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Abstract: We consider a nonlinear Dirichlet problem driven by the (p(z), q)-Laplacian and with a
logistic reaction of the equidiffusive type. Under a nonlinearity condition on a quotient map, we
show existence and uniqueness of positive solutions and the result is global in parameter λ. If the
monotonicity condition on the quotient map is not true, we can no longer guarantee uniqueness,
but we can show the existence of a minimal solution u∗

λ and establish the monotonicity of the map
λ 7−→ u∗

λ and its asymptotic behaviour as the parameter λ decreases to the critical value λ̂1(q) > 0

(the principal eigenvalue of (−∆q, W1,q
0 (Ω))).
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study
the following anisotropic (p.q)-equation with a logistic reaction

(Pλ)

{
−∆p(z)u(z)− ∆qu(z) = λu(z)q−1 − f (z, u(z)) in Ω,
u|∂Ω = 0, u > 0, λ > 0.

Here, p ∈ C0,1(Ω) with 1 < q < p− = min
Ω

p and by ∆p(z) we denote the anisotropic

p-Laplace differential operator defined by

∆p(z)u = div (|Du|p(z)−2Du) ∀u ∈ W1,p(z)
0 (Ω).

In contrast to the isotropic p-Laplacian (that is, the exponent is constant function
p(z) = p > 1), the anisotropic operator is not homogeneous and this makes anisotropic
equations more difficult to deal with. Problem (Pλ) is driven by the sum of an anisotropic
and of an isotropic operators. At the end of the paper, after having the complete picture of
our method of proof, we comment on why we have the smaller exponent q to be constant
(isotropic operator). It is an open problem, whether our work here can be extended to fully
anisotropic (p, q) equations. In the reaction (right hand side) of (Pλ), λ > 0 is a parameter
and the perturbation is − f (z, x) with f (z, x) being Carathéodory function (i.e., z 7−→ f (z, x)
measurable for all x ⩾ 0, and x 7−→ f (z, x) is continuous for a.a. z ∈ Ω). We assume that
f (z, ·) is (p(z)− 1)-superlinear. So, we see that the reaction of (Pλ) is of logistic-type and
in particular it is equidiffusive since the power of the parameter term λuq−1 is the same as
the exponent of the isotropic operator.

Logistic equations are important in mathematical biology. The semilinear parabolic
logistic equation describes the evolution and spatial distribution of a biological population
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when constant rates of reproduction and/or mortality are present (Verhulst’s law; see
Gurtin-Mac Camy [1]). For this reason, when we consider logistic equations, we are usually
interested in positive solutions. More recently, evolution systems with logistic forcing
terms have been studied as a model for the biological phenomenon of chemotaxis (see
Tello-Winkler [2]). The elliptic equation examined in this paper models an equilibrium
distribution (see Costa-Drábek-Tehrani [3]). In the past, most works on elliptic logistic
equations deal with isotropic problems with a superdiffusive reaction (that is, a reac-
tion of the form λxs−1 − xr−1 with p < s < r). They prove existence and multiplicity
results which are global in λ > 0 (bifurcation-type result). We mention the works of
Afrouzi-Brown [4], Ambrosetti-Lupo [5], Ambrosetti-Mancini [6], Papageorgiou-Rǎdulescu-
Repovš [7], Rădulescu-Repovš [8], (semilinear equations) and by Aizicovici-Papageorgiou-
Staicu [9], Dong [10], Gasiński-O’Regan-Papageorgiou [11], Iannizzotto-Papageorgiou [12],
Papageorgiou-Rǎdulescu [13], and Takeuchi [14,15] (nonlinear equations). We also men-
tion the works of Gasiński-Papageorgiou [16] (double phase equations) and Iannizzotto-
Mosconi-Papageorgiou [17] (fractional equations). All the aforementioned works deal with
superdiffusive problems.

The study of anisotropic logistic equations is lagging behind. There are no works
in this direction. Only Papageorgiou-Rădulescu-Tang [18] considered logistic equations
driven by the p(z)-Laplacian and having a Robin boundary condition. They consider the
superdiffusive case (that is, the parametric term λxτ(z)−1 with p(z) < τ(z) for all z ∈ Ω).
From the isotropic literature, we know that for such problems, we have a multiplicity of
positive solutions. The authors in [18] show that the same is true for p(z)-logisitic equations.
They prove a multiplicity result which is global in the parameter λ > 0 (a bifurcation-type
theorem), see Theorem 22 in [18]. In [18], the equidiffusive case is studied only in the
context of isotropic equations (that is, p is constant).

