1 FoundingCeremony MP4 3.97 152109 123 1.79 49 14.334
2 BandungConference MP4 9.68 372998 123 1.77 51 35.412
3 Macao1999 MP4 36.8 1402112 123 1.79 50 135.155
4 HongKong1997 MP4 79.9 3061339 123 1.78 50 298.812
5 Sample_12x720 FLV 4.71 183752 123 1.75 49 14.226
6 Ocean with audio MKV 16.5 646835 123 1.74 51 51.275
7 Surfing with audio AVI 25.4 989928 123 1.75 50 65.422
8 Les miserables TXT 1.70 67217 123 1.73 50 5.978
9 The Beatles MP3 5.36 210192 123 1.74 52 15.652
10 Mona Lisa JPG 1.41 55383 123 1.74 49 1.953

Furthermore, a 3D representation (Figure 7) offers valuable insights into the intricate
relationships between file size, internal complexity, and embedded information across
diverse media formats. The graph reveals several intriguing relationships. We observe
a general trend of size increasing with density. This suggests that denser files, packing
more information per unit space, tend to be larger in size. However, deviations from this
trend are also evident. For instance, according to the data in Table 5, “Mona Lisa” (.JPG)
is positioned at the far left on the “Size” axis. Despite having a high density, it occupies
minimal space due to its inherent compression efficiency. Interestingly, the sequence
values appear unrelated to either size or density. They act as independent identifiers for
each file type, potentially encoding specific media formats or internal structures. Further
investigation would be needed to uncover the nature and role of these sequence values.
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4.3. Error Correction Performance

The realm of DNA data storage faces inherent challenges due to base mutations,
predominantly arising during DNA synthesis and sequencing. Factors such as the con-
centration or temperature of base addition reagents, the quality of DNA templates, and
the sequencing instrument’s light source intensity or detection sensitivity, significantly
influence the incidence of base mutations. These mutations, particularly base substitutions,
can lead to data corruption, posing a substantial obstacle in accurate data decoding. In
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our VSD method, leveraging RS error correction codes, emerges as a pioneering solution.
Figure 8 illustrates the efficiency of VSD in comparison to other benchmark studies like Er-
lich [13], Grass [12], and Tong [41]. The chart distinctly shows VSD’s superior performance
in maintaining high successful decoded rates, even at elevated base substitution rates. For
instance, at a 0.05% error rate, VSD demonstrates an impressive ability to correct 30% of
errors, a feat not mirrored by its counterparts.
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The VSD method’s success in DNA data storage is due to its unique blend of video
segmentation and encoding, enhanced by robust RS coding. This combination improves
error correction, particularly for substitution errors, and strengthens data integrity and
reliability. As shown in Figure 8, VSD demonstrates remarkable error resilience and
efficiency, establishing a new standard in the field and addressing key challenges of capacity
and accuracy.

4.4. Large-Scale Compatibility

The VSD robustness is assessed with large-scale public video datasets (https://github.
com/VSD/video_data, accessed on 12 March 2024). The experiments are conducted in
a high-performance environment compressed with Ubuntu 22.04 system, AMD EPYC
7763@3.53Ghz CPU, 1024 GB memory. Figure 9 is a compelling visual affirmation of the
VSD method’s proficiency, particularly in handling and encoding large-scale video datasets
efficiently. The proportional relationship between video file size and processing time,
depicted by the ascending bars, evidences the VSD’s adept handling of increased data
volumes without significant time penalties. Notably, the density trend, illustrated by a
brown line and scaled on a secondary y-axis, indicates a consistent density increase with
video file sizes. This suggests the VSD method’s capability to enhance encoding quality,
possibly due to higher video resolutions and bitrates, without sacrificing biochemical
compatibility or efficiency. These observations underscore the VSD’s innovative coding
model and indexing mechanisms’ success, which notably outstrips prior models in both
time efficiency and storage density. The graph thus solidifies the VSD method’s potential
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for revolutionizing DNA-based video archival systems, aligning with the study’s aim to
establish a fast, reliable, and scalable video data storage solution.
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4.5. Computational Time

In addition to the aforementioned analysis, we compared the encoding efficiency of
the proposed encoding strategy. This evaluation aimed to assess how efficiently the VSD
method performs compared to previous research work. The results of this comparison are
presented in Figure 10.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 10. Comparative trend encoding computation time of proposed VSD method with state-of-
the-art methods [10–12,16,42]. 

Figure 10 clearly illustrates the encoding time for the proposed VSD method and the 
encoding methods employed in previous research studies. Upon examining the graph, it 
becomes evident that the VSD method offers a substantial improvement in terms of en-
coding efficiency. The encoding time required by the VSD method is significantly lower 
when compared to the encoding times reported in previous research efforts. For example, 
Goldman’s model requires 1601 s/min to encode a 100 MB file, while VSD accomplished 
this task within 373 s/min. 

The observed enhancement in encoding efficiency achieved by the VSD method is 
significant. It implies that the proposed approach outperforms existing encoding tech-
niques [10–12,16] and streamlines the overall encoding process.  

