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Abstract: For the generalized Sturm–Liouville problem (GSLP), a new formulation is undertaken
to reduce the number of unknowns from two to one in the target equation for the determination
of eigenvalue. The eigenparameter-dependent shape functions are derived for using in a variable
transformation, such that the GSLP becomes an initial value problem for a new variable. For the
uniqueness of eigenfunction an extra condition is imposed, which renders the right-end value of the
new variable available; a derived implicit nonlinear equation is solved by an iterative method without
using the differential; we can achieve highly precise eigenvalues. For the nonlocal Sturm–Liouville
problem (NSLP), we consider two types of integral boundary conditions on the right end. For the
first type of NSLP we can prove sufficient conditions for the positiveness of the eigenvalue. Negative
eigenvalues and multiple solutions may exist for the second type of NSLP. We propose a boundary
shape function method, a two-dimensional fixed-quasi-Newton method and a combination of them
to solve the NSLP with fast convergence and high accuracy. From the aspect of numerical analysis
the initial value problem of ordinary differential equations and scalar nonlinear equations are more
easily treated than the original GSLP and NSLP, which is the main novelty of the paper to provide the
mathematically equivalent and simpler mediums to determine the eigenvalues and eigenfunctions.

Keywords: generalized Sturm–Liouville problem; λ-dependent boundary conditions; boundary
shape functions; nonlocal Sturm–Liouville problem; fixed-quasi-Newton method
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1. Introduction

The Sturm–Liouville problems and their generalizations are important issues in com-
putational mathematics. Let us consider a generalized Sturm–Liouville problem (GSLP):

w′′(x) + q(x, λ)w(x) = 0, 0 < x < 1, (1)

Lλ(w) := a1(λ)w(0) + b1(λ)w′(0) = 0, (2)

Rλ(w) := a2(λ)w(1) + b2(λ)w′(1) = 0. (3)

We seek λ and w(x) by giving q(x, λ), a1(λ), b1(λ), a2(λ) and b2(λ), where [a2
1(λ) +

b2
1(λ)][a

2
2(λ) + b2

2(λ)] > 0. Lλ(w) and Rλ(w) are, respectively, the left and right linear
boundary operators, depending on λ.

When q(x, λ) = λq1(x)+ q2(x) and constant a1, b1, a2 and b2 are given in Equations (1)–(3),
we recover to the Sturm–Liouville problem (SLP). It is known that solving the GSLP is more
difficult than solving the SLP. Therefore, it is important that for the GSLP one can develop
efficient methods [1–9].
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As a special case of Equations (1)–(3), Aliyev and Kerimov [1] studied the following
spectral problem:

w′′(x) + [λ − q(x)]w(x) = 0, 0 < x < 1, (4)

w′(0) sin β = w(0) cos β, 0 ≤ β < π, (5)

w′(1) = (aλ2 + bλ + c)w(1), (6)

where a ̸= 0, b, c and β are real constants. In terms of a target function

f (λ) = w′(1; λ)− (aλ2 + bλ + c)w(1; λ), (7)

and root functions system, the authors proved that for the basisness in L2, the part of
the root space is quadratically close to systems of sines and cosines. In general, the tar-
get function is different from the characteristic function, which is usually not attainable
in the closed form. The above work was extended in [10] to a boundary condition lin-
early dependent on the eigenparameter. In this paper, we also set the target equation
f (λ) = a2(λ)w(1; λ) + b2(λ)w′(1; λ) = 0 as a mathematical tool to determine the eigenvalues.
However, we emphasize the numerical aspect of the spectral problem of Equations (1)–(3),
which is not addressed in [1].

Currently, the Sturm–Liouville problems with eigenparameter-dependent boundary
conditions and transmission conditions are also important issues in many studies [11,12].
Recently, many engineering issues and mathematical schemes have been presented resolv-
ing the GSLPs, e.g., an analytical method to acquire the sharp estimates for the lowest
positive periodic eigenvalue and all Dirichlet eigenvalues of a GSLP [13]; a class of gen-
eralized discontinuous GSLPs with boundary conditions rationally dependent on the
eigenparameter was solved by using operator theoretic formulation under the new inner
product [14]; the GSLP had infinite eigenvalues and corresponding eigenfunctions existed
such that the sequence of eigenvalues was increasing as shown in [15]; a thorough formula-
tion of the weighted residual collocation method was based on the Bernstein polynomials
for a class of Sturm–Liouville boundary value problems [16]; the infinitely dimensional
minimization problem of the lowest positive Neumann eigenvalue for the SLP [17], and an
optimal design of a structure was described by a GSLP with a spectral parameter in the
boundary conditions [18].

The integral type nonlocal boundary conditions (BCs) are an area of the fast-developing
differential equations theory, which may rise up when the solution on the boundary is
connected with the values inside the domain. There are some works on the forced Duffing
equation with integral boundary conditions [19–22], which are effective methods for solving
the boundary value problem (BVP) with linear integral BCs [22–24].

As defined in [25], the boundary shape function (BSF) automatically satisfies the BCs,
which includes the solution of BVP as a special member since the solution must exactly
satisfy the specified BCs. The boundary shape function method (BSFM) has been adopted
to solve some BVPs [25] with conventional local BCs. Recently, Liu [26] provided a unified
BSFM to resolve the eigenvalue problems of SLP, GSLP and periodic SLP. However, the
method based on the BSF is not yet developed for solving the NSLP endowed with nonlocal
BCs. The SLP with nonlocal BCs has been investigated in [27–31], and has been surveyed
in [32]. Those papers were mainly focused on theoretical analyses, and the numerical
algorithm to solve the NSLP is not addressed.

Sequentially, we construct two λ-dependent shape functions and a variable transfor-
mation for the GSLP in Section 2. In Section 3, an initial value problem for a new variable
with the aid of the normalization technique is derived. To match the right-end BC an
implicit nonlinear equation is derived to obtain the eigenvalues by an iterative scheme.
Five testing examples are revealed in Section 4. In Section 5, we discuss the first type NSLP
to prove λ > 0, and develop the boundary shape function method (BSFM) for a new vari-
able to iteratively solve the eigenvalue, wherein two examples are given. In Section 6, the
second type of NSLP is studied and solved iteratively by the BSFM for a new variable. Two
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examples are given to display the multiple solutions. To obtain the eigenvalue precisely, we
develop a two-dimensional fixed-quasi-Newton method (FQNM) in Section 7 for solving
the first type NSLP in the original variable, and the second type NSLP in the new variable.
The conclusions are drawn in Section 8.

2. Boundary Shape Function

We explore a novel method in [33] for solving a nonlinear equation, which is combined
to the boundary shape function method [25] to solve Equations (1)–(3). For this purpose
we need to develop a new mathematical method for transforming Equations (1)–(3) to an
initial value problem with a new idea of the eigenparameter-dependent boundary shape
function.

