
Mathematics 2015, 3, 190-257; doi:10.3390/math3020190
OPEN ACCESS

mathematics
ISSN 2227-7390

www.mdpi.com/journal/mathematics

Article

Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian
Formalism and Feynman Proper Time Paradigm
Nikolai N. Bogolubov, Jr. 1,2, Anatolij K. Prykarpatski 2,3,* and Denis Blackmore 4

1 Mathematical Institute of RAS, Moscow, Russian Federation;
E-Mail: nikolai_bogolubov@hotmail.com

2 The Abdus Salam International Centre of Theoretical Physics, Trieste, Italy
3 The Department of Applied Mathematics at AGH University of Science and Technology, Krakow

30059, Poland
4 Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey

Institute of Technology, Newark, NJ 07102-1982 USA; E-Mail: deblac@m.njit.edu

* Author to whom correspondence should be addressed; E-Mail: pryk.anat@ua.fm;
Tel.:+48-605-940-710; Fax:+48-126-173-165.

Academic Editor: Palle Jorgensen

Received: 25 January 2015 / Accepted: 27 March 2015 / Published: 17 April 2015

Abstract: We review new electrodynamics models of interacting charged point particles
and related fundamental physical aspects, motivated by the classical A.M. Ampère magnetic
and H. Lorentz force laws electromagnetic field expressions. Based on the Feynman proper
time paradigm and a recently devised vacuum field theory approach to the Lagrangian and
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in detail and their Dirac type quantization is suggested. Problems closely related to
the radiation reaction force and electron mass inertia are analyzed. The validity of the
Abraham-Lorentz electromagnetic electron mass origin hypothesis is argued. The related
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remaining reference systems, with respect to which the dynamics of charged point particles
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1. Classical Relativistic Electrodynamics Models Revisited: Lagrangian and Hamiltonian Analysis

1.1. Introductory Setting

Classical electrodynamics is nowadays considered [1–4] as the most fundamental physical theory,
largely owing to the depth of its theoretical foundations and wealth of experimental verifications.
In this work we describe a new approach to the classical Maxwell theory, based on a vacuum field
medium model, and reanalyze some of the modern classical electrodynamics problems related with the
description of a charged point particle dynamics under an external electromagnetic field. We remark here
that by “a charged point particle” we as usual understand an elementary material charged particle whose
internal spatial structure is assumed to be unimportant and is not taken into account, if the contrary is
not specified.

We shall use the least action principle to discuss, for various charged point particle dynamics the
important physical principles characterizing the related electrodynamical vacuum field structure. In
particular, the main classical relativistic relationships characterizing the charge point particle dynamics
are obtained using the least action principle within Feynman’s approach to the Maxwell electromagnetic
equations and the Lorentz type force derivation. Moreover, for each least action principle constructed,
we describe the corresponding Hamiltonian pictures and present the related energy conservation laws.
Making use of this modified least action approach, a classical hadronic string model is analyzed in detail.

The classical Lorentz force expression with respect to an arbitrary inertial reference frame has
engendered many theoretical and experimental controversies, such as the relativistic potential
energy impact on the charged point particle mass, the Aharonov–Bohm effect [5–7] and the
Abraham–Lorentz–Dirac radiation force [1,2,8] expression. In an effort to explain this, R. Feynman [9]
in his “Lectures on Physics” wrote:

“Now we would like to state the law that for quantum mechanics replaces the law F = qv×B. It will
be the law that determines the behavior of quantum mechanical particles in an electromagnetic field.
Since what happens is determined by amplitudes, the law must tell us how the magnetic influences affect
the amplitudes; we are no longer dealing with the acceleration of the particle. The law is the following:
the phase of the amplitude to arrive via any trajectory is changed by the presence of a magnetic field by
an amount equal to the integral of the vector potential along the whole trajectory times the charge of the
particle over Planck’s constant. That is,

Magnetic change in phase = − q
~

∫
A · ds (1)

If there were no magnetic field there would be a certain phase of arrival. If there is a magnetic field
anywhere, the phase of the arriving wave is increased by the integral in Eq. (1). Although we will
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not need to use it for our present discussion, let us mention that the effect of an electrostatic field is to
produce a phase change given by the negative of the time integral of the scalar potential :

Electric change in phase = − q
~

∫
φ · dt

These two expressions are correct not only for static fields, but together give the correct result for any
electromagnetic field, static or dynamic. This is the law that replaces F = q(E + v ×B).”

