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Abstract: In recent years, with the rapid development of the Internet of Things, large-scale botnet
attacks have occurred frequently and have become an important challenge to network security. As
artificial intelligence technology continues to evolve, intelligent detection solutions for botnets are
constantly emerging. Although graph neural networks are widely used for botnet detection, directly
handling large-scale botnet data becomes inefficient and challenging as the number of infected
hosts increases and the network scale expands. Especially in the process of node level learning and
inference, a large number of nodes and edges need to be processed, leading to a significant increase
in computational complexity and posing new challenges to network security. This paper presents
a novel approach that can accurately identify diverse intricate botnet architectures in extensive IoT
networks based on the aforementioned circumstance. By utilizing GraphSAINT to process large-scale
IoT botnet graph data, efficient and unbiased subgraph sampling has been achieved. In addition,
a solution with enhanced information representation capability has been developed based on the
Graph Isomorphism Network (GIN) for botnet detection. Compared with the five currently popular
graph neural network (GNN) models, our approach has been tested on C2, P2P, and Chord datasets,
and higher accuracy has been achieved.

Keywords: botnet detection; GraphSAINT; subgraph sampling; Graph Isomorphism Network

MSC: 94C15

1. Introduction

The Internet of Things (IoT) [1] refers to the technology that connects physical devices,
sensors, software, and electronic devices through the Internet to enable communication,
data exchange, and remote control. Due to the increasing demand for IoT connectivity and
the emergence of IoT frameworks for large-scale traffic [2], alongside the growing demand
for improving automation and data-driven decision-making, IoT devices have penetrated
into various fields of the industry and society [3]. Industry experts predict a significant
increase in the global deployment of IoT devices. It is anticipated that the worldwide
quantity of IoT devices will achieve approximately 29 billion by the year 2030 [4] (Figure 1).

However, as the demand for IoT devices continues to increase, security issues have
become increasingly severe. In 2022, the number of IoT vulnerabilities increased by 57% [5]
compared to previous years, and in 2023, this trend continued with a high growth rate. In the
first half of the year alone, the number of new vulnerabilities reached 641, with the majority
targeting critical areas closely linked to the national economy and people’s livelihoods, such
as energy and water conservation [6]. These vulnerabilities render IoT devices susceptible to
malicious control by attackers, creating fertile ground for the formation of large-scale botnet [7].
The increasing infection of these devices with malicious applications and manipulation by
attackers has led to a rapid spread of botnet nodes. This, in turn, has resulted in a variety of
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cybersecurity incidents, including DDoS assaults [8], which have caused significant damage
to users of IoT devices. Consequently, efficiently identifying large-scale IoT botnet nodes has
become a prominent research focus in academia as well as industry [9].

Figure 1. Evolution of the number of global IoT devices from 2019 to 2021 and predicted trends up
to 2030.

Botnets consist of a substantial quantity of compromised computers and represent a
significant peril to IoT security [10]. Attackers use a variety of means to break into these
computers as well as convert them into puppet hosts controlled by the attacker’s commands.
As depicted in Figure 2, Once the attacker successfully infiltrates networked devices, botnet
programs will be load onto these devices. After becoming part of botnet, these infected
devices will regularly communicate with command and control servers, reporting device
information to the controller and receiving control instructions for scanning the current
network environment or updating malicious programs [11]. Ultimately, the attacker issues
malicious attack instructions to launch attacks on IoT devices.

With the continuous development of complex and diversified network scenarios,
the types of network security threats continue to increase, intensifying the harmfulness
further. The means and methods become more covert and innovative, posing new and
significant challenges to network information security defense measures [12]. According
to a report from the CenturyLink Threat Research Laboratory, in the initial six months of
2019, they observed an average of 1.2 million malicious threats daily, an increase of nearly
200,000 compared to 2017, representing a growth of approximately 500%. Particularly
noteworthy were the botnet threats, surpassing 18,000 per day [13]. NSFOCUS released the
2020 BOTNET Trend Report [14], which highlighted that IoT devices are still the primary
target of various vulnerability attacks, and attackers exploit a wide range of vulnerabilities
involving different types of devices and protocols. Botnets, as the “transmission tools”
of viruses, are large attack platforms that have evolved from malicious software such
as worms, Trojans, and backdoor tools. Hackers can utilize botnet platforms to control
numerous hosts and carry out a series of large-scale attacks, including sensitive information
theft, Bitcoin mining, tariff consumption, spam, etc., thereby doubling the harm caused by
these attacks. Botnets possess an operational principle that results in their distinct qualities
of rapid propagation, extensive infection scale, and formidable attack potency, rendering
them a highly significant menace within the realm of network security [15]. Since Mi-
rai [16] caused an eight-hour internet outage on the East Coast of the United States in 2016,
subsequent botnet attacks have experienced an explosive growth. For example, in 2017,
Reaper [17] infected about 10,000 devices every day; in 2018, BCMUPnPHunter [18] began
to establish a proxy network for communication; in 2019, Pinkbot and Mozi infected a large
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number of devices respectively [19,20]; in 2021, Gafgyt_Tor [21] used the onion network
for anonymous communication; in subsequent years, BlackMoon [22] and Dark Frost [23]
appeared one after another, adopting more complex technical means. The proliferation
of these Internet of Things (IoT) botnets has greatly enhanced the effectiveness of DDOS
attacks, presenting a grave menace to the security of worldwide networks. In light of the
increasing magnitude of IoT botnets, it is imperative to devise techniques that can promptly
and effectively identify them. The majority of current botnet detection technologies depend
on machine learning or deep learning techniques. Beigi et al. [24] investigated the efficacy
of attributes such as source port, random reconnection, communication time, and protocol
in detecting botnets. However, utilizing such attributes necessitates researchers possessing
ample domain expertise and select the most efficient ones for trial. Deep learning [25]
has advanced rapidly in the past decade. Due to its powerful representation learning
ability, deep learning can discover informative features from complex representations and
is particularly suitable for feature extraction in the field of botnet detection [26]. Using
deep learning technology for botnet detection can free human experts from the tedious task
of manually defining botnet characteristics, greatly improving detection accuracy while
also saving a significant amount of time and cost [27]. As a form of deep learning, graph
neural networks (GNNs) demonstrate strong adaptability in addressing botnet-related
problems. In view of the complex relationships between entities that graphs can capture,
the graph neural network is especially suited for describing intricate network structures
and can effectively extract features and generalize, making it a potent tool for analyzing
network behavior [28–30]. However, as the quantity of infected hosts within the botnet
rises, the magnitude of the botnet will persistently grow, causing the complexity of the
botnet topology to increase. Graph neural networks face challenges in handling large-scale
graph data, such as high computational complexity and potential resource limitations when
processing graphs with billions of nodes simultaneously [31]. Furthermore, the botnet de-
tection methods based on GNNs lack considerations for graph isomorphism issues, failing
to effectively capture information from neighboring nodes and analyze the relationships
between nodes and their neighborhoods. Consequently, detection of large-scale graph data
using graph neural networks still suffers from a relatively high false-positive rate.