Let s1(x, λ) and s2(x, λ) be shape functions of x and λ:

Lλ(s1) = a1(λ)s1(0, λ) + b1(λ)s′1(0, λ) = 1, Rλ(s1) = a2(λ)s1(1, λ) + b2(λ)s′1(1, λ) = 0, (8)

Lλ(s2) = a1(λ)s2(0, λ) + b1(λ)s′2(0, λ) = 0, Rλ(s2) = a2(λ)s2(1, λ) + b2(λ)s′2(1, λ) = 1. (9)

If a1(λ)[a2(λ) + b2(λ)]− a2(λ)b1(λ) ̸= 0, we can derive

s1(x, λ) =
a2(λ) + b2(λ)− a2(λ)x

a1(λ)[a2(λ) + b2(λ)]− a2(λ)b1(λ)
, s2(x, λ) =

a1(λ)x − b1(λ)

a1(λ)[a2(λ) + b2(λ)]− a2(λ)b1(λ)
. (10)

Theorem 1. For any v(x) ∈ C2[0, 1], if s1(x, λ) and s2(x, λ) satisfy Equations (8) and (9), then
the function w(x), given by

w(x) = v(x)− T(x, λ), (11)

automatically satisfies the boundary conditions (2) and (3), where T(x, λ) is given by

T(x, λ) := [v(0)a1(λ) + v′(0)b1(λ)]s1(x, λ) + s2(x, λ)[a2(λ)v(1) + b2(λ)v′(1)]. (12)

Proof. Applying Lλ to Equation (11), and using the first ones in Equations (8) and (9), we
have

Lλ(w) = Lλ(v)−Lλ(s1)[v(0)a1(λ) + v′(0)b1(λ)]−Lλ(s2)[a2(λ)v(1) + b2(λ)v′(1)]

= a1(λ)v(0) + b1(λ)v′(0)− [v(0)a1(λ) + v′(0)b1(λ)] = 0,

where Lλ(v) = a1(λ)v(0) + b1(λ)v′(0) was taken into account. Hence, we proved Equation (2).
Similarly, applying Rλ to Equation (11) and using the second ones in Equations (8) and (9),

leads to

Rλ(w) = Rλ(v)−Rλ(s1)[v(0)a1(λ) + v′(0)b1(λ)]−Rλ(s2)[a2(λ)v(1) + b2(λ)v′(1)]

= a2(λ)v(1) + b2(λ)v′(1)− [a2(λ)v(1) + b2(λ)v′(1)] = 0,

where Rλ(v) = a2(λ)v(1) + b2(λ)v′(1) was taken into account. Thus, Equation (3) was
proven.

An eigenparameter-dependent boundary shape function is such a function that it
satisfies the eigenparameter-dependent boundary conditions in Equations (2) and (3),
automatically. Theorem 1 is crucial that the eigenparameter-dependent boundary shape
function can be constructed from Equations (11) and (12) easily, with the help of two shape
functions s1(x, λ) and s2(x, λ) and a new function v(x).

3. An Implicit Nonlinear Equation
3.1. A Definite Initial Value Problem

One drawback in Equation (11) is that the right-end values of v(1) and v′(1) in
a2(λ)v(1) + b2(λ)v′(1) appeared in the translation function T(x, λ) are themselves un-
known values. In this situation the variable transformation in Equation (11) is hard to work
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in the present form, since there are three unknown values λ, v(1) and v′(1) in T(x, λ) to
be determined; v(0) and v′(0) in T(x, λ) are some given initial values. We can improve
this drawback by considering one extra condition in the following two normalization
conditions:

w(0) = A0, (13)

w′(0) = B0, (14)

where A0 and B0 are the given nonzero constants. Hence, w(x) is unique. If the condition
w(0) = A0 is given, we need to specify the value of B0, say B0 = 1; in contrast, if the condi-
tion w′(0) = B0 is given, we need to specify the value of A0, say A0 = 1. If a1(λ)b1(λ) ̸= 0
in Equation (2), we can adopt w(0) = A0 or w′(0) = B0 as a normalization condition. In
general, we take A0 = 1 or B0 = 1.

Theorem 2. If a1(λ) = 0 and Equation (13) is adopted, then the translation function T(x, λ) in
Equation (12) reads as

Ta(x, λ) = v′(0)b1(λ)s1(x, λ) +
s2(x, λ)

s2(0, λ)
{v(0)− s1(0, λ)v′(0)b1(λ)− A0}. (15)

If a1(λ) ̸= 0 and Equation (14) is imposed, then T(x, λ) is given by

Tb(x, λ) = [v(0)a1(λ) + v′(0)b1(λ)]s1(x, λ) +
s2(x, λ)

s′2(0, λ)
{v′(0)− s′1(0, λ)[v(0)a1(λ) + v′(0)b1(λ)]− B0}. (16)

Proof. Inserting
η := a2(λ)v(1) + b2(λ)v′(1) (17)

into Equation (12), renders

T(x, λ) = [v(0)a1(λ) + v′(0)b1(λ)]s1(x, λ) + ηs2(x, λ). (18)

If a1(λ) = 0, the analysis can be succeeded as follows. Inserting Equation (18) into
Equation (11), taking x = 0 and using w(0) = A0, we have

η =
1

s2(0, λ)
{v(0)− s1(0, λ)[v(0)a1(λ) + v′(0)b1(λ)]− A0}; (19)

by Equation (10),

s2(0, λ) = − b1(λ)

a1(λ)[a2(λ) + b2(λ)]− a2(λ)b1(λ)
̸= 0,

due to b1(λ) ̸= 0 deduced from a1(λ) = 0 and a2
1(λ) + b2

1(λ) > 0. Equation (15) is obtained
by Equations (19) and (18) with a1(λ) = 0.

Alternatively, for the case of a1(λ) ̸= 0, we can continue the following analysis.
Differentiating Equations (11) and (18) with respect to x, taking x = 0 and using w′(0) = B0,
yields

η =
1

s′2(0, λ)
{v′(0)− s′1(0, λ)[v(0)a1(λ) + v′(0)b1(λ)]− B0}; (20)

by Equation (10),

s′2(0, λ) =
a1(λ)

a1(λ)[a2(λ) + b2(λ)]− a2(λ)b1(λ)
̸= 0,

due to a1(λ) ̸= 0. It immediately leads to Equation (16) by inserting Equation (20) for η
into Equation (18).
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Theorem 2 is interesting that by using the normalization condition the translation
function T(x, λ) can be reduced to a function that merely involves λ as an unknown value.
The reduction from three unknown values λ, v(1) and v′(1) to one unknown value λ is a
key point for the success of the iterative algorithm to be presented in Section 3.2.

Theorem 3. If a1(λ) = 0 and Equation (13) is adopted, then Equations (1)–(3) can be transformed
to

v′′(x) = T′′
a (x, λ)− q(x, λ)[v(x)− Ta(x, λ)], (21)

where the new variable v(x) is subjected to

a2(λ)[v(1)− Ta(1, λ)] + b2(λ)[v′(1)− T′
a(1, λ)] = 0. (22)

If a1(λ) ̸= 0 and Equation (14) is imposed, then Equations (1)–(3) can be transformed to

v′′(x) = T′′
b (x, λ) + q(x, λ)[Tb(x, λ)− v(x)], (23)

which is subjected to

a2(λ)[v(1)− Tb(1, λ)] + b2(λ)[v′(1)− T′
b(1, λ)] = 0. (24)

For Equation (21) or Equation (23), v(0) = c1 and v′(0) = c2 are the specified initial conditions
with c1 and c2 given constants.

