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Abstract: We consider a weighted family of n generic parallelly translated hyperplanes
in Ck and describe the characteristic variety of the Gauss–Manin differential equations
for associated hypergeometric integrals. The characteristic variety is given as the zero
set of Laurent polynomials, whose coefficients are determined by weights and the Plücker
coordinates of the associated point in the Grassmannian Gr(k, n). The Laurent polynomials
are in involution.
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1. Introduction

There are three places where a flat connection depending on a parameter appears:

• KZ equations, κ ∂I
∂zi

(z) = Ki(z)I(z), z = (z1, . . . , zn), i = 1, . . . , n. Here κ is a parameter, I(z)

a V -valued function, where V is a vector space from representation theory, Ki(z) : V → V are
linear operators, depending on z. The connection is flat for all κ, see for example [1,2].
• Differential equations for hypergeometric integrals associated with a family of weighted

arrangements with parallelly translated hyperplanes, κ ∂I
∂zi

(z) = Ki(z)I(z), z = (z1, . . . , zn),
i = 1, . . . , n. The connection is flat for all κ, see for example [3,4].
• Quantum differential equations, κ ∂I

∂zi
(z) = pi ∗z I(z), z = (z1, . . . , zn), i = 1, . . . , n.

Here p1, . . . , pn are generators of some commutative algebra H with quantum multiplication ∗z
depending on z. The connection is flat for all κ. These equations are part of the Frobenius structure
on the quantum cohomology of a variety, see [5,6].
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If κ ∂I
∂zi

(z) = Ki(z)I(z), i = 1, . . . , n, is a system of V -valued differential equations of one of these
types, then its characteristic variety is

Spec = {(z, p) ∈ T ∗Cn | ∃v ∈ V with Kj(z)v = pjv, j = 1, . . . , n}

It is known that the characteristic varieties of the first two types of differential equation are interesting.
For example, the characteristic variety of the quantum differential equation of the flag variety is the zero
set of the Hamiltonians of the classical Toda lattice, according to [7,8], and the characteristic variety of
the glN KZ equations with values in the tensor power of the vector representation is the zero set of the
Hamiltonians of the classical Calogero–Moser system, according to [9].

In this paper we describe the characteristic variety of the Gauss–Manin differential equations for
hypergeometric integrals associated with a weighted family of n generic parallelly translated hyperplanes
in Ck. The characteristic variety is given as the zero set of Laurent polynomials, whose coefficients are
determined by weights and the Plücker coordinates of the associated point in the Grassmannian Gr(k, n).
The Laurent polynomials are in involution.

It is known that the KZ differential equations can be identified with Gauss–Manin differential
equations of certain weighted families of parallelly translated hyperplanes, see [10], and that some
quantum differential equations can be identified with Gauss–Manin differential equations of certain
weighted families of parallelly translated hyperplanes, see [11]. Therefore, the results in this paper on
the characteristic variety of the Gauss–Manin differential equations associated with a family of generic
parallelly translated hyperplanes can be considered as a first step to studying characteristic varieties of
more general KZ and quantum differential equations that admit integral hypergeometric representations.

The Laurent polynomials, defining our characteristic variety, are regular functions of the Plücker coor-
dinates of the associated point in Gr(k, n). Therefore they can be used to study the characteristic varieties
of more general Gauss–Manin differential equations for multidimensional hypergeometric integrals.

Our description of the characteristic variety is based on the fact, proved in [12], that the
characteristic variety of the Gauss–Manin differential equations is generated by the master function of the
corresponding hypergeometric integrals, that is, the characteristic variety coincides with the Lagrangian
variety of the master function. That fact is a generalization of Theorem 5.5 in [13], proved with the help
of the Bethe ansatz, that the local algebra of a critical point of the master function associated with a glN
KZ equation can be identified with a suitable local Bethe algebra of the corresponding glN module.

In Section 2, we consider the algebra of functions on the critical set of the master function and describe
it by generators and relations.