Figure 2. The process of botnet attack activity.
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In this study, a botnet detection method is proposed by utilizing the highly effective
Graph Isomorphism Network. The method specifically focuses on identifying large-scale
IoT botnet communities efficiently. To address inefficiencies in training GNN on large-scale
graph data, we employ subgraph sampling through GraphSAINT [32] to preprocess the
large graph data into easier-to-process subgraphs. To better enhance the model’s ability
to generalize by leveraging information from neighboring nodes, the GIN [33] algorithm
is employed. The GIN has a superior capability to capture adjacent nodes and express
information. It is utilized to train and aggregate subgraphs for the purpose of detecting
botnet attacks.

In brief, the paper’s main contributions can be outlined as follows:

1. An efficient botnet detection solution is proposed for complex botnet structures in
large-scale IoT networks. This scheme only needs to utilize the aggregated connection
information of network traffic to achieve detection, which has high availability in
actual deployment.

2. We applied GraphSAINT to process large-scale IoT botnet graph data, achieving effi-
cient and unbiased data processing. Furthermore, we developed a graph isomorphism
network-based solution with enhanced information representation capabilities for
botnet detection.

3. Developed and tested with C2, P2P, and chord datasets, the prototype showcases
exceptional accuracy, reaching 99.97%, surpassing existing graph-based models and
botnet detection schemes that have been suggested in recent years.

The structure of this paper is as follows:
Section 2 reviews previous research results. Section 3 introduces relevant background

knowledge and methods. Section 4 elaborates on the proposed solution. Section 5 intro-
duces the evaluation metrics used in experiments. Section 6 describes the datasets and
parameters used in experiments, and conducts detailed analyses of the experimental results.
Finally, the conclusion is presented in Section 7.

2. Related Works

In this section, previous research and related works are discussed, covering research
results in botnet detection based on machine learning, deep learning, and graph-based
methods.

2.1. Machine Learning-Based Botnet Detection

In early research, the discovery and detection of botnets often relied on machine
learning algorithms, including but not limited to k-means [34], support vector machines [35],
and random forests [36]. Zeidanloo et al. [37] proposed a botnet detection framework
that does not require any prior knowledge of the botnet domain. By using the k-means
clustering method, this framework identifies similar communication patterns and behaviors
among hosts in the main group of at least one malicious activity, thus detecting botnets.
Bullard et al. [38] collected flow-based information, including but not limited to source
positive address, destination positive address, source port, destination port, duration,
which were subsequently used to detect individuals and host groups exhibiting similar
behavior. Karasaridis et al. [39] devised a methodology based on k-means that utilizes
a scalable, non-intrusive algorithm to scrutinize substantial volumes of network traffic
data. Gu et al. [40] introduced BotHunter, a anomaly-based botnet detection system that
is immune to the influence of botnet protocols and topology. BotHunter leverages the
fundamental definition and attributes of botnets to identify similar harmful activities and
patterns of command and control (C&C) communication. This solution is specifically
used for traffic scanning and anomaly detection of load byte distribution, using clustering
methods to find clusters with similar communication patterns. Amini et al. [41] employed
traffic attributes such as IP, port, packet event time, and number of bytes per packet to
scan data, set filtering rules based on network flow data, and use hierarchical clustering to
obtain botnets. Azab et al. [42] utilized the Network Information Flow Analysis framework
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to extract a collection of network traffic attributes for the purpose of C&C channels and
patterns in hostile traffic. Presently, botnet detection solutions that leverage machine
learning typically necessitate a substantial understanding of the field and the use of expert
knowledge for extracting features.