Proof. Inserting w(x) = v(x)− Ta(x, λ) into Equations (1) and (3), we can derive Equa-
tions (21) and (22). Similarly, we can prove Equations (23) and (24).

Although the proof of Theorem 3 is straightforward, it is very important that we can
fully transform Equations (1)–(3) to an initial value problem of the second-order ordinary
differential equation (ODE) for the new variable v(x), and a nonlinear equation as the
target equation to determine the eigenvalue λ.

3.2. An Iterative Algorithm

Liu et al. [33] proposed an iterative scheme (LHL) to find the root of f (x) = 0:

xn+1 = xn −
f (xn)

a + b f (xn)
, (25)

where

a = f ′(r), b =
f ′′(r)

2 f ′(r)
, (26)

with f (r) = 0 and f ′(r) ̸= 0. Equation (25) has third-order convergence.
Choose x0 and x2 with r ∈ (x0, x2) to render f (x0) f (x2) < 0. Then, we take x1 =

(x0 + x2)/2 and approximate a and b in Equation (26) by using the finite differences:

a =
f (x2)− f (x0)

x2 − x0
, b =

1
2a

f (x2)− 2 f (x1) + f (x0)

(x1 − x0)2 . (27)

The procedures for solving f (x) = 0 are given as follows: (i) Take x0 and x2 such that
f (x0) f (x2) < 0. (ii) Obtain a and b by Equation (27). (iii) For k = 0, 1, . . ., iterate

xk+1 = xk −
f (xk)

a + b f (xk)
, (28)

until | f (xk)| < ϵ.
The idea to solve Equations (1)–(3) is now simplifying to the shooting method to solve

Equations (21) and (22) or Equations (23) and (24). For each given value of λ and the given
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initial values v(0) = c1 and v′(0) = c2, we can integrate Equation (21) by employing the
fourth-order Runge–Kutta method (RK4). At the endpoint x = 1 of the integration, we
can obtain v(1) and v′(1) which are implicit functions of λ. Inserting v(1) and v′(1) into
the target Equation (22), an implicit nonlinear equation denoted by fa(λ) is obtained as
follows:

fa(λ) := a2(λ)[v(1)− Ta(1, λ)] + b2(λ)[v′(1)− T′
a(1, λ)] = 0. (29)

Similarly, for each given value of λ, we can integrate Equation (23) with the given initial
values v(0) = c1 and v′(0) = c2 to obtain v(1) and v′(1); hence, Equation (24) yields the
following implicit nonlinear target equation:

fb(λ) := a2(λ)[v(1)− Tb(1, λ)] + b2(λ)[v′(1)− T′
b(1, λ)] = 0. (30)

Equation (29) or Equation (30) is an implicit nonlinear equation of λ, which can be
solved by the LHL in Equation (28).

In the GSLP of Equations (1)–(3) there are two unknowns of λ and w(0) (or w′(0)).
Equations (21)–(24) overcome this difficulty by reducing two unknowns to one unknown
for λ in Equations (21) and (22) or Equations (23) and (24).

No matter the cases in Equations (21) and (22), or in Equations (23) and (24), we unify
them to

v′′(x) = F(x, v; λ), v(0) = c1, v′(0) = c2, (31)

f (λ) = 0, (32)

where f (λ) is an implicit function of λ through v(1; λ) and v′(1; λ).
The iterative processes for solving Equations (1)–(3) to determine the eigenvalue are

given as follows: (i) Give q(x, λ), a1(λ), b1(λ), a2(λ), b2(λ), c1, c2, ϵ, ∆x = 1/N, and
initial guess λ(0). (ii) Give λ0, λ2, λ1 = (λ0 + λ2)/2; compute Equation (31) by RK4 to
obtain v(1; λ0) and v′(1; λ0), and obtain f (λ0); compute Equation (31) by RK4 to obtain
v(1; λ2) and v′(1; λ2), and obtain f (λ2); compute Equation (31) by RK4 to obtain v(1; λ1)
and v′(1; λ1), and obtain f (λ1); compute

a =
f (λ2)− f (λ0)

λ2 − λ0 , b =
1
2a

f (λ2)− 2 f (λ1) + f (λ0)

(λ1 − λ0)2 .

(iii) Conduct k = 0, 1, . . .,

compute Equation (31) by RK4 to obtain v(1; λ(k)), v′(1; λ(k)),

compute Equation (32) to obtain f (λ(k)),

λ(k+1) = λ(k) − f (λ(k))

a + b f (λ(k))
,

until |λ(k+1) − λ(k)| < ϵ.
Because we have mathematically transformed the spectral problem of GSLP to the

problem for solving a target equation, the convergence is guaranteed by the LHL with
three-order convergence. It is known that the RK4 has fourth-order accuracy which together
with the LHL, can achieve highly accurate eigenvalue and the corresponding eigenfunction.

4. Examples Testing
4.1. Example 1

Consider a generalized Sturm–Liouville problem in [1]:

w′′(x) + λw(x) = 0, 0 < x < 1, (33)

w′(0) = 0,
(

λ − λ2

π2

)
w(1) + w′(1) = 0. (34)
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For this problem we solve λ from the following characteristic equation in [1]:

g(λ) = tan
√

λ −
√

λ

(
1 − λ

π2

)
= 0, (35)

which is the explicit form of the characteristic equation and we solve it by using the Newton
method. Here w(x) = cos

√
λx is the eigenfunction.

As shown in [1], the target equation is

f (λ) =
√

λ sin
√

λ −
(

λ2

π2 − λ

)
cos

√
λ = 0,

which can be arranged to Equation (35). For this spectral problem, the target equation is
equal to the characteristic equation.

We set A0 = 1, N = 5000, c1 = c2 = 0 and determine λ by Equation (29). Table 1
reveals fast convergence with high accuracy for the eigenvalues obtained. NI denotes the
number of iterations, the absolute error AE(λ) of eigenvalue, ERBC the absolute error of
the right boundary condition, and ME the maximum error of eigenfunction.

Table 1. For example 1, tabulating λ, ϵ, NI, AE(λ), ERBC, and ME.

λ ϵ NI AE (λ) ERBC ME

9.86960440101 10−14 12 2.49 × 10−14 1.19 × 10−14 6.89 × 10−15

23.61120532012 10−15 13 3.52 × 10−13 1.1 × 10−13 3.61 × 10−15

199.9633145327 10−10 7 2.13 × 10−10 1.12 × 10−11 7.54 × 10−12

4.2. Example 2

Consider a generalized Sturm–Liouville problem specified in [2,3]:

w′′(x) + λw(x) = 0, 0 < x < 1, (36)

w(0) + (λ − 4π2)w′(0) = 0, w(1)− λw′(1) = 0. (37)

The characteristic equation is derived in [3]:

g(λ) =
√

λ(4π2 − 2λ) cos
√

λ + sin
√

λ(1 + 4π2λ2 − λ3) = 0. (38)

No closed-form eigenfunction exists for this spectral problem. We take B0 = 1,
N = 10,000, c1 = 0 and c2 = 1, and iteratively determine λ by Equation (30) as shown in
Table 2.