In Section 3, we show that these relations give us equations defining the Lagrangian variety of the
master function. We show that the corresponding functions are in involution. We define coordinate
systems (zI , pĪ) on the Lagrange variety and for each of them a function Φ(zI , pĪ) also generating the
Lagrangian variety. We describe the Hessian of the master function lifted to the Lagrangian variety and
relate it to the Jacobian of the projection of the Lagrangian variety to the base of the family.

In Section 4, we remind the identification from [12] of the Lagrangian variety of the master function
and the characteristic variety of the Gauss–Manin differential equations.
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2. Algebra of Functions on the Critical Set

2.1. An Arrangement in Cn × Ck

Let n > k be positive integers. Denote J = {1, . . . , n}. Consider Ck with coordinates t1, . . . , tk,
Cn with coordinates z1, . . . , zn. Fix n linear functions on Ck, gj =

∑k
m=1 b

m
j tm, j ∈ J, bmj ∈ C.

For i1, . . . , ik ⊂ J , denote di1,...,ik = detk`,m=1(bmi` ). We assume that all the numbers di1,...,ik are nonzero
if i1, . . . , ik are distinct. In other words, we assume that the collection of functions gj, j ∈ J , is generic.
We define n linear functions on Cn×Ck, fj = zj + gj, j ∈ J. We define the arrangement of hyperplanes
C̃ = {H̃j | j ∈ J} in Cn × Ck, where H̃j is the zero set of fj . Denote by U(C̃) = Cn × Ck − ∪j∈JH̃j

the complement.
For every z = (z1, . . . , zn) ∈ Cn, the arrangement C̃ induces an arrangement C(z) in the fiber over

z of the projection π : Cn × Ck → Cn. We identify every fiber with Ck. Then C(z) consists of
hyperplanesHj(z), j ∈ J , defined in Ck by the equations fj = 0. Denote by U(C(z)) = Ck−∪j∈JHj(z)

the complement.
The arrangement C(z) is with normal crossings if and only if z ∈ Cn −∆,

∆ = ∪{i1<···<ik+1}⊂JHi1,...,ik+1
(1)

where Hi1,...,ik+1
is the hyperplane in Cn defined by the equation fi1,...,ik+1

(z) = 0,

fi1,...,ik+1
(z) =

k+1∑
m=1

(−1)m−1di1,...,îm,...,ik+1
zim (2)

We have the following identify

k+1∑
m=1

(−1)m−1di1,...,îm,...,ik+1
(zim − fim(z, t)) = 0 (3)

Lemma 2.1. Consider the C-span S of the linear functions fi1,...,ik+1
, where {i1, . . . , ik+1} runs through

all k + 1-element subsets of J . Then dimS = n− k.

Proof. The dimension of S equals the codimension in Cn of X1 = {z ∈ Cn | fI(z) = 0 for all I}.
The subspace X1 is the image of the subspace X2 = {(z, t) ∈ Cn × Ck | fj(z, t) = 0 for all j ∈ J}
under the projection π : Cn × Ck → Cn. Clearly the subspace X2 is k-dimensional and the projection
π|X2 : X2 → X1 is an isomorphism. Hence dimX1 = k and dimS = n− k.

2.2. Plücker Coordinates

The matrix (bmj ) is an n×k-matrix of rank k. The matrix defines a point in the Grassmannian Gr(k, n)

of k-planes in Cn. The numbers di1,...,ik are Plücker coordinates of this point. Most of objects in this
paper are determined in terms of these Plücker coordinates. We will use the following Plücker relation.

Lemma 2.2. For arbitrary sequences j1, . . . , jk+1 and i1, . . . , ik−1 in J , we have

k+1∑
m=1

(−1)m−1dj1,...,ĵm,...,jk+1
djm,i1...,ik−1

= 0 (4)
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See this statement, for example, in [14].