2.2. Deep Learning-Based Botnet Detection

Liu et al. [43] used damping increment statistics to extract the basic traffic characteris-
tics of networked devices, and used the Minimum Component Analysis (MCA) algorithm
based on Temporal Adaptive Module (TAM) to map the features onto images. Convolu-
tional neural network (CNN) models were used to learn the dataset. This study mainly
focuses on the final stage of botnets. Hence, to efficiently mitigate the harm inflicted by
botnets, it is crucial for the detection model to possess a high level of real-time performance.
However, this study has a high time cost and has not proven its ability to detect new
types of attacks. Meidan et al. [44] introduced a IoT abnormal traffic detection scheme,
which extracts statistical features of benign IoT traffic behavior snapshots and uses deep
autoencoders to detect abnormal network traffic. This literature mainly focuses on detect-
ing botnets from the perspective of benign traffic. The author deployed two types of IoT
botnets in the laboratory: BASHLITE and Mirai, and extracted 23 features from five time
windows, totaling 115 features. The extracted features may affect the performance of the
model, and whether they are suitable for IoT devices in practical applications remains
to be discussed. Javed et al. [45] introduced an artificial intelligence-based approach for
identifying and detecting malicious network traffic. The researchers utilized subsets of
the N-BaloT dataset to investigate the efficacy of MLP and ANN learning algorithms in
accurately identifying the network traffic generated by Mirai and Bashlite botnets that were
infected with botnets. The MLP model is susceptible to feature scaling and necessitates the
adjustment of several hyperparameters, including the number of hidden layers, neurons,
and iterations. This adjustment process can lead to significant processing expenses when
dealing with intricate security models. Ge et al. [46] developed a feedforward neural
network model that incorporates embedding layers to do multi-class classification, called
the mFNN model, and used transfer learning to establish a feedforward neural network
model for binary classification, called the bFNN model. The model’s performance was
assessed using the BoT-IoT dataset, revealing a significant level of accuracy in classifying
both binary and multiple categories. Present techniques for identifying botnet attacks using
deep learning involve extracting characteristics of attack vectors, employing autoencoders
to cluster the extracted characteristics, and utilizing RNN, BP, and other approaches for
botnet identification. Nevertheless, the task of handling extensive data with multiple
dimensions is intrinsically intricate and necessitates substantial computational resources
and storage space.

2.3. Graph-Based Botnet Detection

Recently, some researchers have endeavored to identify botnets by analyzing their
communication topology. Generally speaking, botnet detection methods based on graph
analysis can effectively capture the topology, interaction behavior, and communication
patterns [47] between hosts, and these methods are often more effective than flow-based
methods. The utilization of graph-based technology, particularly GNN models, offers
numerous benefits. It has the capability to accurately capture the intricate interaction
connections between nodes, enhance the model’s ability to generalize, efficiently extract
features, and decrease the need for manual feature engineering. GNNs have shown remark-
able adaptability and processing capabilities, particularly when dealing with large-scale
botnet attacks. Graph-based features are superior to flow-based features in identifying ma-
licious attacks on botnets due to their ability to reduce the requirement for cross-comparing
flows across datasets. Wang et al. [48] offer BotMark, an automated approach, for detecting
botnets, which uses a combination of flow-based and graph-based analysis of network
traffic characteristics. To overcome multi-architecture challenges and avoid complex con-
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trol flow graph analysis, Nguyen et al. [49] propose PSI-Graph, a tool for detecting IoT
botnets by extracting high-level functional graphs. Chowdhury et al. [50] examined seven
graph-based characteristics that could potentially be linked to botnet operations. A self-
organizing map (SOM) was utilized to create clusters of nodes using these graph properties,
facilitating rapid identification of bot nodes. To model the interdependencies between
botnet entities and learn the interaction behavior patterns among bots, Zhao et al. presented
Bot-AHGCN [51], which constructs a multi-attribute heterogeneous information network.
XG-BoT is a deep graph neural network model introduced by Lo et al. [52] for the purpose
of detecting botnet nodes in a way that can be easily understood and explained. The
model comprises a botnet detector and an explanation for automated forensics, facilitating
the efficient identification of malicious botnet nodes in huge networks. Meng et al. [53]
implemented a botnet detection model using GCN to deeply fuse traffic and topology
features. Islam, R. et al. [54] proposed anomaly detection for industrial control LANs.
Graph scale metrics such as the number of nodes, edges, degrees, and cycles are embedded
into vectors. Subsequently, using chi-square testing, the discrepancy between the estimated
normal distribution within a secure window and the distribution obtained within a test
window is evaluated. If a significant difference is observed between these distributions, it
may indicate abnormal network attack behavior. This research enhances the precision of
identifying botnet nodes and broadens the utilization of graph neural networks in botnet
detection by merging GraphSAINT and the GIN model.

3. Background and Materials

To illustrate our motivation, we first introduce the topology of botnets in this section.
Next, a comprehensive explanation of the GraphSAINT and GNN algorithms is presented
to facilitate comprehension of the following sections.

3.1. Botnet Architecture and Life Cycle

A botnet is a network created by infecting numerous hosts using one or more means
of spreading, allowing the controller to have one-to-many control over the infected hosts.
Figure 3 shows the botnet’s command and control architecture, which categorizes the
three main methods of inputting data and instructions into the bot programs as either
centralized [55], decentralized [56], or hybrid [57].

Figure 3. Botnet architecture.

Different botnet architectures carry out different communications and behaviors, but
generally speaking, the life cycle is similar and is generally divided into five stages [58]: the
scanning and propagation stage, connection stage, latent stage, attack stage, maintenance
and upgrade stage.