Consequently, the analysis of the Lorentz force subject to the assumed vacuum field medium is a
very interesting and important problem, which was discussed by E. Fermi, G. Schott, R. Feynman,
F. Dyson [9–14] and many other physicists. To describe the essence of the electrodynamic problems
related to the description of charged point particle dynamics under external electromagnetic field, let us
begin with the classical Lorentz force expression

dp/dt = Fξ := ξE + ξu×B (1.1)

Here ξ ∈ R is a particle electric charge, u ∈ T (R3) is its velocity [15,16] vector, expressed here in the
light speed c units,

E := −∂A/∂t−∇ϕ (1.2)

is the associated external electric field and

B := ∇× A (1.3)

is the corresponding external magnetic field, acting on the charged particle, expressed in terms of suitable
vector A : M4 → E3 and scalar ϕ : M4 → R potentials. Moreover, “∇” is the standard gradient
operator with respect to the spatial variable r ∈ E3 and× is the usual vector product in three-dimensional
Euclidean space E3 := (R3, < ·, · >), which is naturally endowed with the classical scalar product
< ·, · >. These potentials are defined on the Minkowski space M4 ' R × E3, which models a chosen
laboratory reference frameK. Now, it is a well-known fact [2,3,9,17] that the force expression (1.1) does
not take into account the dual influence of the charged particle on the electromagnetic field and should be
considered valid only if the particle charge ξ → 0. This also means that expression (1.1) cannot be used
for studying the interaction between two different moving charged point particles, as was pedagogically
demonstrated in the classical manuals [2,9]. The classical Lorentz force expression (1.1) is a natural
consequence of the interaction of a charged point particle with an ambient electromagnetic field, and
its derivation based on the general principles of dynamics was analyzed in detail by R. Feynman and F.
Dyson [9–11].

Taking this into account, it is natural to reanalyze this problem from the classical perspective, using
only the Maxwell-Faraday wave theory aspect to specifying the corresponding vacuum field medium.
Other questionable inferences from the classical electrodynamics theory, which strongly motivated the
analysis in this work, are related both to an alternative interpretation of the well-known Lorenz condition,
imposed on the four-vector of electromagnetic observable potentials (ϕ,A) : M4 → T ∗(M4) and the
classical Lagrangian formulation [2] of charged particle dynamics under external electromagnetic field.
The Lagrangian is strongly dependent on an important Einsteinian notion of the rest reference frame Kτ
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and the related least action principle, so before explaining it in more detail, we first analyze the classical
Maxwell electromagnetic theory from a strictly dynamical point of view.

Let us consider with respect to a laboratory reference frame K the additional Lorenz condition

∂ϕ/∂t+ < ∇, A >= 0 (1.4)

a priori assuming the Lorentz invariant wave scalar field equation

∂2ϕ/∂t2 −∇2ϕ = ρ (1.5)

and the charge continuity equation
∂ρ/∂t+ < ∇, J >= 0 (1.6)

where ρ : M4 → R and J : M4 → E3 are, respectively, the charge and current densities of the ambient
matter. Then one can show [18,19] that the Lorentz invariant wave equation

∂2A/∂t2 −∇2A = J (1.7)

and the classical electromagnetic Maxwell field equations [1–3,9,17]

∇× E + ∂B/∂t = 0, < ∇, E >= ρ (1.8)

∇×B − ∂E/∂t = J, < ∇, B >= 0

hold for all (t, r) ∈M4 with respect to the chosen laboratory reference frame K.
Notice here that, inversely, Maxwell’s equations (1.8) do not directly reduce, via definitions (1.2)

and (1.3), to the wave field Equations (1.5) and (1.7) without the Lorenz condition (1.4). This fact
is very important and suggests that when it comes to a choice of governing equations, it may be
reasonable to replace Maxwell’s equation (1.8) with the Lorenz condition (1.4) and the charge continuity
Equation (1.6). To make the equivalence statement above more transparent, we formulate it as the
following proposition.