2.3. Algebra AΦ(z)

Assume that nonzero weights (aj)j∈J ⊂ C× are given. Denote |a| =
∑

j∈J aj . Assume that |a| 6= 0.
Each arrangement C(z) is weighted, meaning that to every hyperplaneHj(z), j ∈ J , we assign weight

aj . The master function of the weighted arrangement C(z) in Ck is the function

Φ(z, t) =
∑
j∈J

aj log fj(z, t) (5)

The critical point equations are

∂Φ/∂ti =
∑
j∈J

bijaj/fj = 0, i = 1, . . . , k (6)

We have

∂Φ/∂zj = aj/fj, i ∈ J (7)

Denote by I(z) ⊂ O(U(C(z))) the ideal generated by the functions ∂Φ/∂tj , j ∈ J . The algebra of
functions on the critical set is

AΦ(z) = O(U(C(z)))/I(z) (8)

For a function g ∈ O(U(C(z))), denote by [g] its projection to AΦ(z). Denote

pj = [aj/fj], j ∈ J

We introduce the following polynomials in z1, . . . , zn, p1, . . . , pn. For every subset I = {i1, . . . , ik−1}
of distinct elements in J , we set

FI(p1, . . . , pn) =
∑
j∈J

dj,i1,...,ik−1
pj (9)

For every subset I = {i1, . . . , ik+1} of distinct elements in J , we set

FI(z1, . . . , zn, p1, . . . , pn) = (10)

pi1 . . . pik+1
fi1,i2,...,ik+1

(z) +
k+1∑
m=1

(−1)maimdi1,...,îm,...,ik+1
pi1 . . . p̂im . . . pik+1

The following lemma collects the properties of the elements p1, . . . , pn.

Lemma 2.3. Let z ∈ Cn −∆.

(i) The elements pj, j ∈ J , generate the algebra AΦ(z).

(ii) For every subset I = {i1, . . . , ik−1} of distinct elements in J , we have

FI(p1, . . . , pn) = 0 (11)

Relation Equation (11) will be called the I-relation of first kind.
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(iii) For every subset I = {i1, . . . , ik+1} of distinct elements in J , we have

FI(z1, . . . , zn, p1, . . . , pn) = 0 (12)

Relation Equation (12) will be called the I-relation of second kind.

(iv) In AΦ(z), we have

1 =
1

|a|
∑
j∈J

zjpj (13)

(v) WehavedimAΦ(z) =
(
n−1
k

)
, and for any j1 ∈ J , the set of monomials pi1 . . . pik , with i1 < · · · < ik

and j1 /∈ {i1, . . . , ik}, is a C-basis of AΦ(z).

Part (i) is Lemma 2.5 in [12]. Parts (ii), (iii), (iv) are Lemmas 6.7, 6.8, 2.5 in [15], respectively.
The first statement of part (v) is ([12], Lemma 4.2) that follows from ([15], Lemma 6.5). The second
statement of part (v) is Theorem 6.11 in [15].

Note that the polynomials FI in Equations (11) and (12) are homogeneous if we put

deg pj = 1, deg zj = −1 for all j (14)

2.4. Relations of Second Kind

For j ∈ J , denote

Gj(zj, pj) = zj − aj/pj (15)

Then the projection to AΦ(z) of the left hand side of Equation (3) can be written as

GI(z, p) =
k+1∑
m=1

(−1)m−1di1,...,îm,...,ik+1
Gim(zim , pim) (16)

=
k+1∑
m=1

(−1)m−1di1,...,îm,...,ik+1

(
zim −

aim
pim

)
where I = {i1, . . . , ik+1}. Hence in AΦ(z) we have

GI(z, p) = 0 (17)

Notice that FI(z, p) = pi1 . . . pik+1
GI(z, p) and the functions pj are nonzero at every point of the

critical set of the master function.
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2.5. New Presentation for AΦ(z)

Fix z ∈ Cn − ∆. Consider (C×)n with coordinates p1, . . . , pn. Consider the polynomials FI(p)
in Equation (11) and polynomials FI(z, p) in Equation (12) as elements of O((C×)n). Let Ĩ(z) ⊂
O((C×)n) be the ideal generated by all FI with |I| = k − 1, k + 1.

Notice that all polynomials FI(p), |I| = k−1, in Equation (11) and all functionsGI(z, p), |I| = k+1,
in Equation (16) also generate Ĩ(z).

Let Ã(z) = O((C×)n)/Ĩ(z) be the quotient algebra.

Theorem 2.4. The natural homomorphism Ã(z)→ AΦ(z), pj 7→ [aj/fj], is an isomorphism.