Table 2. Tabulating λ, ϵ, NI, AE(λ), and ERBC for example 2.

λ ϵ NI AE (λ) ERBC

9.73088657821 10−12 5 3.02 × 10−14 2.82 × 10−12

88.7633162526 10−10 5 1.05 × 10−12 2.83 × 10−10

157.884110439 10−9 4 6.48 × 10−12 8.31 × 10−11

246.722352967 10−9 5 2.49 × 10−11 4.74 × 10−9

355.293796381 10−9 5 7.47 × 10−11 2.42 × 10−9
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4.3. Example 3

Taken from [3], we consider the following generalized Sturm–Liouville problem:

w′′(x) + (λ − ex)w(x) = 0, 0 < x < 1, (39)

w(0) = 0, w′(1) cos
√

λ − w(1)
√

λ sin
√

λ = 0. (40)

For this spectral problem we have

q = λ − ex, a1 = 1, b1 = 0, a2 = −
√

λ sin
√

λ, b2 = cos
√

λ. (41)

It follows from Equation (10) that

s1(x) =
a2 + b2 − a2x

a2 + b2
= 1 +

x
√

λ sin
√

λ

cos
√

λ −
√

λ sin
√

λ
, s2(x) =

a1x
a2 + b2

=
x

cos
√

λ −
√

λ sin
√

λ
. (42)

Then, in view of Equations (17) and (18), one has

η = cos
√

λv′(1)−
√

λ sin
√

λv(1), (43)

T = c1s1(x) + ηs2(x). (44)

From Equations (23) and (24) the second-order ordinary differential equation and nonlinear
equation are given by

v′′(x) = F(x, v; λ) = (λ − ex)[c1s1(x) + ηs2(x)− v(x)], (45)

f (λ) =
√

λ sin
√

λ[c1s1(1) + ηs2(1)− v(1)] + cos
√

λ[v′(1)− T′] = 0, (46)

where

T′ = c1s′1(x) + ηs′2(x) =
c1
√

λ sin
√

λ

cos
√

λ −
√

λ sin
√

λ
+

η

cos
√

λ −
√

λ sin
√

λ
. (47)

Now, the iterative method listed Section 3.2 can be applied to compute the eigenvalues of
Equations (39) and (40).

We take B0 = 1, N = 5000, c1 = 0 and c2 = 1 and iteratively determine λ by
Equation (46) as shown in Table 3, where the exact eigenvalues are given by [3].

Table 3. Tabulating computed and exact λ, ϵ, NI, and ERBC for example 3.

Computed λ Exact λ ϵ NI ERBC

0.929062028579 0.92906202857 10−15 9 0

6.74788117822 6.7478811782 10−15 6 4.44 × 10−16

16.1245477259 16.1245477258 10−15 8 3.33 × 10−16

31.2202765051 31.2202765051 10−15 7 6.11 × 10−16

50.7339278392 50.7339278392 10−15 6 7.22 × 10−16

4.4. Example 4

Consider a generalized Sturm–Liouville problem in [3]:

w′′(x) + λw(x) = 0, 0 < x < 1, (48)

w(0)− 2w′(0) = 0, (1 +
√

λ)w(1) + (1 − λ)w′(1) = 0, (49)
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whose characteristic equation reads as

g(λ) = 2 cos
√

λ +
sin

√
λ√

λ
+ (1 −

√
λ)(cos

√
λ − 2

√
λ sin

√
λ) = 0. (50)

We take B0 = 1, N = 10,000, c1 = 0 and c2 = 1, and iteratively determine λ by
Equation (30), as shown in Table 4.

Table 4. For example 4 tabulating λ, ϵ, NI, AE(λ), and ERBC.

λ ϵ NI AE (λ) ERBC

9.93874341403 10−14 6 8.88 × 10−15 7.99 × 10−14

40.0989697328 10−12 5 2.06 × 10−13 3.73 × 10−12

89.5876345317 10−12 5 1.21 × 10−12 1.08 × 10−12

4.5. Example 5

We compute the eigenvalues of the following generalized Sturm–Liouville problem:

w′′(x) + λw(x) = 0, 0 < x < 1, (51)

(1 + 4π2λ2 − λ3)w(0) + (2λ − 4π2)w′(0) = 0, w(1) = 0, (52)

whose eigenvalues are the same as those in Example 2.
We set A0 = 1, N = 10,000, c1 = 0 and c2 = 1.5 and determine λ by Equation (29). As

shown in Table 5, the accuracy in the right boundary condition is slightly better than that
in Table 2.

Table 5. Tabulating λ, ϵ, NI, AE(λ), and ERBC for example 5.

λ ϵ NI AE (λ) ERBC

9.73088657821 10−12 14 3.38 × 10−14 2.39 × 10−13

88.7633162526 10−10 7 8.53 × 10−14 1.61 × 10−11

157.884110439 10−9 6 8.64 × 10−12 7.04 × 10−11

5. First Type Nonlocal Sturm–Liouville Problem

In this section we consider a nonlocal Sturm–Liouville problem (NSLP) [34,35]:

−y′′(x) + q(x)y(1) = λy(x), x ∈ (0, 1), (53)

y(0) = 0, y′(1)−
∫ 1

0
q(x)y(x)dx = 0, (54)

where q(x) is a nonlocal potential. To distinguish the NSLP from the GSLP in Equations (1)–(3),
we adopt a different notation y(x) for the eigenfunction, instead of w(x).

In terms of a nonlocal linear boundary operator:

B(y) := y′(1)−
∫ 1

0
q(x)y(x)dx, (55)

Equation (54) is written as
y(0) = 0, B(y) = 0. (56)

We can impose a normalization condition:

y′(0) = a0, (57)
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where a0 ̸= 0 is a given constant.

5.1. The Positiveness of λ

Theorem 4. For Equation (53), the conditions in Equation (54) are sufficient for

λ > 0. (58)

Proof. Considering −y(x)y′′(x) = −[y(x)y′(x)]′ + y′(x)2, with Equation (53) multiplying
by y(x), and integrating both sides, we have

−y′′(x)y(x) + y(1)q(x)y(x) = λy2(x),

−
∫ 1

0
y′′(x)y(x)dx + y(1)

∫ 1

0
q(x)y(x)dx = λ

∫ 1

0
y2(x)dx,

−
∫ 1

0
[y(x)y′(x)]′dx + y(1)

∫ 1

0
q(x)y(x)dx +

∫ 1

0
y′(x)2dx = λ

∫ 1

0
y2(x)dx,

y(0)y′(0) + y(1)
[∫ 1

0
q(x)y(x)dx − y′(1)

]
+

∫ 1

0
y′(x)2dx = λ

∫ 1

0
y2(x)dx. (59)

If Equation (54) holds, Equation (59) reduces to∫ 1

0
y′(x)2dx = λ

∫ 1

0
y2(x)dx, (60)

which provides a formula to compute

λ =

∫ 1
0 y′(x)2dx∫ 1
0 y2(x)dx

> 0. (61)

Thus, the proof is completed.