(1) Scanning and propagation stage: In this stage, attackers or botnets search for
vulnerable and vulnerable devices on the Internet to obtain their permission control devices.
After finding such devices, they infect them through various strategies. These strategies
include using brute force or exploiting vulnerabilities, then downloading the necessary
malware in the target host to control them, and the bot program runs on the target device,
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at which time the target device has become a botnet host. In order to prevent the botnet
host from being harmed by other malware and prevent other malware from using the
botnet host’s few resources, the botnet program often kills the malware.

(2) Connection stage: During this phase, the host of the botnet makes a connection
with the C&C channel, thereby joining the botnet.

(3) Latent stage: In order to prevent the botnet host from being discovered, the bot will
generally remain silent, try to make itself the same as normal traffic, evade detection by the
anomaly detection system, and wait for instructions from the controller. The botnet host will
occasionally communicate with the controller and send it the host’s status. Despite evasion
techniques, traces of botnet communications will remain in the network environment.

(4) Attack stage: The botnet host receives instructions from the botnet controller to
launch an attack.

(5) Maintenance and upgrade phase: The botnet hosts receive update and upgrade
instructions from the botnet controller, with the purpose of maintaining these botnet hosts
in order to evade detection, modify script errors, change C&C server information, add new
functions, etc.

Facing the characteristics of complex and heterogeneous architecture, massive scale
of controlled devices, flexible and diverse control methods, as well as the continuous
emergence of new variants in IoT botnet networks, efficient detection of large-scale botnets
is crucial to mitigate or eliminate the security threats posed by large-scale attacks.

3.2. GraphSAINT

GraphSAINT [32] is a sampling method for graph neural networks. Due to the
computational and storage complexity of large-scale graph data, it is particularly difficult
to process data by graph neural networks directly. GraphSAINT significantly reduces
computational and storage requirements by selecting sampled subgraphs of the graph
data for training. The calculations on each minibatch are performed on the sampling
subgraphs, and the “neighbor explosion” phenomenon will not occur. At the same time,
the proposed sampling method is theoretically unbiased and has minimum variance, which
can better maintain the characteristics of node representation, reduce the variance caused
by sampling, and improve the sampling efficiency and model training performance. In
addition, this model decouples sampling and the GNN and can be combined with other
GNN models based on the proposed sampling method. GraphSAINT uses a sampler to
extract a graph from Graph G firstly and then constructs a graph neural network on that
subgraph. By using the SAMPLE sampler and two regularization coefficients, unbiasedness
and minimum variance are ensured.

In the sampling subgraph Vs, the aggregation process of the GraphSAINT design node
v ∈ Vs is shown in Formula (1). The aggregation method of GNN is redefined to eliminate
the deviation caused by sampling:

ζ
(l+1)
v = ∑

v∈V

Ãv,u

αu,v
(W(l))Tx(l)u 1u|v = ∑

v∈V

Ãv,u

αu,v
x̃(l)u 1u|v (1)

αu,v is a parameter designed to aggregate regularization and eliminate bias; Ã is a
normalized adjacency matrix; W(l) is a l-layer aggregation parameter. 1u|v ∈ {0, 1} is the
sampling metric. If the edges between u and v have been sampled into a subgraph, it is 1;
otherwise, it is 0 (provided that v has been sampled into a subgraph). By integrating α, the
numerical value is defined as the probability that the sampling metric 1u|v has a value of 1,
which is α = P(1u|v = 1) and can cause the two to cancel out in the expected value.

Due to the small number of variations represented by each node, the hidden state
represented by all nodes in GraphSAINT adds up to a total estimator:

ζ = ∑
ℓ

∑
v∈Gs

ζ
(ℓ)
v
pv

(2)
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pv is the probability of a node being sampled, and division is used to avoid excessive
influence from high probability nodes. Calculate the variance of this estimator and obtain
the minimum variance (using an edge sampler as an example):

pe =
m

∑e′
∥∥∥∑ℓ b(ℓ)e′

∥∥∥
∥∥∥∥∥∑

ℓ

b(ℓ)e

∥∥∥∥∥ (3)

b(ℓ)e = Ãv,u x̃(ℓ−1)
u + Ãu,v x̃(ℓ−1)

v (4)

pe is the edge sampling probability, m is the number of node samples, b is the edge
feature, Ã is the adjacency matrix, and x̃ is the node representation. In order to enable the
sampler to take a sample image before the training starts, the probability of the sampler is
simplified as:

pe ∝ Ãv,u + Ãu,v (5)

In general, GraphSAINT is a kind of graph neural network training method based on
sampling graph. By analyzing the estimation bias and variance of the active output and
loss on the minibatch, regularization and sampling methods are proposed to improve the
training effect and overcome the problem of “neighbor explosion”.