Example. If k = 1 and fj = t1 + zj , then the ideal I(z) is generated by the function
∑

j∈J aj/(t1 + zj),
while the ideal Ĩ(z) is generated by the functions

p1 + · · ·+ pn, (zi − zj)pipj − aipj + ajpi, 1 6 i < j 6 n

or by the functions

p1 + · · ·+ pn, (zi − ai/pi)− (zj − aj/pj), 1 6 i < j 6 n

2.6. Proof of Theorem 2.4

Lemma 2.5. Let I = {i1, . . . , ik} be a subset of distinct elements. Then in Ã(z), we have∑
j∈J

zjpj =
1

di1,...,ik

∑
j∈J−I

fj,i1,...,ik(z) pj (18)

Proof. The statement easily follows from Equation (11), that is, from relations of first kind. For example,
if k = 2 and I = {1, 2}, then the two relations of first kind p1 = 1

d2,1

∑
j>2 dj,2pj and

p2 = 1
d1,2

∑
j>2 dj,1pj transform

∑
j∈J zjpj to 1

d1,2

∑
j>2 f1,2,j(z)pj .

Lemma 2.6. In Ã(z), we have 1 = 1
|a|
∑

j∈J zjpj .

Proof. We have

p1 . . . pk
∑
j∈J

zjpj = p1 . . . pk
1

d1,...,k

∑
j>k

fj,1,...,k(z)pj

=
∑
j>k

[
ajp1 . . . pk +

k∑
m=1

(−1)mam
dj,1,...,m̂,...,k
d1,...,k

pjp1 . . . p̂m . . . pk
]

= |a| p1 . . . pk

where the first equality follows from Lemma 2.5, the second equality follows from the relations of second
kind, and the third equality follows from the relations of first kind. Denote by C(z) ⊂ (C×)n the zero set
of the ideal Ĩ(z). Then the function p1 . . . pk is nonvanishing on C(z). The previous calculation shows
that the multiplication of the invertible function p1 . . . pk by 1

|a|
∑

j∈J zjpj does not change the invertible
function. This gives the lemma.
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Lemma 2.7. Let s 6 k be a natural number and M =
∏

j∈J p
sj
j ,
∑

j∈J sj = s, a monomial of degree s.
Let Jk−s+1 = {j1, . . . , jk−s+1} be any subset in J with distinct elements. Then by using the relations of
first kind only, the monomial M can be represented as a C-linear combination of monomials pi1 . . . pis
with 1 6 i1 < · · · < is 6 n and {i1, . . . , is} ∩ Jk−s+1 = ∅.

C.f. the proof of Lemma 6.9 in [15].

Lemma 2.8. Let s 6 k be a natural number and M =
∏

j∈J p
sj
j a monomial of degree s. Fix an element

j1 ∈ J . Then by using the relations of first kind and the relation 1 = 1
|a|
∑

j∈J zjpj only, the monomial
M can be represented as a linear combination of monomials pi1 . . . pik with 1 6 i1 < · · · < ik 6 n and
j1 /∈ {i1, . . . , is}, where the coefficients of the linear combination are homogeneous polynomials in z of
degree s− k.

Recall the deg zj = −1 for all j ∈ J .

Lemma 2.9. Let s > k be a natural number and M =
∏

j∈J p
sj
j a monomial of degree s. Then by using

the relations of first and second kinds, the monomial M can be represented as a linear combination of
monomials pi1 . . . pik of degree k, where the coefficients of the linear combination are rational functions
in z, regular on Cn −∆ and homogeneous of degree s− k.

Let us finish the proof of Theorem 2.4. Let P (p1, . . . , pn) be a polynomial. Fix j1 ∈ J . By using
the relations of first and second kinds only, the polynomial can be represented as a linear combination
P̃ of monomials pi1 . . . pik with 1 6 i1 < · · · < ik 6 n and j1 /∈ {i1, . . . , is}, see Lemmas 2.7–2.9.
Assume that P (p1, . . . , pn) projects to zero in AΦ(z), then all coefficients of that linear combination P̃
must be zero, see part (v) of Lemma 2.3. This means that P lies in the ideal Ĩ(z). Theorem 2.4 is proved.