Equation (61) is somewhat similar to the Rayleigh quotient; however, the Rayleigh
quotient in the classical Sturm–Liouville problem includes a potential function q(x) in the
integral term

∫ 1
0 q(x)y2(x)dx at the numerator. Equation (61) is important for developing a

highly precise iterative algorithm in Section 7, where

λ
∫ 1

0
y2(x)dx −

∫ 1

0
y′(x)2dx = 0

and the second one in Equation (54) constitute coupled nonlinear equations to determine λ.

5.2. Boundary Shape Function

Let p1(x) and p2(x) be

p1(0) = 1, B(p1) = p′1(1)−
∫ 1

0
q(x)p1(x)dx = 0, (62)

p2(0) = 0, B(p2) = p′2(1)−
∫ 1

0
q(x)p2(x)dx = 1. (63)

We can derive

p1(x) = 1 +
x
∫ 1

0 q(x)dx

1 −
∫ 1

0 xq(x)dx
, p2(x) =

x

1 −
∫ 1

0 xq(x)dx
, (64)

where we suppose that 1 −
∫ 1

0 xq(x)dx ̸= 0.
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Theorem 5. For any u(x) ∈ C2[0, 1], if p1(x) and p2(x) satisfy Equations (62) and (63), then the
function y(x) satisfying Equation (54) is given by

y(x) = u(x)− G(x), (65)

where

G(x) = p1(x)u(0) + p2(x)
[

u′(1)−
∫ 1

0
q(x)u(x)dx

]
. (66)

Proof. Inserting x = 0 into Equation (65) and using p1(0) = 1 and p2(0) = 0, it is apparent
that

y(0) = u(0)− G(0) = u(0)− p1(0)u(0)− p2(0)
[

u′(1)−
∫ 1

0
q(x)u(x)dx

]
= u(0)− u(0) = 0. (67)

The first condition in Equation (54) is proven. Applying the linear operator B to Equation (65),
and using the second ones in Equations (62) and (63), we have

B(y) = B(u)−B(p1)u(0)−B(p2)

[
u′(1)−

∫ 1

0
q(x)u(x)dx

]
= u′(1)−

∫ 1

0
q(x)u(x)dx −

[
u′(1)−

∫ 1

0
q(x)u(x)dx

]
= 0,

where B(u) = u′(1)−
∫ 1

0 q(x)u(x)dx is taken as that defined in Equation (55). Hence, the
second condition in Equation (54) is proven.

Theorem 5 is critical such that the nonlocal boundary conditions in Equation (54) can
be automatically satisfied for y(x) with the help of two nonlocal shape functions p1(x) and
p2(x) and a new function u(x).

5.3. Numerical Algorithm

Let

b0 := u′(1)−
∫ 1

0
q(x)u(x)dx; (68)

hence, the variable transformation in Equation (65) reads as

y(x) = u(x)− p1(x)u(0)− b0 p2(x). (69)

Following Equation (53), a new second-order ODE for u(x):

−u′′(x) + q(x)[u(1)− p1(1)u(0)− b0 p2(1)] = λ[u(x)− p1(x)u(0)− b0 p2(x)], (70)

where

b0 =
u′(0)− p′1(0)u(0)− a0

p′2(0)
(71)

is derived by inserting x = 0 into the differential of Equation (69) and by using Equation (57).
In view of Equation (64),

p′2(0) =
1

1 −
∫ 1

0 xq(x)dx
̸= 0,

according to the assumption 1 −
∫ 1

0 xq(x)dx ̸= 0; hence, b0 is a well-defined constant given
in Equation (71).

In terms of u(x), λ in Equation (61) is recast to

λ =

∫ 1
0 [u

′(x)− p′1(x)u(0)− b0 p′2(x)]2dx∫ 1
0 [u(x)− p1(x)u(0)− b0 p2(x)]2dx

. (72)
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Let u1(x) = u(x), u2(x) = u′(x), u1(0) = u(0) = c1, u2(0) = u′(0) = c2 and
α = u1(1) = u(1), which is an unknown constant. For solving Equations (53) and (54),
we list the iterative algorithm based on the boundary shape function method (BSFM).
(i) Give q(x) and derive p1(x) and p2(x); give c1, c2, a0, initial guesses of λ0, α0, ϵ and N.
(ii) Calculate b0 = [c2 − p′1(0)c1 − a0]/p′2(0). (iii) For k = 0, 1, 2, . . ., the RK4 integrates

u′
1,k(x) = u2,k(x), u1,k(0) = c1,

u′
2,k(x) = q(x)[αk − p1(1)c1 − b0 p2(1)]− λk[u1,k(x)− p1(x)c1 − b0 p2(x)], u2,k(0) = c2,

u′
3,k(x) = [u1,k(x)− p1(x)c1 − b0 p2(x)]2, u3,k(0) = 0,

u′
4,k(x) = [u2,k(x)− p′1(x)c1 − b0 p′2(x)]2, u4,k(0) = 0. (73)

Take

αk+1 = u1,k(1), λk+1 =
u4,k(1)
u3,k(1)

, (74)

where λk+1 is computed according to Equation (72). Terminate the iterations if

rk =
√
(αk+1 − αk)2 + (λk+1 − λk)2 < ϵ. (75)

When u(x) is available, we can compute y(1) = u(1)− G(1) which is inserted into
Equation (53), and then integrating Equation (53) by RK4 with the initial values y(0) = 0
and y′(0) = a0, we can obtain the eigenfunction y(x).

5.4. Example 6

In Equations (53) and (54), we take

q(x) = 90x2 − 60x + 6, y(x) =
2
3

x − x2. (76)

The exact eigenvalue is λ = 30.
We can derive p1(x) = 1 − 4x/3 and p2(x) = −2x/9; take a0 = 2/3 for the sake of

comparing the computed y(x) to the exact one. We take c1 = 0, c2 = 1, α0 = 1, λ0 = 20,
N = 1000 and ϵ = 10−7. Figure 1a shows 77 iterations for the convergence, and upon com-
paring the computed y(x) to the exact one, Figure 1b reveals high accuracy with a very small
maximum error (ME) = 1.02 × 10−8. The eigenvalue obtained is λ = 29.9999999744329,
which has an absolute error (AE) of λ denoted by AE(λ) = 2.56 × 10−8. We obtain the AE
for satisfying the right-end boundary condition |y′(1)−

∫ 1
0 q(x)y(x)dx|=2.18 × 10−9.

If we raise the initial guess of λ0 to λ0 = 100, we obtain the second eigenvalue
λ = 118.3439035468151, which as shown in Figure 1c has 56 iterations and Figure 1d
compares the first eigenfunction in Equation (76) to the second eigenfunction, of which
|y′(1)−

∫ 1
0 q(x)y(x)dx| = 3.25 × 10−9. For the second eigenfunction, the analytic form is

unknown.
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Figure 1. For example 6 of the first type nonlocal Sturm–Liouville problem, (a) the residuals and
(b) numerical and exact solutions and error for the first eigenfunction; (c) the residuals and (d) nu-
merical solution for the second eigenfunction.