4.6. Ablation Studies 
The comparison between the proposed VSD method and existing state-of-the-art 

methods [10–14,16] reveals notable advantages of our approach (Table 6). It should be 
noted that the experimental data of each method in the table are based on the video files 
given in Table 5 (numbered 1–7). In terms of GC content ratio, the VSD method consist-
ently demonstrates a superior balance, ensuring optimal biochemical compatibility. The 
innovative quadratic coding model, leveraging RS error-correcting codes, stands out for 
its effectiveness in converting video files into DNA sequences with enhanced error-cor-
rection capabilities. This unique approach not only meets biochemical constraints but also 
addresses the complexities of computational processing. Furthermore, the VSD method 
introduces an efficient indexing mechanism for random video access, adding a layer of 
versatility to the storage system. Through extensive simulations and error correction pro-
cedures, the VSD method consistently outperforms existing methods, showing its robust-
ness, efficiency, and success in accurately decoding the original video content. 

Table 6. Comparative analysis of key factors in DNA data storage, highlighting the effectiveness of 
the proposed VSD method with state-of-the-art ablation studies. 

Author Church [10] Goldman [11] Grass [12] Blawat [16] Erlich [13] Ping [14] Li [42] VSD 
Year-Refs. 2012 2013 2015 2016 2017 2018 2021 2023 

GC content(%) 2.5–100 22.5–82.5 12.5–100 27–69 40–60 40–60 34–66 40–60 
Homopolymer ≤3 ≤3 ≤3 ≤3 ≤4 ≤4 ≤4 ≤3 
Random access No No No No No No No Yes 
Data size(MB) 0.65 0.63 0.08 22 2.11 0.24 20 177 

Error Correction Repetition Repetition RS Forward EC Fountain RS Repetition RS 
Density * 0.83 0.33 1.16 1.08 1.57 1.75 1.56 1.75 
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the-art methods [10–12,16,42].

Figure 10 clearly illustrates the encoding time for the proposed VSD method and the
encoding methods employed in previous research studies. Upon examining the graph,
it becomes evident that the VSD method offers a substantial improvement in terms of
encoding efficiency. The encoding time required by the VSD method is significantly lower
when compared to the encoding times reported in previous research efforts. For example,
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Goldman’s model requires 1601 s/min to encode a 100 MB file, while VSD accomplished
this task within 373 s/min.

The observed enhancement in encoding efficiency achieved by the VSD method is
significant. It implies that the proposed approach outperforms existing encoding tech-
niques [10–12,16] and streamlines the overall encoding process.

4.6. Ablation Studies

The comparison between the proposed VSD method and existing state-of-the-art
methods [10–14,16] reveals notable advantages of our approach (Table 6). It should be
noted that the experimental data of each method in the table are based on the video
files given in Table 5 (numbered 1–7). In terms of GC content ratio, the VSD method
consistently demonstrates a superior balance, ensuring optimal biochemical compatibility.
The innovative quadratic coding model, leveraging RS error-correcting codes, stands out
for its effectiveness in converting video files into DNA sequences with enhanced error-
correction capabilities. This unique approach not only meets biochemical constraints but
also addresses the complexities of computational processing. Furthermore, the VSD method
introduces an efficient indexing mechanism for random video access, adding a layer of
versatility to the storage system. Through extensive simulations and error correction
procedures, the VSD method consistently outperforms existing methods, showing its
robustness, efficiency, and success in accurately decoding the original video content.

Table 6. Comparative analysis of key factors in DNA data storage, highlighting the effectiveness of
the proposed VSD method with state-of-the-art ablation studies.

Author Church [10] Goldman [11] Grass [12] Blawat [16] Erlich [13] Ping [14] Li [42] VSD
Year-Refs. 2012 2013 2015 2016 2017 2018 2021 2023

GC content(%) 2.5–100 22.5–82.5 12.5–100 27–69 40–60 40–60 34–66 40–60
Homopolymer ≤3 ≤3 ≤3 ≤3 ≤4 ≤4 ≤4 ≤3
Random access No No No No No No No Yes
Data size (MB) 0.65 0.63 0.08 22 2.11 0.24 20 177

Error Correction Repetition Repetition RS Forward EC Fountain RS Repetition RS
Density * 0.83 0.33 1.16 1.08 1.57 1.75 1.56 1.75

* bits/nucleotides.

5. Conclusions

This study introduces the video storage in DNA (VSD) method, a pioneering solution
for efficient and robust storage of large-scale video data. The innovative combination of
video segmentation and Reed–Solomon error correction in the VSD method addresses
the limitations of existing approaches, showing commendable encoding efficiency and
a 30% improvement in time efficiency, as well as better successful decoded rates of base
substitutions compared to previous works. The proposed quadratic coding model effi-
ciently balances storage density and bio-constraints (GC ratio ~50% and homopolymer),
marking a significant stride in reliable DNA storage. This work opens avenues for reli-
able video archival, with promising implications for information storage. In future work,
adaptive coding for the VSD method and dynamically adjusting strategies based on video
content promise enhanced versatility. Optimization for diverse error types will maximize
VSD potential, solidifying its role as a premier DNA-based video storage solution. Fur-
ther analysis, considering coding constraints like RC constraints and data redundancy,
aims for a comprehensive understanding of information storage and encoding in varied
digital entities.
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