3.3. Graph Neural Network

The graph neural network (GNN) is a neural network architecture that is similar to
a convolutional neural network (CNN) but specifically designed to process irregular and
unstructured graph input. The goal of the GNN is to acquire the representation of each
node inside a graph, extract the nodes’ or graph’s characteristics over several layers, and
subsequently utilize these final features in sub-models, such as a multi-layer perceptron,
for modeling purposes. The GNN utilizes graph structure and iteratively updates node
representations from node neighborhoods through convolutional operations or equivalent
methods. Following k aggregation iterations, nodes are denoted by their transformed
feature vectors, which encapsulate the structural details within the k-th neighborhood
of the node to acquire the ultimate feature representation of the node or graph. Using
G = (V, E) to represent a graph, where the feature vector of node v in V is Xv. The GNN
utilizes the structure and node features of a graph to learn the feature vector hv of nodes
in the graph and the representation hG of the entire graph, which follows a neighborhood
aggregation strategy to update its node representation. The k-th layer of GNN [33] can be
represented as:

a(k)ν = AGGREGATE(k)({h(k−1)
u : u ∈ N(v)}) (6)

h(k)v = COMBINE(k)(h(k−1)
u , a(k)v ) (7)

Among them, h(k)v is the feature vector of node v in the k-th layer, initialized using
h(0)v = Xv. N(v) is a neighboring node of node v. For graph-level tasks, an additional
READOUT function is needed to aggregate node features to obtain graph-level features:

hG = READOUT
({

h(K)v |v ∈ G
})

(8)

The key to the model lies in the specific selection of functions AGGREGATE(k) and
COMBINE(k), which directly affect the aggregation efficiency of the model. In 2019,
Keyulu Xu et al. introduced the Graph Isomorphism Network (GIN) model [33], which
is constructed based on the ideas of the WL test algorithm. Different from the traditional
GNN model, the GIN can handle the isomorphism between nodes in the graph, which
allows the model to better learn the global characteristics of the graph when the nodes are
not numbered. In Formulas (6) and (7), the GIN captures neighborhood node information
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through the SUM aggregator and learns the node representation after k iterations through
the multi-layer perceptron. The architecture of the GIN model is easy to extend, and it has
been widely used in various graph data learning tasks. This article utilizes the GIN model
to train and acquire the representation of individual nodes, derive the vector representation
of the graph, and forecast the label category of the graph nodes. The particular usage
information will be described in the Methodology section.

4. Methodology
4.1. Overview

In this section, a scheme for constructing botnet community detection is described,
using GraphSAINT and the Graph Isomorphism Network (GIN). Figure 4 depicts the
complete process of forward propagation. The process consists of the subsequent steps:

Figure 4. Overview of the proposed scheme.

Step 1: Integrate the initial node embedding into the input model. Install network
monitoring probes at designated places to get traffic data from monitoring devices. Extract
the IP and other data characteristics from the traffic information and represent them as
nodes and edges accordingly. Construct the graph data structure representation of the
network traffic and carry out data preprocessing.

Step 2: During the model training phase, we employed a random edge sampler
designed by GraphSAINT. This sampler randomly selects a subset of edges along with
their connected nodes from the original graph, forming subgraphs, which are then utilized
as training samples for gradient computation and updating model parameters. With the
aid of GraphSAINT’s lightweight random edge sampler, we are able to train GNN models
with more layers on smaller graphs, thereby accelerating the convergence speed of the
model and consequently reducing both training time and cost. By using this meticulous
sampling technique, large-scale graph data can be processed more easily by being divided
into smaller chunks that are easier to handle and analyze.

Step 3: The processed subgraphs are input to the GIN module for training, which
converts the input graph into node feature vectors and aggregates global graph information
through multi-layer graph convolution operations. The advantage of the GIN is that it can
effectively capture the relationships between nodes and global graph information.

Step 4: Finally, the node representations of each layer are summarized using the
CONCAT function to obtain the representation of the entire graph, which is used for the
final botnet detection.
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4.2. Data Preprocessing

In the context of dataset analysis, a collection of network flows can be viewed as graph
data, with each network host IP address representing graph nodes and network communi-
cation flows between hosts representing edges. The original dataset forms a non-attributed
graph, with all nodes having a feature of one. Therefore, predicting node categories based
solely on topological information presents a significant challenge. To accurately ascertain
whether a node is a component of a botnet, it is crucial to take into account the labels as-
signed to the edges that link the nodes. Considering that a hacker has the ability to instruct
all the controlled bot hosts in a botnet to simultaneously and persistently target a specific
network, a significant discrepancy in traffic volume can be observed between malicious and
benign nodes, especially when under attack. Correspondingly, the connection pattern of the
edges on the node also varies significantly. During data preprocessing, the label of the edge
is taken as a new node feature. The calculation method involves counting the number of
benign and malicious edges connected to the node respectively, and subsequently dividing
this sum by the node’s degree. The resultant normalized value is subsequently utilized
as the node’s new feature. Overall, this preprocessing step is conducted to acquire the
updated characteristics of the node.

4.3. Subgraph Sampling

In this article, GraphSAINT is used for subgraph sampling of large-scale botnet graph
data. By leveraging GraphSAINT, the scalability of the model is ensured while improving
the processing efficiency of large-scale graph data. GraphSAINT samples the entire graph
multiple times and applies a graph neural network on the obtained subgraphs. In this
paper, the GIN is used for training, and then the information from multiple subgraphs is
fused together.

Firstly, we employ the random edge subgraph sampling algorithm described in
Algorithm 1 to sample subgraphs from the graph. The number of sampled edges serves as
an adjustable parameter, determining the scale of the resulting subgraphs. Given a large-
scale graph G, we initially compute the sampling probability P for each edge in the edge set
E (as indicated in line 3). Subsequently, based on these probabilities, we randomly extract
m edges from the edge set E to obtain the subgraph’s edge set Es. The nodes involved in
the subgraph’s edge set Es form the vertex set Vs of the subgraph, where Gs represents the
subgraph induced from Vs.