3. Lagrangian Variety of the Master Function

3.1. Critical Set Recall the projection π : Cn×Ck → Cn. For any z ∈ Cn−∆, the arrangement C(z) in

π−1(z) has normal crossings. Recall the complement U(C̃) ⊂ Cn×Ck to the arrangement C̃ in Cn×Ck.
Denote

U0 = U(C̃) ∩ π−1(Cn −∆) ⊂ Cn × Ck (19)

Consider the master function Φ(z, t), defined in Equation (5), as a function on U0. Denote by CΦ the
critical set of Φ with respect to variables t,

CΦ = {(z, t) ∈ U0 | ∂Φ/∂ti(z, t) = 0, i = 1, . . . , k} (20)

Lemma 3.1. The set CΦ is a smooth n-dimensional subvariety of U0.

Proof. For any subset I = {1 6 i1 < · · · < ik 6 n} ⊂ J , the k × k-determinant

detkl,m=1

( ∂2Φ

∂tl∂zjm

)
= −di1,...,ik

k∏
m=1

ajm
f 2
jm

(z, t)

is nonzero on U0.
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Denote by I ⊂ O(U0) the ideal generated by the functions ∂Φ/∂tj , j ∈ J . The algebra of functions
on CΦ is the quotient algebra

AΦ = O(U0)/I (21)

Consider (Cn−∆)× (C×)n with coordinates z1, . . . , zn, p1, . . . , pn. Consider the polynomials FI(p)
in Equation (11) and polynomials FI(z, p) in Equation (12) as elements of O((Cn − ∆) × (C×)n).
Let Ĩ ⊂ O((Cn −∆)× (C×)n) be the ideal generated by all FI with |I| = k − 1, k + 1. Notice that all
polynomials FI(p), |I| = k−1, in Equation (11) and all functionsGI(z, p), |I| = k+1, in Equation (16)
also generate Ĩ(z). Let

Ã = O((Cn −∆)× (C×)n)/Ĩ (22)

be the quotient algebra.

Theorem 3.2. The natural homomorphism Ã→ AΦ, pj 7→ [aj/fj], is an isomorphism.

The proof is the same as the proof of Theorem 2.4.

3.2. Lagrangian Variety Consider the cotangent bundle T ∗(Cn − ∆) with dual coordinates z1, . . . , zn,

p1, . . . , pn with respect to the standard symplectic form ω =
∑n

j=1 dpj ∧ dzj . Consider the open subset
(Cn −∆)× (C×)n ⊂ T ∗(Cn −∆) of all points with nonzero coordinates p1, . . . , pn. Consider the map

ϕ : CΦ → (Cn −∆)× (C×)n, (z, t) 7→
(
z1, . . . , zn, p1 =

∂Φ

∂z1

(z, t), . . . , pn =
∂Φ

∂zn
(z, t)

)
Denote by Λ the image ϕ(CΦ) of the critical set. The set Λ is invariant with respect to the action of

C×, which multiplies all coordinates pj and divides all coordinates zj by the same number. Denote by
Î ⊂ O((Cn −∆)× (C×)n) the ideal of functions that equal zero on Λ.

Theorem 3.3. The ideal Ĩ ⊂ O((Cn − ∆) × (C×)n) coincides with the ideal Î. The subset
Λ ⊂ (Cn −∆)× (C×)n is a smooth Lagrangian subvariety.

Proof. It is clear that Ĩ ⊂ Î. The proof of the inclusion Î ⊂ Ĩ is basically the same as the proof of
Theorem 2.4. This gives the first statement of the theorem.

It is clear that dim Λ = n. To prove that Λ is smooth, it is enough to show that at any point of Λ,
the span of the differentials of the functions FI(p), |I| = k − 1, and GI(z, p), |I| = k + 1 is at least
n-dimensional. By Lemma 2.1, the span of the z-parts of the differentials of the functions GI(z, p),
I = |I| = k + 1, is n− k-dimensional. It is easy to see that the span of the differentials of the functions
FI(p), I = |I| = k+ 1, is at least k-dimensional (c.f. the example in the proof of Lemma 2.5). Hence Λ

is smooth.
By the definition of ϕ, the set Λ is isotropic. Hence Λ is Lagrangian.