So, to the best of our knowledge, there are no earlier works on anisotropic equidiffusive
logistic equations. Our work fills in the void in the literature. From the isotropic theory
(see Kamin-Véron [19], p-Laplace equations), we know that equidiffusive problems exhibit
uniqueness properties.

Here, we deal with an equidiffusive equation and for such problems we have unique-
ness of solutions. Indeed, here we prove a global existence and uniqueness result. More
precisely, if λ̂1(q) > 0 denotes the principal eigenvalue of (−∆q, W1,q

0 (Ω)), we show that
(Pλ) has a positive solution if and only if λ > λ̂1(q), and moreover, this solution is unique
if the quotient function x 7−→ f (z,x)

xq−1 is strictly increasing on (0,+∞). Otherwise, we can
show the existence of a minimal (smallest) positive solution u∗

λ. We also establish the
monotonicity properties of the map λ 7−→ u∗

λ and determine the asymptotic behaviour of
u∗

λ as λ → λ̂1(q)+.
Finally, we explain why in our problem the smaller exponent q is constant. It is an

interesting open problem whether the result remains true if this exponent is also variable.

2. Mathematical Background—Hypotheses

The study of anisotropic equations uses variable Lebesgue and Sobolev spaces. The
complete theory of these spaces can be found in the book of Diening-Harjulehto-Hästö-
Ružička [20].

Let E1 = {r ∈ C(Ω) : 1 < r(z) for all z ∈ Ω}. Given r ∈ E, we set

r− = min
Ω

r, r+ = max
Ω

r.

By L0(Ω), we denote the space of all measurable functions u : Ω −→ R. As usual, we
identify two such functions which differ only on a Lebesgue-null set. Given r ∈ E, the
variable Lebesgue space Lr(z)(Ω) is defined by
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Lr(z)(Ω) = {u ∈ L0(Ω) : ϱr(u) =
∫

Ω
|u|r(z) dz < ∞}.

We call ϱr the modular function corresponding to the exponent r. We equip this space
with the so called “Luxemburg norm” defined by

∥u∥r(z) = inf
{

λ > 0 : ϱr(
u
λ
) ⩽ 1

}
.

With this norm, Lr(z)(Ω) becomes a separable and reflexive Banach space. In fact, it
is uniformly convex since x 7−→ |x|r(z) is a uniformly convex function. If r′ ∈ E1 is the
conjugate variable exponent to r ∈ E1 (that is, r′(z) = r(z)

r(z)−1 for all z ∈ Ω), then we have

Lr(z)(Ω)∗ = Lr′(z)(Ω), and the following Hölder-type inequality holds

∫
Ω
|uv| dz ⩽

(
1

r−
+

1
r′−

)
∥u∥r(z)∥v∥r′(z) ∀u ∈ Lr(z)(Ω), v ∈ Lr′(z)(Ω).

If r1, r2 ∈ E1 and r1(z) ⩽ r2(z) for all z ∈ Ω, then Lr2(z)(Ω) ⊆ Lr1(z)(Ω) continuously.
Using the variable Lebesgue spaces, we can define the corresponding variable Sobolev

spaces. So, let r ∈ E1. Then, the variable Sobolev space W1,r(z)(Ω) is defined by

W1,r(z)(Ω) = {u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)}.

By Du, we denote the weak gradient of u. We equip W1,r(z)(Ω) with the following
norm

∥u∥1,r(z) = ∥u∥r(z) + ∥Du∥r(z) ∀u ∈ W1,r(z)(Ω),

with ∥Du∥r(z) = ∥|Du|∥r(z). Furthermore, if r ∈ E1 ∩ C0,1(Ω) (that is, r is Lipschitz
continuous on Ω), then we define

W1,r(z)
0 (Ω) = C∞

c
∥·∥1,r(z) .

Both spaces W1,r(z)(Ω) and W1,r(z)
0 (Ω) are separable and reflexive Banach spaces (in

fact uniformly convex). On W1,r(z)
0 (Ω), the Poincaré inequality holds. Namely, there exists

ĉ > 0 such that
∥u∥r(z) ⩽ ĉ∥Du∥r(z) ∀u ∈ W1,r(z)

0 (Ω).

So, on W1,r(z)
0 (Ω), we consider the following equivalent norm

∥u∥ = ∥Du∥r(z) ∀u ∈ W1,r(z)
0 (Ω).