5.5. Example 7

In Equations (53) and (54), we take

q(x) =
581

8
(8x3 − 10x2 + 3x) + 48x − 20, y(x) = x3 − 5x2

4
+

3x
8

. (77)

The exact eigenvalue is λ = 581/8 = 72.625.
We can derive p1(x) = 1 − 1.313285762827045x, p2(x) = −0.08154943934760404x. By

taking a0 = 3/8, c1 = 1, c2 = −1, α0 = 0, λ0 = 72, N = 1000 and ϵ = 10−2, Figure 2a
shows six iterations for the convergence; upon comparing the computed y(x) to the exact
one, Figure 2b reveals ME = 3.07 × 10−4. The eigenvalue obtained has a relative error of
4.36 × 10−3. We obtain |y′(1)−

∫ 1
0 q(x)y(x)dx| = 5.37 × 10−3.
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Figure 2. For example 7 of the first type nonlocal Sturm–Liouville problem, (a) the residuals and
(b) numerical and exact solutions and errors.

6. Second Type Nonlocal Sturm–Liouville Problem

Instead of Equation (54), Albeverio et al. [35] consider

y(0) = 0, y′(1) +
∫ 1

0
q(x)y(x)dx = 0. (78)

Equations (53) and (78) constitute the second type nonlocal Sturm–Liouville problem
(NSLP). We can derive

p1(x) = 1 −
x
∫ 1

0 q(x)dx

1 +
∫ 1

0 xq(x)dx
, p2(x) =

x

1 +
∫ 1

0 xq(x)dx
, (79)

where we suppose that 1 +
∫ 1

0 xq(x)dx ̸= 0; λ is computed by

λ =
1∫ 1

0 y2(x)dx

[∫ 1

0
y′(x)2dx + y(1)

∫ 1

0
q(x)y(x)dx − y(1)y′(1)

]
=

∫ 1
0 y′(x)2dx − 2y(1)y′(1)∫ 1

0 y2(x)dx
. (80)

For the second type NSLP we let

b0 := u′(1) +
∫ 1

0
q(x)u(x)dx. (81)

Liu and Qi [34] considered q(x) = −90x2 + 60x + 6, y(x) = 2x/3 − x2; with the
boundary conditions in Equation (78), a negative eigenvalue λ = −30 is obtained. For
the positiveness of λ, the inequality

∫ 1
0 y′(x)2dx − 2y(1)y′(1) > 0 must hold. Through

some operations for y(x) = 2x/3 − x2,
∫ 1

0 y′(x)2dx − 2y(1)y′(1) = −4/9 < 0 is obtained,
which contradicts the above inequality. For the second type of NSLP, the eigenvalue may
be negative.

In Sections 6.3 and 6.4 two examples will be given to demonstrate that the solution
y(x) is not unique, even the conditions y(0) = 0, y′(0) = a0 and y′(1) +

∫ 1
0 q(x)y(x)dx = 0

are imposed. This is different from the local Sturm–Liouville problem; the uniqueness of
y(x) is guaranteed if y(0) = 0 and y′(0) = a0 are imposed.
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6.1. Iterative Algorithm

Let α = u1(1) = u(1) and β = u2(1) = u′(1) be unknown constants. The procedures
for solving Equations (53) and (78) by the BSFM: (i) Give q(x) and derive p1(x) and p2(x);
give c1, c2, a0, initial guesses of λ0, α0, β0, ϵ and N. (ii) Calculate b0 = [c2 − p′1(0)c1 −
a0]/p′2(0). (iii) For k = 0, 1, 2, . . ., integrate Equation (73) by RK4 to offer

αk+1 = u1,k(1), βk+1 = u2,k(1), λk+1 =
u4,k(1)− 2[αk+1 − G(1)][βk+1 − G′(1)]

u3,k(1)
; (82)

terminate the iterations if

rk =
√
(αk+1 − αk)2 + (βk+1 − βk)2 + (λk+1 − λk)2 < ϵ. (83)

6.2. Infinite Solutions

We find that for the second NSLP, there may be many solutions with different ended values
of the eigenfunctions. Hence, for the uniqueness of the eigenfunction of Equations (53) and (78),
in addition to Equation (57), we can impose an extra condition:

y(1) = c0, (84)

where c0 are some constants.
To resolve this problem by using the BSFM, we can set a suitable initial value of

c1 = u(0), such that the condition (84) can be satisfied. In Equation (69), we insert x = 1
and use Equations (71) and (84) to obtain

c0 = u(1)− p1(1)c1 − p2(1)
c2 − p′1(0)c1 − a0

p′2(0)
, (85)

where u(0) = c1 and u′(0) = c2 were used. Then, we can compute c1 by

c1 =
p′2(0)c0 − p′2(0)u(1) + p2(1)c2 − p2(1)a0

p2(1)p′1(0)− p1(1)p′2(0)
. (86)

For solving Equations (53) and (78) by the BSFM to find a particular solution with an
ended value y(1) = c0, we can modify the iterative algorithm in Section 6.1 to (i) Give q(x)
and derive p1(x) and p2(x); give c2, a0, λ0, α0, β0, ϵ and N. (ii) For k = 0, 1, 2, . . ., calculate

c1 =
p′2(0)c0 − p′2(0)αk + p2(1)c2 − p2(1)a0

p2(1)p′1(0)− p1(1)p′2(0)
, (87)

b0 =
c2 − p′1(0)c1 − a0

p′2(0)
, (88)

integrate Equation (73) by RK4 and take

αk+1 = u1,k(1), βk+1 = u2,k(1), λk+1 =
u4,k(1)− 2[αk+1 − G(1)][βk+1 − G′(1)]

u3,k(1)
. (89)

We terminate the iterations if

rk =
√
(αk+1 − αk)2 + (βk+1 − βk)2 + (λk+1 − λk)2 < ϵ. (90)

6.3. Example 8

In Equations (53) and (78), we take [35]

q(x) = 2π sin(πx) + π sin(2πx). (91)
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The exact eigenvalue λ = π2 is a multiple one, corresponding to multiple solutions
y(x) = sin(πx), y(x) = x cos(πx) + sin(2πx)/(3π) and other.

We first consider y(x) = sin(πx). We can derive p1(x) = 1 − 8x/5, p2(x) = 2x/5 and
take a0 = π for comparing the computed y(x) to the exact one y(x) = sin(πx). We take
c1 = 1, c2 = 2.19953, α0 = β0 = 0, λ0 = 9.5, N = 500 and ϵ = 10−10. Figure 3a shows
five iterations for the convergence; Figure 3b reveals high accuracy with ME = 4.34 × 10−6,
AE(λ) = 2.56 × 10−10, and |y′(1) +

∫ 1
0 q(x)y(x)dx| = 1.17 × 10−9.

 
 
 
 

 

Fig. 3. For example 8 of the second type nonlocal Sturm-Liouville problem, (a) the 
residuals and (b) numerical and exact solutions and error. 
 
 
 

Figure 3. For example 8 of the second type nonlocal Sturm–Liouville problem, (a) the residuals and
(b) numerical and exact solutions and error.

Using the iterative algorithm in Section 6.2, we take c0 = 0 and c2 = 1; through four it-
erations we obtain ME = 1.22× 10−11, AE(λ) = 2.49× 10−10 and |y′(1) +

∫ 1
0 q(x)y(x)dx| =

1.16 × 10−10. The accuracy of the eigenfunction is raised five orders, while the accuracy of
the right boundary condition is raised one order.