Proposition 1.1. The Lorentz invariant wave equation (1.5) together with the Lorenz condition (1.4)
for the observable potentials (ϕ,A) : M4 → T ∗(M4) and the charge continuity relationship (1.6) are
completely equivalent to the Maxwell field equation (1.8).

Proof. Substituting (1.4), into (1.5), one easily obtains

∂2ϕ/∂t2 = − < ∇, ∂A/∂t >=< ∇,∇ϕ > +ρ (1.9)

which implies the gradient expression

< ∇,−∂A/∂t−∇ϕ >= ρ (1.10)

Taking into account the electric field definition (1.2), expression (1.10) reduces to

< ∇, E >= ρ (1.11)

which is the second of the first pair of Maxwell’s equations (1.8).
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Now upon applying∇× to definition (1.2), we find using the definition (1.3), that

∇× E + ∂B/∂t = 0 (1.12)

which is the first pair of the Maxwell equations (1.8). Upon differentiating Equation (1.5) with respect
to the time t ∈ R and taking into account the charge continuity Equation (1.6), one finds that

< ∇, ∂2A/∂t2 −∇2A− J >= 0 (1.13)

This is equivalent to the wave Equation (1.7) if one observes that the current vector J : M4 → E3 is
defined by means of the charge continuity equation (1.6) up to a vector function ∇ × S : M4 → E3.
Now applying operation∇× to the definition (1.3), it follows from the wave Equation (1.7) that

∇×B = ∇× (∇× A) = ∇ < ∇, A > −∇2A =

= −∇(∂ϕ/∂t)− ∂2A/∂t2 + (∂2A/∂t2 −∇2A) =

=
∂

∂t
(−∇ϕ− ∂A/∂t) + J = ∂E/∂t+ J, (1.14)

which leads directly to
∇×B = ∂E/∂t+ J,

which is the first of the second pair of the Maxwell equations (1.8). The final “no magnetic
charge”equation

< ∇, B >=< ∇,∇× A >= 0,

in (1.8) follows directly from the elementary identity< ∇,∇× >= 0, thereby completing the proof.

This proposition allows to consider the observable potential functions (ϕ,A) : M4 → T ∗(M4) as
fundamental ingredients of the ambient vacuum field medium, by means of which we can try to describe
the related physical behavior of charged point particles imbedded in space-time M4. The following
observation provides strong support for this approach:

Observation. The Lorenz condition (1.4) actually means the scalar potential field ϕ : M4 → R
continuity relationship, whose origin lies in some new field conservation law, characterizing the deep
intrinsic structure of the vacuum field medium.

To make this observation more transparent and precise, let us recall the definition [2,3,9,17] of the
electric current J : M4 → E3 in the dynamical form

J := ρu, (1.15)

where the vector u ∈ T (R3) is the corresponding charge velocity. Thus, the following continuity
relationship

∂ρ/∂t+ < ∇, ρu >= 0 (1.16)

holds, which can easily be rewritten [20] as the integral conservation law

d

dt

∫
Ωt

ρ(t, r)d3r = 0 (1.17)
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for a charge inside any bounded domain Ωt ⊂ E3, moving in the space-time M4 with respect to the
natural evolution equation

dr /dt := u. (1.18)

The above reasoning leads to the following result.

Proposition 1.2. The Lorenz condition (1.4) is equivalent to the integral conservation law

d

dt

∫
Ωt

ϕ(t, r)d3r = 0, (1.19)

where Ωt ⊂ E3 is any bounded domain, moving with respect to the charged point particle ξ

evolution equation

dr/dt = u(t, r) (1.20)

which represents the velocity vector of related local potential field changes propagating in the
Minkowski space-time M4. Moreover, for a particle with the distributed charge density ρ : M4 → R,
the following Umov type local energy conservation relationship

d

dt

∫
Ωt

ρ(t, r)ϕ(t, r)

(1− |u(t, r)|2)1/2
d3r = 0 (1.21)

holds for any t ∈ R.