Let r∗(z) be the variable critical Sobolev exponent defined by

r∗(z) =

{
Nr(z)

N−r(z) if r(z) < N
+∞ if N ⩽ r(z)

for all z ∈ Ω. We have the following extension to variable spaces of the classical Sobolev
embedding theorem (see [20] (p. 266)).

Proposition 1. (a) If r ∈ E1 ∩ C0,1(Ω), s ∈ E1 with s+ < N and s(z) ⩽ r∗(z) for all z ∈ Ω,
then W1,r(z)

0 (Ω) ⊆ Ls(z)(Ω) continuously.
(b) If r ∈ E1 ∩ C0,1(Ω), s ∈ E1 with s+ < N and s(z) < r∗(z) for all z ∈ Ω, then

W1,r(z)
0 (Ω) ⊆ Ls(z)(Ω) compactly.
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There is a close relation between the modular function

ϱr(Du) =
∫

Ω
|Du|r(z) dz

and the norm ∥u∥ = ∥Du∥r(z) for all u ∈ W1,r(z)
0 (Ω) (see [20] (p. 73)).

Proposition 2. If r ∈ E1, then
(a) ∥u∥ = λ ⇐⇒ ϱr(

Du
λ ) = 1 for all u ∈ W1,r(z)

0 (Ω) \ {0}.
(b) ∥u∥ < 1 (resp. = 1, > 1) ⇐⇒ ϱr(Du) < 1 (resp. = 1, > 1).
(c) ∥u∥ < 1 =⇒ ∥u∥r+ ⩽ ϱr(Du) ⩽ ∥u∥r− .
(d) ∥u∥ > 1 =⇒ ∥u∥r− ⩽ ϱr(Du) ⩽ ∥u∥r+ .
(e) ∥u∥ → 0 (resp. → ∞) ⇐⇒ ϱr(Du) → 0 (resp. → ∞).

Given r ∈ E1 ∩ C1,0(Ω), we have

W1,r(z)
0 (Ω)∗ = W−1,r′(z)(Ω).

Let Ar : W1,r(z)
0 (Ω) → W−1,r′(z)(Ω) be the nonlinear operator defined by

⟨Ar(u), h⟩ =
∫

Ω
|Du|r(z)−2(Du, Dh)RN dz ∀u, h ∈ W1,r(z)

0 (Ω).

This operator has the following properties (see Gasiński-Papageorgiou [21] (Proposi-
tion 2.5)).

Proposition 3. The operator Ar : W1,r(z)
0 (Ω) → W−1,r′(z)(Ω) is bounded (maps bounded sets to

bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type (S)+, that is,
”un

w−→ u in W1,r(z)
0 (Ω) and lim sup

n→+∞
⟨Ar(un), un − u⟩ ⩽ 0, imply that un −→ u in W1,r(z)

0 (Ω)”.

In addition to the variable Lebesgue and Sobolev spaces, the anisotropic regularity
theory of Fan [22] will lead us to the space

C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

This is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0(Ω) : u ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u
∂n

∣∣
∂Ω < 0},

with ∂u
∂n = (Du, n)RN , where n is the outward unit normal on ∂Ω.
Let u ∈ L0(Ω), then we define

u+(z) = max{u(z), 0}, u−(z) = min{−u(z), 0} ∀z ∈ Ω.

Evidently, u± ∈ L0(Ω), u = u+ − u−, and |u| = u+ + u−. If u ∈ W1,r(z)
0 (Ω), then

u± ∈ W1,r(z)
0 (Ω). Given u, v ∈ L0(Ω), we write u ≺ v if for any compact set K ⊆ Ω,

we have
0 < cK ⩽ v(z)− u(z) for a.a. z ∈ K.

Note that if u, v ∈ C(Ω) and u(z) < v(z) for all z ∈ Ω, then u ≺ v.
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Consider the following nonlinear eigenvalue problem{
−∆qu(z) = λ̂1|u(z)|q−2u(z) in Ω,
u|∂Ω = 0, u > 0, 1 < q < ∞.

(1)

We know that (1) admits smallest eigenvalue λ1(q) > 0 which is isolated and simple.
It has the following variational characterization:

0 < λ̂1(q) = inf

{
∥Du∥q

q

∥u∥q
q

: u ∈ W1,q
0 (Ω), u ̸= 0

}
. (2)

The infimum in (2) is realized on the corresponding one dimensional eigenspace, the
elements of which have a fixed sign. By û1(q), we denote the positive, Lp-normalized
(that is, ∥û1(q)∥q = 1) eigenfunction corresponding to λ̂1(q) > 0. The isotropic nonlinear
regularity theory of Lieberman [23] implies that û1(q) ∈ C+ \ {0}. Finally, from the
nonlinear maximum principle (see, for example, Gasiński-Papageorgiou [24] (p. 736)), we
have that û1(q) ∈ intC+.