When we take c0 = −0.5, AE(λ) = 6.56 × 10−10 and |y′(1) +
∫ 1

0 q(x)y(x)dx| =

1.42 × 10−10 are obtained through eleven iterations; as shown in Figure 3b remarked by
c0 = −0.5, we obtain the second solution with an ended value y(1) = −0.5.

When we take c0 = 0.5, AE(λ) = 3.09 × 10−11 and |y′(1) +
∫ 1

0 q(x)y(x)dx| = 1.44 ×
10−11 are obtained through twenty iterations; as shown in Figure 3b remarked by c0 = 0.5,
we obtain the third solution with an ended value y(1) = 0.5.

6.4. Example 9

Take a0 = 5/3 for comparing the computed y(x) to the exact one y(x) = x cos(πx) +
sin(2πx)/(3π). We take c1 = c2 = 1, α0 = β0 = 0, λ0 = 9, N = 500 and ϵ = 10−10.
Figure 4a shows 13 iterations for the convergence; Figure 4b reveals the high accuracy with
ME = 1.27 × 10−8, AE(λ) = 6.61 × 10−10, and |y′(1) +

∫ 1
0 q(x)y(x)dx| = 3.26 × 10−11.

For this example, we also find other solutions, as shown in Figure 5 by a solid line,
which is different from the first solution as shown by a thin dashed line in Figure 5.
Although these two solutions have the same values of y(0) = 0 and y′(0) = 5/3, the ended
values are −1 and −0.2781268005, respectively. However, we do not have an analytic form
of the second solution.
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Figure 5. For example 9 comparing three solutions with different ended values.

Using the iterative algorithm in Section 6.2, when we take c0 = 1, AE(λ) = 3.37 ×
10−10 and |y′(1) +

∫ 1
0 q(x)y(x)dx| = 1.39 × 10−10 are obtained through 98 iterations; as

shown in Figure 4b remarked by c0 = 1, we obtain the second solution with an ended value
y(1) = 1.

When we take c0 = 0, AE(λ) = 2.49 × 10−10 and |y′(1) +
∫ 1

0 q(x)y(x)dx| = 6.14 ×
10−11 are obtained through four iterations; as shown in Figure 4b remarked by c0 = 0, we
obtain the third solution with an ended value y(1) = 0.5.

Remark 1. There are two unconventional phenomena that happened for the second type of the
nonlocal Sturm–Liouville problem. First, the eigenvalue may be negative depending on the end
value of y(1)y′(1). Second, although the conditions y(0) = 0 and y′(0) = a0 are imposed,
the eigenfunction corresponding to the same eigenvalue is not unique, due to y(1) appeared in
Equation (53).

7. Precise Eigenvalue for the Nonlocal Sturm–Liouville Problem

As shown in example 6 in Section 5.4, the number of iterations (NI) is 77, and in
example 7 in Section 5.5, the relative error of eigenvalue is 4.36 × 10−3. Basically, the
slow convergence and low accuracy originate from considering one target equation in
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Equation (54). When Equation (61) is also deemed another target equation, we can improve
the accuracy and reduce the number of iterations. Because we need to treat two nonlinear
equations, the derivative-free iterative algorithm in Section 3.2 is not applicable.

To improve NI and accuracy, we note the derivative-free iterative algorithm in Section 3.2
by taking b = 0 as a one-dimensional fixed-quasi-Newton method, and extend it to a two-
dimensional fixed-quasi-Newton method (FQNM). It is known that the two-dimensional
Newton method (including the quasi-one) is quadratically convergent. If we can enhance
the convergence criterion ϵ to a small value, we can achieve a highly accurate eigenvalue
within a reasonable value of NI because both Equations (54) and (61) are accurately satisfied.

7.1. A Fixed-Quasi-Newton Method

For the first type nonlocal Sturm–Liouville problem in Section 5, it follows from
Equations (54) and (61) and two nonlinear algebraic equations:

f1(A, B) := y′(1)−
∫ 1

0
q(x)y(x)dx = 0, (92)

f2(A, B) := B
∫ 1

0
y2(x)dx −

∫ 1

0
y′(x)2dx = 0, (93)

where A := y(1) and B := λ. Notice that y(1) = A is appeared in the governing Equation (53),
which makes y(x) an implicit function of A; hence, f1 and f2 are also implicit functions of A.

As an extension of the one-dimensional FQNM in Section 3 with b = 0, we now
consider the approximation of a 2 × 2 Jacobian matrix at the root (A∗, B∗) of f1(A, B) =
f2(A, B) = 0 by finite differences, which is termed a fixed-quasi-Newton method (FQNM)
of two-dimensions. Choose a rectangle with the vertexes (A∗

0 , B∗
0 ), (A∗

2 , B∗
0 ), (A∗

2 , B∗
2 ) and

(A∗
0 , B∗

2 ) around the center point [(A∗
0 + A∗

2)/2, (B∗
0 + B∗

2 )/2] to carry out the approximation
of the Jacobian matrix by a constant matrix {aij}.

The iterative algorithm obtained from the two-dimensional FQNM for solving y(x) in
Equations (53) and (54) is summarized as follows. (i) Give A∗

0 , A∗
2 , B∗

0 , B∗
2 , ϵ, and ∆x = 1/N.

(ii) Compute

A∗
1 =

A∗
0 + A∗

2
2

, B∗
1 =

B∗
0 + B∗

2
2

,

a11 =
f1(A∗

2 , B∗
1 )− f1(A∗

0 , B∗
1 )

A∗
2 − A∗

0
, a12 =

f1(A∗
1 , B∗

2 )− f1(A∗
1 , B∗

0 )

B∗
2 − B∗

0
,

a21 =
f2(A∗

2 , B∗
1 )− f2(A∗

0 , B∗
1 )

A∗
2 − A∗

0
, a22 =

f2(A∗
1 , B∗

2 )− f2(A∗
1 , B∗

0 )

B∗
2 − B∗

0
,

C11 =
a22

a11a22 − a21a12
, C12 =

−a12

a11a22 − a21a12
,

C21 =
−a21

a11a22 − a21a12
, C22 =

a11

a11a22 − a21a12
. (94)

(iii) Let A0 = A∗
0 and B0 = B∗

0 and for k = 0, 1, . . . , iterate

Ak+1 = Ak − C11 f1(Ak, Bk)− C12 f2(Ak, Bk), Bk+1 = Bk − C21 f1(Ak, Bk)− C22 f2(Ak, Bk),

until rk :=
√

f 2
1 (Ak, Bk) + f 2

2 (Ak, Bk) < ϵ. (95)
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Let y1,k(x) = y(k)(x) and y2,k(x) = y′(k)(x). In each iteration, the RK4 is used to
integrate

y′1,k(x) = y2,k(x), y1,k(0) = 0,

y′2,k(x) = q(x)Ak − Bky1,k(x), y2,k(0) = a0,

y′3,k(x) = y2
1,k(x), y3,k(0) = 0,

y′4,k(x) = y2
2,k(x), y4,k(0) = 0,

y′5,k(x) = q(x)y1,k(x), y5,k(0) = 0, (96)

and calculate f1(A, B) = y2,k(1)− y5,k(1) and f2(A, B) = By3,k(1)− y4,k(1).