Proof. Consider first the corresponding solutions to potential field Equation (1.5), taking into account
condition (1.15). Owing to the standard results from [2,9], one finds that

A = ϕu (1.22)

which gives rise to the following form of the Lorenz condition (1.4):

∂ϕ/∂t+ < ∇, ϕu >= 0 (1.23)

This obviously can be rewritten [20] as the integral conservation law (1.19), so the expression (1.19)
is verified.

To prove the local energy conservation relationship (1.21) it is necessary to combine the conditions
(1.16), (1.23) and find that

∂(ρϕ)/∂t+ < u,∇(ρϕ) > +2ρϕ < ∇, u >= 0 (1.24)

Recall now that the infinitesimal volume transformation d3r = χ(t, r)d3r0, where the Jacobian
χ(t, r) := |∂r(t; r0)/∂r0| of the corresponding transformation r : Ωt0 → Ωt, induced by the Cauchy
problem for the differential relationship (1.20) for any t ∈ R, satisfies the evolution equation

dχ/dt =< ∇, u > χ (1.25)

easily following from (1.20). Then applying the operator
∫

Ωt0
(...)χ2d3r0 to the equality (1.24) ,

one obtains
0 =

∫
Ωt0

d
dt

(ρϕχ2)d3r0 = d
dt

∫
Ωt0

(ρϕχ)χd3r0 =

= d
dt

∫
Ωt

(ρϕχ )d3r := d
dt
E(ξ; Ωt)

(1.26)
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Here we denoted the conserved charge ξ :=
∫

Ωt
ρ(t, r)d3r and the local energy conservation quantity

E(ξ; Ωt) : =
∫

Ωt
(ρϕχ )d3r. The latter quantity can be simplified, owing to the infinitesimal Lorentz

invariance four-volume measure relationship d3r(t, r0) ∧ dt = d3r0 ∧ dt0. Here the variables (t, r) ∈
Rt × Ωt ⊂ M4 are, in the present context, taken with respect to the moving reference frame Kt related
to the infinitesimal charge quantity dξ(t, r) := ρ(t, r)d3r. The variables (t0, r0) ∈ Rt0 × Ωt0 ⊂ M4

are taken with respect to the laboratory reference frame Kt0 , related to the infinitesimal charge quantity
dξ(t0, r0) = ρ(t0, r0)d3r0, satisfying the charge conservation invariance dξ(t, r) = dξ(t0, r0). The above
mentioned infinitesimal Lorentz invariance relationships make it possible to calculate the local energy
conservation quantity E(ξ; Ω0) as

E(ξ; Ω0) =

∫
Ωt

(ρϕχ )d3r =

∫
Ωt

(ρϕ
d3r

d3r0

)d3r = (1.27)

=

∫
Ωt

(ρϕ
d3r ∧ dt
d3r0 ∧ dt

)d3r =

∫
Ωt

(ρϕ
d3r0 ∧ dt0
d3r0 ∧ dt

)d3r =

=

∫
Ωt

(ρϕ
dt0
dt

) d3r =

∫
Ωt

ρϕ d3r

(1− |u|2)1/2
,

where we took into account that dt = dt0(1 − |u|2)1/2. Thus, owing to (1.26) and (1.27), the local
energy conservation relationship (1.21) is satisfied, proving the proposition.

The local energy conservation quantity (1.27) can be rewritten as

E(ξ; Ωt) =

∫
Ωt

dξ(t, r)ϕ(t, r)

(1− |u|2)1/2
:=

∫
Ωt

dE(t, r) (1.28)

where dE(t, r) = dξ(t, r)ϕ(t, r)(1− |u|2)−1/2 is the distributed in vacuum electromagnetic field energy
density, related to the electric charge dξ(t, r) located at the point (t, r) ∈M4.