Our hypotheses on the data of (Pλ) are the following:

H0: p ∈ C0,1(Ω) and 1 < q < p− ⩽ p+ < N.

H1: f : Ω ×R −→ R is a Carathéodory function such that
(i) 0 ⩽ f (z, x) ⩽ a(z)(1 + xr(z)−1) for a.a. z ∈ Ω, all x ⩾ 0, with a ∈ L∞(Ω), r ∈ C(Ω) and
p(z) < r(z) < p∗(z) for all z ∈ Ω;
(ii) lim

x→+∞
f (z,x)

xp(z)−1 = +∞ uniformly for a.a. z ∈ Ω;

(iii) lim
x→0+

f (z,x)
xq−1 = 0 uniformly for a.a. z ∈ Ω;

(iv) for every ϱ > 0, there exists ξ̂ϱ > 0 such that for a.a. z ∈ Ω, the map x 7−→ ξ̂ϱxp(z)−1 −
f (z, x) is nondecreasing on [0, ϱ];
(v) for a.a. z ∈ Ω, x 7−→ f (z,x)

xq−1 is strictly increasing on (0,+∞).

Remark 1. Since we want to find positive solutions and the above conditions concern
the positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that
f (z, x) = 0 for a.a. z ∈ Ω, all x ⩽ 0. Hypothesis H1(iii) implies that f (z, 0) = 0 for a.a.
z ∈ Ω. In the isotropic case (that is, p is constant), if f (z, x) = f (x) = xr−1 for all x ⩾ 0,
with p < r < p∗, then we have the standard equidiffusive logistic (p, q) equation. More
generally, consider the function

f (z, x) =

{
(x+)p(z)−1 − (x+)r(z)−1 if x ⩽ 1,
xp(z)−1 ln x if x > 1,

with r ∈ C(Ω), p(z) < r(z) for all z ∈ Ω. Then, f (z, x) satisfies hypotheses H1.

In what follows, V : W1,p(z)
0 (Ω) −→ W−1,p′(Ω) is the nonlinear operator defined by

V(u) = Ap(u) + Aq(u) ∀u ∈ W1,p(z)
0 (Ω).

On account of Proposition 3, we know that V is bounded, continuous, strictly mono-
tone (thus maximal monotone too) and of type (S)+.

3. Positive Solutions

We start with a nonexistence result.

Proposition 4. If hypotheses H0, H1 hold and 0 < λ ⩽ λ̂1(q), then problem (Pλ) has no
positive solution.
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Proof. Arguing by contradiction, suppose that the parameter λ ∈ (0, λ̂1(q)] is admissible.
Then, we can find u ∈ W1,p(z)

0 (Ω) \ {0}, u ⩾ 0 such that

⟨V(u), h⟩ = λ
∫

Ω
uq−1h dz −

∫
Ω

f (z, u)h dz ∀h ∈ W1,p(z)(Ω). (3)

In (3), we use the test function h = u ∈ W1,p
0 (Ω). Then,

ϱp(Du) + ∥Du∥q
q ⩽ λ∥u∥q

q

(since f ⩾ 0), so (
1 − λ

λ̂1(q)

)
∥Du∥q

q < 0

(see (2) and note that ϱp(Du) < 0), a contradiction.

Next, we prove existence and uniqueness of positive solutions for λ > λ̂1(q).

Proposition 5. If hypotheses H0, H1 hold and λ > λ̂1(q), then problem (Pλ) has a unique positive
solution uλ ∈ intC+.

Proof. Let F(z, x) =
∫ x

0 f (z, s) ds and consider the C1-functional φλ : W1,p(z)
0 (Ω) −→ R

defined by

φλ(u) =
∫

Ω

1
p(z)

|Du|p(z) dz +
1
q
∥Du∥q

q −
λ

q
∥u+∥q

q +
∫

Ω
F(z, u+), dz

for all u ∈ W1,p(z)(Ω).
Since F ⩾ 0 and q < p−, we see that φλ is coercive. Furthermore, using Proposition 1,

we see that φλ is sequentially weakly lower semicontinuous. Therefore, by the Weierstrass–
Tonelli theorem, we can find uλ ∈ W1,p(z)

0 (Ω) such that

φλ(uλ) = inf
u∈W1,p(z)