7.2. Example 6 Again

We take N = 500 and ϵ = 10−15. Figure 6a shows 13 iterations, which converge faster
than 77 iterations in Section 5.4. Figure 6b reveals a high accuracy with ME = 9.92 × 10−9

AE(λ) = 2.69 × 10−9, and |y′(1)−
∫ 1

0 q(x)y(x)dx| = 6.66 × 10−16.

 

Fig. 6. For example 6 solved by the FQNM, the improvements of (a) the residuals and 
(b) numerical and exact solutions and error 
 
 
 
 
 
 
 

Figure 6. For example 6 solved by the FQNM, the improvements of (a) the residuals and (b) numerical
and exact solutions and error.

7.3. Example 7 Again

We take N = 2000 and ϵ = 10−15. Figure 7a shows eight iterations for conver-
gence. Upon comparison to Section 5.5 with six iterations under ϵ = 10−2, the FQNM
converges faster even with a stringent convergence criterion ϵ = 10−15. Figure 7b re-
veals ME = 4.02 × 10−13. The eigenvalue obtained has a relative error of 3.14 × 10−12.
The AE for y′(1) −

∫ 1
0 q(x)y(x)dx is 7.77 × 10−16. The accuracy in every aspect is sig-

nificantly improved by comparing to ME = 3.07 × 10−4, relative error = 4.36 × 10−3 and
|y′(1)−

∫ 1
0 q(x)y(x)dx|=5.37 × 10−3 obtained in Section 5.5.
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Figure 7. For example 7 solved by the FQNM, the improvements of (a) the residuals and (b) numerical
and exact solutions and error.

7.4. Examples 8 and 9 Again

For the second type nonlocal Sturm–Liouville problem in Section 6, we apply the
two-dimensional FQNM to solve

f1(A, B) = u2(1)− G(1) + u5(1) = 0, (97)

f2(A, B) = Bu3(1)− u4(1) + 2[A − G(1)][u2(1)− G′(1)] = 0, (98)

where A = u(1) and B = λ. In each computation of f1(A, B) and f2(A, B), we need to
integrate

u′
1,k(x) = u2,k(x), u1,k(0) = c1,

u′
2,k(x) = q(x)[Ak − G(1)]− Bk[u1,k(x)− p1(x)c1 − b0 p2(x)], u2,k(0) = c2,

u′
3,k(x) = [u1,k(x)− p1(x)c1 − b0 p2(x)]2, u3,k(0) = 0,

u′
4,k(x) = [u2,k(x)− p′1(x)c1 − b0 p′2(x)]2, u4,k(0) = 0,

u′
5,k(x) = q(x)[u1,k(x)− G(x)], u5,k(0) = 0. (99)

For example 9 solved by the BSFM and two-dimensional FQNM, we take N = 1000,
ϵ = 10−12, c1 = c2 = 1. Through 14 iterations we obtain AE(λ) = 3.44 × 10−12, and
|y′(1) +

∫ 1
0 q(x)y(x)dx| = 1.6 × 10−11. As shown in Figure 5 by a thick dashed line, we

obtain the third solution with an ended value y(1) = −1.25.
For example 8 solved by the BSFM and two-dimensional FQNM, we take N = 1000,

ϵ = 10−12, c1 = 1, c2 = 1.3. Through eleven iterations we obtain AE(λ) = 5.11 × 10−12,
and |y′(1) +

∫ 1
0 q(x)y(x)dx| = 3.11 × 10−11. As shown in Figure 8, we obtain the second

solution with an ended value y(1) = −2.35619. The solution of this problem is not unique
even y(0) = 0, y′(0) = π and y′(1) +

∫ 1
0 q(x)y(x)dx = 0 are imposed.
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Figure 8. For example 8 comparing four solutions with different ended values. The first solution is
obtained by the BSFM, while other solutions are obtained by the BSFM and FQNM.

We find that for the second type of NSLP in Section 6 there are many solutions with dif-
ferent ended values. To resolve this problem by using the BSFM, two-dimensional FQNM and
the iterative method in Section 6.2, we take c0 = 5 and c2 = −1000; AE(λ) = 8.99 × 10−12

and |y′(1) +
∫ 1

0 q(x)y(x)dx| = 5.87 × 10−11 are obtained. As shown in Figure 8 remarked by
c0 = 5, we obtain the third solution with an ended value y(1) = 5. When we take c0 = −1
and c2 = −1000, AE(λ) = 3.37 × 10−11 and |y′(1) +

∫ 1
0 q(x)y(x)dx| = 2.12 × 10−11 are

obtained. As shown in Figure 8 remarked by c0 = −1, we obtain the fourth solution with
an ended value y(1) = −1. For example 9, we can also observe this phenomenon with
many solutions corresponding to different ended values of the eigenfunctions.

8. Conclusions

Because two unknowns with a missing left-end value of the eigenfunction and eigen-
value are involved, the original generalized Sturm–Liouville problem is more difficult to
solve than the presented formulation in the paper. We transformed the GSLP to a definite
initial value problem. For the uniqueness of the eigenfunction, by giving a normalization
condition we reduced two unknowns to an unknown for the eigenvalue, which is then
solved from a target equation in terms of the right boundary condition. The proposed
method converged very fast and example tests revealed the high precision of the eigenval-
ues obtained. We have resolved two types of NSLPs with integral boundary conditions
specified on the right end. The appearance of nonlocal potential in the ODE led to some
interesting phenomena, which are totally different from the SLP. The methods based on
the boundary shape function methods and fixed-quasi-Newton methods were developed,
which can accurately determine the eigenvalues and compute the eigenfunctions. For
the first type of NSLP, an extra slope condition of the solution on the left end guarantees
the uniqueness of the solution and the positiveness of the eigenvalue. For the second
type of NSLP, two extra conditions of the slope of the solution on the left end and the
specification of the ended value on the right end guarantees the uniqueness of the solution.
For the second type of NSLP, the eigenvalue may be negative, and many different solutions
happened for different end values. Four numerical testing examples demonstrated that
the proposed iterative algorithm could achieve high precision eigenvalues. There are two
factors to cause the high accuracy of eigenvalue and eigenfunction: the integration of the
resulting ODEs by the fourth-order Runge–Kutta method and the boundary conditions
being strictly satisfied.
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The novelties involved in the paper were as follows:

• Mathematically transforming the generalized Sturm–Liouville problem to an initial
value problem of a second-order ODE and an implicit nonlinear equation.

• Obtaining a very precise eigenvalue of the generalized Sturm–Liouville problem by
using LHL on the implicit nonlinear equation.

• Mathematically transforming nonlocal Sturm–Liouville problems to the initial value
problems and an implicit nonlinear equation.

• For nonlocal Sturm–Liouville problems the initial value problems and two implicit
nonlinear equations were derived.

• The two-dimensional fixed-quasi-Newton method is used to solve two implicit non-
linear equations, quickly obtaining highly accurate eigenvalues.
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