Let I = {i1, . . . , ik} ⊂ J be a k-element subset and Ī its complement. Then the functions
zI = {zi | i ∈ I}, pĪ = {pj | j ∈ Ī}, form a system of coordinates on Λ. Indeed, we have

pim = − 1

dim,i1,...,îm,...,ik

∑
j∈Ī

dj,i1,...,îm,...,ikpj, m = 1, . . . , k (23)

zj =
aj
pj

+
1

di1,...,ik

k∑
m=1

(−1)k−mdj,i1,...,îm,...,ik

(
zim −

aim
pim

)
, j ∈ Ī
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where in the second line the functions pim must be expressed in terms of the functions pj, j ∈ Ī , by using
the first line.

We order the functions of the coordinate system zI , pĪ according to the increase of the low index.
For example, if k = 3, n = 6, I = {1, 3, 6}, then the order is z1, p2, z3, p4, p5, z6.

Lemma 3.4. Let I = {i1, . . . , ik} and I ′ = {i′1, . . . , i′k} be two k-element subsets of J . Consider the
corresponding ordered coordinate systems zI , pĪ and zI′ , pĪ′ . Express the coordinates of the second
system in terms of the coordinates of the first system and denote by JacI,Ī′(zI , pĪ) the Jacobian of this
change. Then

JacI,Ī′(zI , pĪ) = (di′1,...,i′k/di1,...,ik)
2

Proof. It is enough to check this formula for the case I = {1, 3, . . . , k + 1} and I ′ = {2, 3, . . . , k + 1}.
Then

p1 = −d2,3,...,k+1

d1,3,...,k+1

p2 + . . . , z2 =
a2

p2

+
d2,3,...,k+1

d1,3,...,k+1

z1 + . . .

where the first dots denote the terms that do not depend on z1, p2 and the second dots denote the terms
that do not depend on z1. According to these formulas the 2× 2 Jacobian of the dependence of p1, z2 on
z1, p2 equals (d2,3,...,k+1/d1,3,...,k+1)2 and hence JacI,Ī′(zI , pĪ) = (d2,3,...,k+1/d1,3,...,k+1)2.

3.3. Generating Functions

Consider the function

Ψ =
∑
j∈J

aj ln pj −
∑
i∈I

zipi (24)

of n+ k variables zj, j ∈ I , pj, j ∈ J . Express in Ψ the variables pi, i ∈ I , according to Equation (23).
Denote by Ψ(zI , pĪ) the resulting function of variables zI , pĪ .

Theorem 3.5. The function Ψ(zI , pĪ) is a generating function of the Lagrangian variety Λ. Namely, Λ

lies in the image of the map

(zI , pĪ) 7→
(
zI , zĪ =

∂ΨI

∂pĪ
(zI , pĪ), pI = −∂ΨI

∂zI
(zI , pĪ), pĪ

)
(25)

Proof. The proof that these formulas give Equations (23) is by straightforward verification.

3.4. Integrals in Involution

Consider the standard Poisson bracket on T ∗(Cn),

{M,N} =
n∑
j=1

(∂M
∂zj

∂N

∂pj
− ∂M

∂pj

∂N

∂zj

)
for M,N ∈ O(T ∗(Cn)). The functions are in involution if {M,N} = 0.
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Theorem 3.6. All functions FI(p), |I| = k − 1, and GI(z, p), |I| = k + 1, are in involution.

Proof. Clearly, {FI , FI′} = 0, since FI , FI′ depend on z only. If I = {j1, . . . , jk+1} and
I ′ = {i1, . . . , ik−1}, then

{GI , FI′} =
k+1∑
m=1

(−1)m−1dj1,...,ĵm,...,jk+1
djm,i1...,ik−1

= 0

due to the Plücker relation (4).
Recall the function Gj(zj, pj) in Equation (15). It is clear that {Gj, Gj′} = 0 for all j, j′ ∈ J .