0 (Ω)

φλ(u). (4)

On account of hypothesis H1(iii), given ε > 0, we can find δ > 0 such that

F(z, x) ⩽
ε

q
xq for a.a. z ∈ Ω, all 0 ⩽ x ⩽ δ. (5)

Recall that û1 = û1(q) ∈ intC+. So, for t ∈ (0, 1) small, we have

0 ⩽ tû1(z) ⩽ δ ∀z ∈ Ω. (6)

Using (5) and (6), we see that

φλ(tû1) ⩽
tp−

p−
ϱp(Dû1) +

tq

q
(λ̂1(q) + ε − λ)

(see (2) and recall that ∥û1∥q = 1).
Choosing ε ∈ (0, λ − λ̂1(q)), we obtain

φλ(tû1) ⩽ c1tp− − c2tq,

for some c1, c2 > 0. Since q < p− (see hypotheses H0), choosing t ∈ (0, 1) even smaller if
necessary, we have

φλ(tû1) < 0,
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so
φλ(uλ) < 0 = φλ(0)

(see (4)) and thus uλ ̸= 0.
From (4), we have

⟨φ′
λ(uλ), h⟩ = 0 ∀h ∈ W1,p(z)

0 (Ω),

so
⟨V(uλ), h⟩ =

∫
Ω
(λ(u+

λ )
q−1 − f (z, u+

λ ))h dz ∀h ∈ W1,p(z)
0 (Ω). (7)

In (7), we use the test function h = −u−
λ ∈ W1,p(z)

0 (Ω). Then,

ϱp(Du−
λ ) + ∥Du−

λ ∥
q
q = 0,

so uλ ⩾ 0, uλ ̸= 0.
From Fan-Zhao [25], we know that uλ ∈ L∞(Ω). Then, the anisotropic regular-

ity theory of Fan [22] (extension of the isotropic theory of Lieberman [23]) implies that
uλ ∈ C+ \ {0}. Finally, the anisotropic maximum principle (see Zhang [26] (Theorem 1.2))
and Papageorgiou-Rǎdulescu-Zhang [27] (Proposition A.2)) implies that uλ ∈ intC+.

Next, we show that this positive solution is unique. To this end, we introduce the
integral functional j : L1(Ω) −→ R = R∪ {+∞} defined by

j(u) =

{ ∫
Ω

1
p(z) |Du

1
q |p(z) dz + 1

q∥Du
1
q ∥q

q if u ⩾ 0, u
1
q ∈ W1,p(z)

0 (Ω),
+∞ otherwise.

From Takáč-Giacomoni [28] (Theorem 2.2), we know that j is convex. Let dom j =
{u ∈ L1(Ω) : j(u) < ∞} (the effective domain of j). If vλ is another positive solution of
(Pλ), then again we have vλ ∈ intC+. Using Proposition 4.1.22 of Papageorgiou-Rǎdulescu-
Repovš [29] (p. 274), we have

vλ

uλ
∈ L∞ and

uλ

vλ
∈ L∞. (8)

Let h = uq
λ − vq

λ ∈ C1
0(Ω). From (8), it follows that for t ∈ (0, 1) small, we have

uq
λ + th ∈ dom j and vq

λ + th ∈ dom j.

Then, exploiting the convexity of j, we can compute the directional derivatives of j at
uq

λ and vq
λ in the direction h. Using Theorem 2.5 of Takáč-Giacomoni [28], we have

j′(uq
λ)(h) =

1
q

∫
Ω

−∆p(z)uλ − ∆quλ

uq−1
λ

h dz =
1
q

∫
Ω

(
λ − f (z, uλ)

uq−1
λ

)
h dz

and

j′(vq
λ)(h) =

1
q

∫
Ω

−∆p(z)vλ − ∆qvλ

vq−1
λ

h dz =
1
q

∫
Ω

(
λ − f (z, vλ)

vq−1
λ

)
h dz.

The convexity of j implies the monotonicity of the directional derivative. Therefore,
we have

0 ⩽
∫

Ω

( f (z, vλ)

vq−1
λ

− f (z, uλ)

uq−1
λ

)
(uq

λ − vq
λ) dz ⩽ 0,

so uλ = vλ (see hypothesis H1(v)).
This proves the uniqueness of the positive solution of (Pλ) for all λ > λ̂1(q).
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4. Extremal Positive Solutions

If we drop hypothesis H1(v) (the strict monotonicity of the quotient map x 7−→ f (z,x)
xq−1

on (0,+∞)), then we cannot guarantee the uniqueness of the positive solution of (Pλ). In
this case, we can show the existence of the smallest positive solution (minimal positive
solution).