Algorithm 1 Random edge subgraphs sampling algorithm by GraphSAINT

1: Input: Graph A = G(V, E); Sampling parameters: number of sample edges n
2: Output: Subgraph Gs(Vs, Es)

3: P((u, v)) :=
(

1
deg(u) +

1
deg(v)

)
/ ∑(u′ ,v′)∈E

(
1

deg(u′) +
1

deg(v′)

)
4: Es ← n edges randomly sampled (with replacement) from E according to P
5: Vs ← Set of nodes that are end-points of edges in Es
6: Gs ← Node induced subgraph of G from Vs

4.4. Detection Based on GIN

In the task of detecting botnets, the graph representation of botnets is crucial infor-
mation for neural network models to learn features. When classifying data from different
graphs, it is essential to solve the problem of graph isomorphism. The GIN exhibits strong
graph learning capabilities for addressing the graph isomorphism challenge. The botnet
detection model proposed, based on the GIN, comprises fifteen GIN layers with node
feature embedding and adjacency matrix embedding as inputs. Following the GINConv
layer in each GIN layer are the Leaky ReLU activation, Batch Normalization, and Dropout
layers. Node features are represented as an aggregation of the node’s own features and
the activation values from the previous GIN layer, which are then fed into a multi-layer
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perceptron to update the nodes. Consequently, the feature update can be expressed using
Formula (9).

Among them, MLP is multi-layer perceptron, k is the number of layers, and ε(k)

are parameters that can be learnable. The following layer in the GIN takes the feature
representation of each node from the previous layer as input [33].

h(k)v = MLPk((1 + ε(k)) · h(k−1)
v + ∑

u∈N(v)
h(k−1)

u ) (9)

After obtaining the node feature representation in each layer of the GIN through
Formula (9), the CONCAT function is used to connect representations learned in different
iterations. The formula expression is shown in Formula (10).

To address the issue of early feature generalization, the GIN uses Jumping Knowledge
Network [59] (JK-Net) to capture node representation information from all iterations.
Figure 5 depicts a four-layer Jumping Knowledge Network, where Xv represents the node
features of the observed node, N.A. represents the neighborhood aggregation representation
of the observed node, h(k)v represents the node representation after the k-th iteration, hG
represents the final representation vector of the graph structure, where G stands for the
graph structure.

hG = CONCAT({h(k)v |v ∈ G}|k = 1, 2, · · · , k) (10)

Figure 5. Example of Jumping Knowledge Network.
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In this scheme, the loss is calculated through the cross-entropy loss function to achieve
classification detection [60], and the formula is:

L =
1
|YL| ∑

i∈YL

loss
(

yi, z(L)
i

)
(11)

where YL contains the labels of all labeled nodes, yi represents the true label of node i,
and z(L)

i denotes the final predicted result for node i.

5. Metrics

In this section, the metrics utilized in the subsequent experiment are presented in the
following Table 1. We evaluated our model using accuracy, precision, recall, and F1 score.
Accuracy serves as a metric for assessing the comprehensive performance of a classification
model, while quantifies the degree of accuracy with which the model forecasts the positive
class. Recall evaluates the model’s capacity to correctly identify positive instances, while the
F1 score offers a comprehensive measure of the model’s accuracy and recall abilities. The
metrics will be utilized to assess the model’s performance in the subsequent Experiment
and Evaluation sections.

Table 1. Metrics.

Metrics Name Instruction

TP The number of malicious nodes predicted as malicious
FP The number of benign nodes predicted as malicious
TN The number of benign nodes predicted as benign
FN The number of malicious nodes predicted as benign

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1 Score 2×(Precision×Recall)
Precision+Recall

6. Experiments and Evaluation

To evaluate our model, we employed three publicly accessible botnet graph datasets,
Chord, C2, and P2P [61], which exclusively comprise unattributed graphs. Since the node
features in every graph are given a value of 1, the model can only determine the node
categories by using the graph’s topological information. Botnets typically have more dense
connections, allowing botnet nodes to access other botnet nodes in just a few hops. This
particular pattern allows the model to efficiently discriminate between benign and botnet
nodes. These datasets are derived from the original network flow data of the botnet dataset
CTU-13 [62]. The background traffic in these datasets is derived from real-world scenarios,
implying that the background traffic follows a distribution consistent with real-world traffic.
Moreover, the botnet traffic in C2 and P2P datasets is extracted from real malicious traffic,
while the botnet traffic in the Chord dataset is synthesized from malicious traffic samples.
Consequently, we consider C2 and P2P as depicting real-world botnet scenarios, while
Chord simulates botnet scenarios based on real-world conditions. Both botnet nodes and
botnet topology patterns are represented in the graph structure data. The background
traffic data were obtained from the Center for Applied Internet Data Analysis in 2018. The
C2 and P2P datasets consist of graphs with around 3000 botnet nodes each, whereas the
Chord dataset contains graphs with 10,000 botnet nodes each. In these three datasets, all
graphs are non-distributed, which means the model can only export information from the
graph topology. Tables 2–4 display the statistical data for the C2, P2P, and Chord datasets,
respectively.
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Table 2. Botnet dataset statistics of C2.

Dataset Split Graph Avg Nodes Avg Edges Avg Botnet Nodes

Train 768 143,895 813,237 3211
Val 96 143,763 812,955 3234
Test 96 144,051 814,003 3175

Table 3. Botnet dataset statistics of P2P.