Now {GI , GI′} = 0 for all I, I ′ with |I| = |I ′| = k+ 1, since GI , GI′ are linear combination of Gj with
constant coefficients.

All the functions FI , GI define commuting Hamiltonian flows, preserving Λ and giving symmetries
of Λ. For I = {i1, . . . , ik−1}, the flow ϕtI of the function FI(p) has the form

(z1, . . . , zn, p) 7→ (z1 + d1,i1,...,ik−1
t, . . . , zn + dn,i1,...,ik−1

t, p)

For I = {j1, . . . , jk+1}, the flow ϕtI of the function GI(z, p) does not change the pair of coordinate
(zj, pj) of a point, if j /∈ I , and transforms the pair (zjm , pjm) to the pair

(zjm −
ajm
pjm

+
ajm

pjm + (−1)mdj1,...,ĵm,...,ik+1
t
, pjm + (−1)mdj1,...,ĵm,...,ik+1

t)

for m = 1, . . . , k + 1.

Remark. An interesting property of the Hamiltonians FI , GI is that they are regular with respect the
Plücker coordinates di1,...,ik . Hence, they can be used to study the Lagrange varieties of the arrangements
in Cn × Ck associated with not necessarily generic matrices (bij).

3.5. Hessian as a Function on the Lagrange Variety

Let z ∈ Cn−∆ and let t0 be a critical point of the master function Φ(z, · ). An important characteristic
of the critical point is the Hessian

Hess Φ(z, t0) = detki,j=1

( ∂2Φ

∂ti∂tj
(z, t0)

)
see, for example, [2,16–18].

For a subset I = {i1, . . . , ik} ⊂ J , we denote by d2
I the number (di1,...,ik)

2.

Lemma 3.7. We have

Hess Φ = (−1)k
∑

I⊂J,|I|=k

d2
I

k∏
i∈I

p2
i

ai
(26)

Proof. In [18], the formula Hess Φ = (−1)k
∑

16i1<···<ik6n d
2
i1,...,ik

∏k
m=1 aim/f

2
im is given, which is the

right hand side of Equation (26). The formula itself is obvious.
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3.6. Hessian and Jacobian Let M = {m1, . . . ,mk} ⊂ J be a k-element subset and zM , pM̄ the

corresponding ordered coordinate system on Λ. The functions z1, . . . , zn form an ordered coordinate
system on Cn −∆. Consider the projection Λ 7→ Cn −∆, (z, p) 7→ z, and the Jacobian JacM(zM , pM̄)

of the projection with respect to the chosen coordinate systems.

Theorem 3.8. As a function on Λ, the function d2
M JacM does not depend on M and

d2
M JacM = (−1)n−k

∑
L⊂J, |L|=n−k

d2
L̄

∏
j∈L

aj
p2
j

(27)

Proof. The function d2
M JacM does not depend on M by Lemma 3.4.

Consider the function Ψ̃ =
∑

j∈J aj ln pj of n variables pj . Express in Ψ̃ the variables pM in terms of
variables pM̄ by formulas Equation (23). Denote by Ψ̃M(pM̄) the resulting function. By Theorem 3.5,
JacM = det

(
∂2Ψ̃M
∂pM̄∂pM̄

)
. This implies that d2

M JacM is a polynomial in aj, j ∈ J , of the form

d2
M JacM =

∑
L⊂J, |L|=n−k

cL
∏
j∈L

aj
p2
j

where cL are numbers independent of M . Our goal is to show that cL = (−1)n−kd2
L̄

but this is clear for
L = M . This proves the theorem.

Corollary 3.9. We have

d2
M JacM = (−1)nHess Φ

∏
j∈J

aj
p2
j

(28)

4. Characteristic Variety of the Gauss–Manin Differential Equations

4.1. Space Sing V

Consider the complex vector space V generated by vectors vi1,...,ik with i1, . . . , ik ∈ J subject to the
relations viσ(1),...,iσ(k)

= (−1)σvi1,...,ik for any i1, . . . , ik ∈ J and σ ∈ Sk. The vectors vi1,...,ik with
1 6 i1 < · · · < ik 6 n form a basis of V . If v =

∑
16i1<···<ik6n ci1,...,ikvi1,...,ik is a vector of

V , we introduce the numbers ci1,...,ik for all i1, . . . , ik ∈ J by the rule: ciσ(1),...,iσ(k)
= (−1)σci1,...,ik .