So, now our hypotheses on f (z, x) are the following:

H′
1 f : Ω ×R −→ R is a Carathéodory function satisfying hypotheses H1(i)–(iv).

These hypotheses imply that given ε ∈ (0, λ), we can find c3 = c3(ε) > 0 such that

0 ⩽ f (z, x) ⩽ εxq−1 + c3xr(z)−1 for a.a. z ∈ Ω, all x ⩾ 0. (9)

The growth restriction on f (z, ·) leads to the following auxiliary Dirichlet problem

(Qλ)

{
−∆p(z)u(z)− ∆qu(z) = (λ − ε)u(z)q−1 − c3u(z)r(z)−1 in Ω,
u|∂Ω = 0, u > 0.

Since ε ∈ (0, λ) and q < p− ⩽ p(z) < r(z), using Proposition 5, we have the following
existence and uniqueness result for problem (Qλ).

Proposition 6. If hypotheses H0 hold and λ > λ̂1(q), then problem (Qλ) has a unique solution
uλ ∈ intC+.

Let Sλ denote the set of positive solutions of problem (Pλ). We already know that

λ > λ̂1(q) =⇒ ∅ ̸= Sλ ⊆ C+.

The unique solution uλ ∈ intC+ of (Qλ) provides a lower bound for the elements
of Sλ.

Proposition 7. If hypotheses H0, H′
1 hold and λ > λ̂1(q), then uλ ⩽ u for all u ∈ Sλ.

Proof. Let u0 ∈ Sλ ⊆ intC+. We introduce the Carathéodory function kλ(z, x) defined by

kλ(z, x) =

{
(λ − ε)(x+)q−1 − c3(x+)r(z)−1 if x ⩽ u0(z),
(λ − ε)u0(z)q−1 − c3u0(z)r(z)−1 if x > u0(z).

(10)

We set Kλ(z, x) =
∫ x

0 kλ(z, s) ds and consider the C1-functional ψλ : W1,p
0 (Ω) −→ R

defined by

ψλ(u) =
∫

Ω

1
p(z)

|Du|p(z) dz +
1
q
∥Du∥q

q −
∫

Ω
Kλ(z, u) dz ∀u ∈ W1,p(z)

0 (Ω).

From (10), we see that ψλ is coercive. Furthermore, using Proposition 1, we see that ψλ

is sequentially weakly lower semicontinuous. So, we can find ũλ ∈ W1,p(z)
0 (Ω) such that

ψλ(ũλ) = inf
u∈W1,p(z)

0 (Ω)

ψλ(u). (11)

We know that u0 ∈ intC+. Using Proposition 4.1.22 of Papageorgiou-Rǎdulescu-
Repovš [29] (p. 274), we can find t ∈ (0, 1) small so that

0 ⩽ tû1 ⩽ u0
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(recall that û1 = û1(q) ∈ intC+). Then, from (10) and since q < p−, we see that

ψλ(tû1) < 0,

so
ψλ(ũλ) < 0 = ψλ(0)

(see (11)) and thus ũλ ̸= 0.
From (11), we have

⟨ψ′
λ(ũλ), h⟩ = 0 ∀h ∈ W1,p

0 (Ω),

so
⟨V(ũλ), h⟩ =

∫
Ω

kλ(z, ũλ)h dz ∀h ∈ W1,p(z)(Ω). (12)

In (12), we use h = −ũ−
λ ∈ W1,p(z)

0 (Ω) and obtain

ϱp(Dũ−
λ ) ⩽ 0,

so ũλ ⩾ 0, ũλ ̸= 0 (see Proposition 2).
Next, in (12) we use h = (ũλ − u0)

+ ∈ W1,p(z)
0 (Ω). Then,

⟨V(ũλ), (ũλ − u0)
+⟩

=
∫

Ω

(
(λ − ε)uq−1

0 − c3ur(z)−1
0

)
(ũλ − u0)

+ dz

⩽
∫

Ω

(
λuq−1

0 − f (z, u0)
)
(ũλ − u0)

+ dz

= ⟨V(u0), (ũλ − u0)
+⟩

(see (10), (18) and since u0 ∈ Sλ), so ũλ ⩽ u0 (see Proposition 3).
Therefore, we have 0 ⩽ ũλ ⩽ u0, ũλ ̸= 0. This fact, together with (10), (12), and

Proposition 6, implies that
ũλ = uλ,

so uλ ⩽ u for all u ∈ Sλ.