Dataset Split Graph Avg Nodes Avg Edges Avg Botnet Nodes

Train 768 143,895 1,623,217 3090
Val 96 143,763 1,622,620 3093
Test 96 144,051 1,624,948 3095

Table 4. Botnet dataset statistics of Chord.

Dataset Split Graph Avg Nodes Avg Edges Avg Botnet Nodes

Train 768 143,895 1,502,748 10,000
Val 96 143,763 1,502,284 10,000
Test 96 144,051 1,504,310 10,000

6.1. Setup

The studies were conducted on a Linux server equipped with two 24-core Intel(R)
Xeon(R) Gold 5318Y processors, 256 GB of RAM, and a GPU called Ampere A800. We
utilized Python 3.11, PyTorch 2.1.2, and PyTorch Geometric 2.4.0 to implement our model.
Furthermore, we performed all experimental evaluations. In Table 5, the hyperparameters
of our scheme are presented.

Table 5. The hyperparameter values employed in the proposed scheme.

Hyperparameter Values

Layers 15
Hidden Channels 128

Dropout [0.1, 0.2]
Activation Function LeakyReLU

Learning Rate 3 × 10−4

Weight Decay 3 × 10−5

Optimizer Adam
Scheduler ReduceLROnPlateau

6.2. Comparative Experiment

The proposed method was evaluated on three datasets (C2, P2P and Chord) and
compared with five baseline GNN works, namely GATv2, GraphSAGE, GCN, Cluster-
GCN, and GraphGPS. The evaluation metrics used included precision, accuracy, F1 score,
and recall. The results of the performance evaluation are displayed in Table 6.

According to the comparative results shown in Table 6, our model demonstrates
outstanding performance across evaluation metrics, including precision, accuracy, F1 score,
and recall. Compared to the reference models (GATv2, GraphSAGE, GCN, Cluster-GCN,
and GraphGPS), our model exhibits significant advantages in several key metrics.

The proposed method achieves over 99% precision on all three datasets. On the C2
dataset, the precision is over 0.2 higher than GCN and over 0.001 higher than GraphSAGE.
It is also higher than the latest graph-based model, GraphGPS. On the P2P dataset, the
precision of the proposed method is 99.70%, which is only lower than GATv2’s 99.76% and
Cluster-GCN’s 99.71%. On the Chord dataset, the proposed method’s precision is 99.82%,
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which is higher than GATv2, GCN, Cluster-GCN, and GraphGPS and is only 0.04% lower
than GraphSAGE.

Table 6. Comparison with other GNN-based models on different datasets.

Model Dataset Precision Accuracy F1 Score Recall

GATv2 [63]
C2 0.9973 0.9996 0.9970 0.9967
P2P 0.9976 0.9996 0.9963 0.9950

Chord 0.9921 0.9915 0.9685 0.9915

GraphSAGE [64]
C2 0.9946 0.9996 0.9970 0.9995
P2P 0.9954 0.9996 0.9970 0.9987

Chord 0.9986 0.9986 0.9949 0.9986

GCN [60]
C2 0.7540 0.9786 0.8311 0.9881
P2P 0.7860 0.9839 0.8593 0.9901

Chord 0.9980 0.9970 0.9882 0.9788

Cluster-GCN [65]
C2 0.9966 0.9993 0.9974 0.9983
P2P 0.9971 0.9992 0.9973 0.9983

Chord 0.9970 0.9997 0.9974 0.9978

GraphGPS [66]
C2 0.9956 0.9989 0.9954 0.9989
P2P 0.9956 0.9994 0.9963 0.9970

Chord 0.9963 0.9993 0.9976 0.9985

Our Approach
C2 0.9965 0.9997 0.9976 0.9987
P2P 0.9970 0.9998 0.9985 0.9991

Chord 0.9982 0.9997 0.9988 0.9991

The proposed method exhibits stable performance in terms of accuracy, with accuracy
exceeding 99.9% on all three datasets. Of particular note, our model performs better than
the other five comparison models on both the C2 and P2P datasets, highlighting its excellent
ability to correctly classify samples.

Futhermore, our proposed model also performs well on the F1 score and recall evalua-
tion metrics. On all three datasets, the F1 score exceeded 99.7%, while the recall exceeded
99.8%. Compared with the baseline models, our model has improved performance on F1
score on all three datasets, especially on the P2P and Chord datasets. On the C2 dataset,
although the proposed model’s recall is slightly (0.08%) lower than GraphSAGE, it still
maintains excellent performance.

Surprisingly, as a latest graph-based model, GraphGPS, does not perform better on the
botnet dataset than the model used in this article. This may be due to the dataset being com-
posed of non attribute graphs, so the model only relies on topological information to infer
node categories. Therefore, compared to GraphGPS with positional encoding, GNN models
utilizing message passing mechanisms may be more suitable for this specific scenario.

In summary, although our model achieved SOTA results on multiple evaluation
metrics, it did not achieve the optimal level of precision, especially on the C2 dataset. This
may indicate a certain degree of bias in our prediction of positive classes, possibly due to
imbalanced categories, model bias, or uneven distribution of errors, leading to a decrease
in precision, which may be a potential drawback of our model that requires further analysis
and improvement.