We introduce the subspace Sing V ⊂ V of singular vectors by the formula

Sing V =
{ ∑

16i1<···<ik6n

ci1,...,ikvi1,...,ik |
∑
j∈J

aj cj,j1,...,jk−1
= 0 for all {j1, . . . , jk−1} ⊂ J

}
The symmetric bilinear contravariant form on V is defined by the formulas:
S(vi1,...,ik , vj1,...,jk) = 0, if {i1, . . . , ik} 6= {i1, . . . , ik}, and S(vi1,...,ik , vi1,...,ik) =

∏k
m=1 aim , if

i1, . . . , ik are distinct. Denote by s⊥ : V → Sing V the orthogonal projection with respect to the
contravariant form.
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4.2. Differential Equations

Consider the master function Φ(z, t) as a function on U0 ⊂ Cn × Ck. Let κ be a nonzero complex
number. The function eΦ(z,t)/κ defines a rank one local system Lκ on U0 whose horizontal sections over
open subsets of Ũ are univalued branches of eΦ(z,t)/κ multiplied by complex numbers. The vector bundle

∪z∈Cn−∆ Hk(U(C(z)),Lκ|U(C(z))) → Cn −∆

has the canonical flat Gauss–Manin connection. For a horizontal section
γ(z) ∈ Hk(U(C(z)),Lκ|U(C(z))), consider the V -valued function

Iγ(z) =
∑

16i1<···<ik6n

( ∫
γ(z)

eΦ(z,t)/κd ln fi1 ∧ · · · ∧ d ln fik
)
vi1,...,ik

For any horizontal section γ(z), the function Iγ(z) takes values in Sing V and satisfies the Gauss–
Manin differential equations

κ
∂Iγ
∂zj

= Kj(z)Iγ, j ∈ J (29)

where Kj(z) ∈ End(Sing V ) are suitable linear operators independent of κ and γ. Formulas for Kj(z)

can be seen, for example, in ([12], Formula (5.3)).
For z ∈ Cn − ∆, the subalgebra B(z) ⊂ End(Sing V ) generated by the identity operator and the

operators Kj(z), j ∈ J , is called the Bethe algebra at z of the Gauss–Manin differential equations.
The Bethe algebra is a maximal commutative subalgebra of End(Sing V ), see ([12], Section 8).

We define the characteristic variety of the κ-dependent D-module associated with the Gauss–Manin
differential Equation (29) as

Spec = {(z, p) ∈ T ∗(Cn −∆) | ∃v ∈ Sing V with Kj(z)v = pjv, j ∈ J}

4.3. Identification

Let z ∈ Cn − ∆. By Lemma 2.3, given j1 ∈ J , the monomials pi1 . . . pik , with i1 < · · · < ik and
j1 /∈ {i1, . . . , ik}, form a C-basis of AΦ(z). Consider the linear map µ : AΦ(z) → Sing V that sends
di1,...,ikpi1 . . . pik to s⊥(vi1,...,ik) for all i1 < · · · < ik with j1 /∈ {i1, . . . , ik}.

Theorem 4.1. ([15], Corollary 6.16) The linear map µ does not depend on j1 and is an isomorphism of
complex vector spaces. For any j ∈ J , the isomorphism µ identifies the operator of multiplication by pj
on AΦ(z) and the operator Kj(z) on Sing V .

Corollary 4.2. The characteristic variety Spec of the Gauss–Manin differential equations coincides with
the Lagrangian variety of the master function.

Thus the statements in Section 3 give us information on the characteristic variety of the Gauss–Manin
differential equations. In particular, equations in AΦ(z) are satisfied in B(z), for example,

fi1,i2,...,ik+1
(z)Ki1(z) . . . Kik+1

(z) =
k+1∑
m=1

(−1)m−1aimdi1,...,îm,...,ik+1
Ki1(z) . . . K̂im(z) . . . Kik+1

(z)
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