Using this lower bound, we can show the existence of a smallest (minimal) positive solution.

Proposition 8. If hypotheses H0, H′
1 hold and λ > λ̂1(q), then problem (Pλ) has a smallest

positive solution u∗
λ ∈ intC+; that is, u∗

λ ⩽ u for all u ∈ Sλ.

Proof. The set Sλ is downwardly directed (that is, if u1, u2 ∈ Sλ, then there exists u ∈ Sλ

such that u ⩽ u1, u ⩽ u2; see Filippakis-Papageorgiou [30]). Using Theorem 5.109 of
Hu-Papageorgiou [31] (p. 308), we can find a decreasing sequence {un}n∈N ⊆ Sλ such that

inf Sλ = inf
n∈N

un.

We have

⟨V(un), h⟩ =
∫

Ω

(
λuq−1

n − f (z, un)
)
h dz ∀h ∈ W1,p(z)

0 (Ω), n ∈ N, (13)

uλ ⩽ un ⩽ u1 ∀n ∈ N. (14)

In (13), we choose the test function h = un ∈ W1,p(z)
0 (Ω). Using (14) and hypothesis

H′
1(i), we see that the sequence {un}n∈N ⊆ W1.p(z)

0 (Ω) is bounded.
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So, we may assume that

un
w−→ u∗

λ in W1,p(z)
0 (Ω), un −→ u∗

λ in Lr(z)(Ω), (15)

uλ ⩽ u∗
λ (16)

(see (14)).
In (13), we use h = un − u∗

λ ∈ W1,p(z)(Ω), pass to the limit as n → +∞ and use (15).
Then,

lim
n→+∞

⟨V(un), un − u∗
λ⟩ = 0,

so
un −→ u∗

λ in W1,p(z)
0 (Ω)

and thus
⟨V(u∗

λ), h⟩ =
∫

Ω

(
λ(u∗

λ)
q−1 − f (z, u∗

λ)
)
h dz ∀h ∈ W1,p(z)

0 (Ω)

(see (13)), so u∗
λ ∈ Sλ, u∗

λ = inf Sλ.

We examine the monotonicity of the minimal solution map λ 7−→ u∗
λ and determine

its asymptotic behaviour as λ → λ̂1(q)+.

Proposition 9. If hypotheses H0, H′
1 hold, then

(a) the map λ 7−→ u∗
λ is strictly increasing on (λ̂1(q),+∞)); that is,

λ̂1(q) < µ < λ =⇒ u∗
λ − u∗

µ ∈ intC+;

(b) if λ → λ̂1(q)+, then u∗
λ → 0 in C1

0(Ω).

Proof. (a) Let λ̂1(q) < µ < λ. First, we show that

uµ ⩽ u∗
µ ⩽ u∗

λ. (17)

The inequality uµ ⩽ u∗
µ follows from Proposition 7. Next, we show the inequality

u∗
µ ⩽ u∗

λ in (17). Note that

−∆p(z)u
∗
λ − ∆qu∗

λ = λ(u∗
λ)

q−1 − f (z, u∗
λ) ⩾ µ(u∗

λ)
q−1 − f (z, u∗

λ) in Ω. (18)

We introduce the Carathéodory function βµ : Ω ×R −→ R defined by

βµ(z, x) =
{

µ(x+)q−1 − f (z, x+) if x ⩽ u∗
λ(z),

µu∗
λ(z)

q−1 − f (z, u∗
λ(z)) if x > u∗

λ(z).
(19)

We set Bµ(z, x) =
∫ x

0 βµ(z, s) ds and consider the C1-functional ψ̂µ : W1,p(z)
0 (Ω) → R

defined by

ψ̂µ(u) =
∫

Ω

1
p(z)

|Du|p(z) dz +
1
q
∥Du∥q

q −
∫

Ω
Bµ(z, u) dz ∀u ∈ W1,p(z)

0 (Ω).

As in the proof of Proposition (7), using (19) and the Weierstrass–Tonelli theorem, we
can find uµ ∈ W1,p(z)

0 (Ω) such that

ψ̂µ(uµ) = inf
u∈W1,p(z)

0 (Ω)

ψ̂µ(u), uµ ⩽ u∗
λ. (20)

Since uµ is a critical point of ψ̂µ (see (20)), from (19) and (20), we see that uµ ∈ Sµ and
so u∗

µ ⩽ uµ ⩽ u∗
µ. This proves (17).