During the experimentation, it is observed that the GATv2 model consumes a signifi-
cant amount of GPU memory during training, which may be attributed to its multi-head
attention mechanism. Additionally, due to the lack of effective mitigation of neighborhood
expansion problem by GATv2 (in order to calculate the loss on a specific node at layer L, it
is necessary to have the embeddings of the neighbouring nodes at layer L− 1, which in turn
depend on their embeddings at layer L− 2 and the recursive embeddings in subsequent
layers), it is unable to train a model with eight layers on the entire graph (reaching seven
layers on the C2 dataset and six layers on the P2P and Chord datasets). Leveraging the
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random edge sampling technique of GraphSAINT, we can train deeper GATv2 models
using small graphs sampled by the sampler. This also presents a new train of thought,
whereby in scenarios where computational cost is not highly sensitive, sampling methods
(such as GraphSAINT employed in this study) can be utilized to train larger-scale deep
learning models.

We also record the changes in model losses on both the training and validation sets
over time in Figure 6. It can be observed that, across all three datasets, the model losses
gradually converge with increasing training time, which indicates that both the GIN model and
GraphSAINT method employed ensure the model learns effective representations from the data.
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Figure 6. The Train/Val Loss Curves of our model on 3 datasets.
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Furthermore, the changes in model losses on the testing sets of the three datasets were
also recorded as the number of model layers increased, as shown in Figure 7. Clearly, due
to the distinct topological structures of the botnets in the C2, P2P, and Chord datasets,
the model requires different numbers of layers for optimal detection capability: 9 layers
of GIN are needed for the C2 dataset, 10 layers for the P2P dataset, and 14 layers for
the Chord dataset. This phenomenon has prompted our contemplation, and we intend
to explore the construction of graph neural network (GNN) models that can integrate
neighbor information at different scales in future work. This approach aims to adaptively
acquire features at various scales, rather than relying on complex model hyperparameters.
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Figure 7. Layer-Loss Curves of our GIN model on 3 datasets.
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In our experiments, we employ GraphSAINT for random edge sampling and observe
an intriguing phenomenon: there exists a threshold for the improvement of GNN model
performance trained with GraphSAINT. In other words, the size of the extracted subgraph
is not necessarily the larger, the better, but there exists an optimal sampling size that
effectively helps the model capture key features in the data. To visually present this finding,
we plotted the line chart as shown in Figure 8 below, where the horizontal axis represents
the random edge sampling size (in units of 10k edges), and the vertical axis represents
the model’s F1 score and accuracy on the Chord dataset. From the graph, it is evident
that when the random edge sampling size is 800k edges, the model achieves the highest
F1 score and accuracy, reaching 99.88% and 99.97%, respectively. As the sampling size
increases or decreases, the model’s performance declines, further validating the impact of
sampling size on model performance and corroborating our observations. We speculate
that this might be due to the overfitting of the model or a decrease in training efficiency
caused by the excessive subgraph size beyond the threshold, thereby affecting the final
detection performance.
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0.99800
0.99825
0.99850
0.99875
0.99900
0.99925
0.99950
0.99975

Lo
ss

F1-score
Accuracy

Figure 8. Variation of model performance with random edge sampling size on Chord dataset using
GraphSAINT.

To better demonstrate the effectiveness of our proposed method, it is further compared
with other related works in botnet detection. As shown in Table 7, we evaluate all these
methods on the C2 dataset. In comparison experiments with other botnet detection studies,
our technique is excitingly competitive. Our model achieves state-of-the-art performance
on accuracy, recall, and F1 score, and it is over 20 times faster than the fastest method
among the other methods. Therefore, our method is effective and promising. In future
work, we will focus on enhancing the scalability and computational efficiency of the
model and possibly reducing computational costs to address the issue of computational
resource scarcity in edge computing devices, thereby achieving more efficient detection of
IoT botnets.

Table 7. Comparison with other botnet detection methods on the C2 dataset.

Method Accuracy Recall F1 Score Time

Wang et al. [48] 0.9698 0.8823 0.8333 21.230 s
Alharbi et al. [47] 0.9779 0.8176 0.8534 46.333 s

Chen et al. [36] 0.8884 0.7810 0.8226 0.627 s
Meng et al. [53] 0.9885 0.9290 0.9276 1.997 s

Ours 0.9997 0.9996 0.9980 0.02 s

7. Conclusions

This work proposes a scheme for detecting large-scale IoT botnets. To address the effi-
ciency issue of GNN training on large-scale botnet data, GraphSAINT is used for subgraph
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sampling to convert large graph data into easy-to-process subgraphs. To optimize the uti-
lization of message passing among neighbor nodes without causing gradient explosion, we
employ the GIN to capture neighbouring nodes and represent information for the purpose
of training and aggregating subgraphs to detect botnet network attacks. This solution
outperforms the existing five GNN-based models in multiple indicators such as accuracy
and recall. In comparison with other botnet detection methods, our method demonstrates
exciting competitiveness on the C2 dataset, achieving state-of-the-art performance, more
than 20 times faster than the other methods. In addition, we observed that data with
different structures require different numbers of GIN layers to achieve optimal detection
ability, which inspired us to explore the construction of graph neural network models that
can integrate multi-scale in future work. This work is of great significance for solving the
security issues of the Internet of Things and provides valuable experience for us to further
research and optimize botnet detection models. In future research, the generalization ability
of the model will be further validated, and its robustness will be enhanced to ensure that
the model performs well in a wider and more complex real-world scenario, effectively
resisting various challenges and attacks.
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