Mathematics 2024, 12, 1280 11 of 13

Let ϱ = ∥u∗
λ∥∞ and let ξ̂ϱ > 0 be as postulated by hypothesis H′

1(iv). We have

−∆p(z)u
∗
µ − ∆qu∗

µ + ξ̂ϱ(u∗
µ)

p(z)−1

= µ(u∗
µ)

q−1 − f (z, u∗
µ) + ξ̂ϱ(u∗

µ)
p(z)−1

⩽ µ(u∗
λ)

q−1 − f (z, u∗
λ) + ξ̂ϱ(u∗

λ)
p(z)−1

⩽ −∆p(z)u
∗
λ − ∆qu∗

λ + ξ̂ϱ(u∗
λ)

p(z)−1 (21)

(see (17) and (18)). Since u∗
µ ∈ intC+ and µ < λ, we see that 0 ≺ (λ − µ)u∗

µ. So, from (21)
and Proposition 2.3 of Papageorgiou-Winkert [32], we infer that

u∗
λ − u∗

µ ∈ intC+,

therefore the map λ 7−→ u∗
λ is strictly increasing on (λ̂1(q),+∞).

(b) Let λ > λ̂1(q). We have

⟨V(u∗
λ), h⟩ =

∫
Ω

(
λ(u∗

λ)
q−1 − f (z, u∗

λ)
)
h dz ∀h ∈ W1,p(z)

0 (Ω).

Using the test function h = u∗
λ ∈ W1,p(z)

0 (Ω), we obtain

ϱp(Du∗
λ) + ∥Du∗

λ∥
q
q ⩽ λ∥u∗

λ∥
q
q,

so
ϱp(Du∗

λ) ⩽ (λ − λ̂1(q))∥u∗
λ∥

q
q

(see 2), so
u∗

λ → 0 in W1,p(z)
0 (Ω) as λ → λ̂1(q)+. (22)

Note that for λ ∈ (λ̂1(q), ϑ], we have u∗
λ ⩽ u∗

ϑ ∈ intC+ and so the anisotropic regularity
theory of Fan [22] implies that there exist α ∈ (0, 1) and c4 > 0 such that

u∗
λ ∈ C1,α

0 (Ω) and ∥u∗
λ∥C1,α

0 (Ω)
⩽ c4 ∀λ ∈ (λ̂1(q), ϑ].

Then, the compactness of the embedding C1,α
0 (Ω) ⊆ C1

0(Ω) and (22) imply that

u∗
λ → 0 in C1

0(Ω) as λ → λ̂1(q)+.

5. Main Theorem—Conclusions

Summarizing our findings in this paper, we can state the following theorem concerning
problem (Pλ).

Theorem 1. (a) If hypotheses H0, H1 hold and λ > λ̂1(q), then problem (Pλ) has a unique positive
solution uλ ∈ intC+.

(b) If hypotheses H0, H′
1 hold and λ > λ̂1(q), then problem (Pλ) has the smallest positive

solution u∗
λ ∈ intC+, the map λ 7−→ u∗

λ is strictly increasing and

u∗
λ → 0 in C1

0(Ω) as λ → λ̂1(q)+.

Conclusions

In this paper, we studied anisotropic logistic equations of the equidiffusive type.
Apparently, this is the first work of this kind in the literature. For equations driven by the
(p(z), q)-Laplacian, we show that we can have the uniqueness of the positive solution and
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more generally we show the existence of a minimal positive solution u∗
λ and determine the

properties of the map λ 7−→ u∗
λ.

If the second exponent is variable too, then we encounter serious difficulties and it is
not clear to us how we can overcome them. First, the difficulty is that the spectral properties
of (−∆q(z), W1,q(z)

0 (Ω)) are more complicated due to the nonhomogeneity of the operator.
We need restrictive monotonicity conditions on q (see Fan-Zhang-Zao [33]). The second and
more serious difficulty is that the anisotropic Diaz-Saa inequality of Takáč-Giacomoni [28],
does not work since q ̸= q−. So, to prove the uniqueness and existence of minimal solutions,
we need to come up with a new approach. We do not know if this is possible.
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16. Gasiński, L.; Papageorgiou, N.S. Double phase logistic equations with superdiffusive reaction. Nonlinear Anal. Real World Appl.

2023, 70, 103782. [CrossRef]
17. Iannizzotto, A.; Mosconi, S.; Papageorgiou, N.S. On the logistic equation for the fractional p-Laplacian. Math. Nachr. 2023, 296,

1451–1468. [CrossRef]
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