The above proposition suggests a physically motivated interpretation of electrodynamic phenomena
in terms of what should naturally be called the vacuum potential field, which determines the observable
interactions between charged point particles. More precisely, we can a priori endow the ambient vacuum
medium with a scalar potential energy field density function W := ξϕ : M4 → R, where ξ ∈ R+ is the
value of an elementary charge quantity, satisfying the governing vacuum field equations

∂2W/∂t2 −∇2W = ρξ, ∂W/∂t+ < ∇, Â >= 0,

∂2Â/∂t2 −∇2Â = ξρv, Â = Wv
(1.29)

taking into account the external charged sources, which possess a virtual capability for disturbing
the vacuum field medium. Moreover, this vacuum potential field function W : M4 → R allows
the natural potential energy interpretation, whose origin should be assigned not only to the charged
interacting medium, but also to any other medium possessing interaction capabilities, including for
instance, material particles, interacting due to gravity.

This leads naturally to the next important step, consisting in deriving the equation governing the
corresponding potential field W̄ : M4 → R, assigned to a charged point particle moving in the vacuum
field medium with velocity u ∈ T (R3) and located at point r(t) = R(t) ∈ E3 at time t ∈ R. As can
be readily shown [18,19,21], the corresponding evolution equation governing the related potential field
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function W̄ : M4 → R, assigned to a moving in the space E3 charged particle ξ under the stationary
distributed field sources, has the form

d

dt
(−W̄u) = −∇W̄ (1.30)

where W̄ := W (t, r)|r→R(t), u(t) := dR(t)/dt at point particle location (t, R(t)) ∈M4.

Similarly, if there are two interacting charged point particles, located at points r(t) = R(t) and
rf (t) = Rf (t) ∈ E3 at time t ∈ R and moving, respectively, with velocities u := dR(t)/dt and
uf := dRf (t)/dt, the corresponding potential field function W̄ ′ : M4 → R, considered with respect to
the reference frameK′ specified by Euclidean coordinates (t′, r−rf ) ∈ E4 and moving with the velocity
uf ∈ T (R3) subject to the laboratory reference frame K, should satisfy [19,22] with respect to the
reference frame K′ the dynamical equality

d

dt′
[−W̄ ′(u′ − u′f )] = −∇W̄ ′ (1.31)

where we have denoted the velocity vectors u′ := dr/dt′, u′f := drf/dt
′ ∈ T (R3). The latter comes with

respect to the laboratory reference frame K about the dynamical equality

d

dt
[−W̄ (u− uf )] = −∇W̄ (1− |uf |2) (1.32)

The dynamical potential field Equations (1.30) and (1.31) appear to have important properties and
can be used as means for representing classical electrodynamic phenomena. Consequently, we shall
proceed to investigate their physical properties in more detail and compare them with classical results
for Lorentz type forces arising in the electrodynamics of a moving charged point particles in an external
electromagnetic field.

In this investigation, we were in part inspired by works [23–27] and studies [28,29] devoted to solving
the classical problem of reconciling gravitational and electrodynamic charges in the Mach–Einstein
ether paradigm. First, we shall revisit the classical Mach–Einstein relativistic electrodynamics of a
moving charged point particle, and second, we study the resulting electrodynamic theories associated
with our vacuum potential field dynamical Equations (1.30) and (1.31), making use of the fundamental
Lagrangian and Hamiltonian formalisms which were devised in [18,30].

1.2. Classical Relativistic Electrodynamics Revisited

The classical relativistic electrodynamics of a freely moving charged point particle in the Minkowski
space-time M4 := R× E3 is based on the Lagrangian approach [2,3,9,17] with Lagrangian function

L := −m0(1− |u|2)1/2 (1.33)

where m0 ∈ R+ is the so-called particle rest mass and u ∈ T (R3) is its spatial velocity in the Euclidean
space E3, expressed here and in the sequel in light speed units (with light speed c). The least action
principle in the form

δS = 0, S := −m0

∫ t2

t1

(1− |u|2)1/2dt (1.34)
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for any fixed temporal interval [t1, t2] ⊂ R gives rise to the well-known relativistic relationships for the
mass of the particle

m = m0(1− |u|2)−1/2 (1.35)

the momentum of the particle

p := mu = m0u(1− |u|2)−1/2 (1.36)

and the energy of the particle
E0 = m = m0(1− |u|2)−1/2 (1.37)

It follows from [2,3], that the origin of the Lagrangian (1.33) can be extracted from the action

S := −m0

∫ t2

t1

(1− |u|2)1/2dt = −m0

∫ τ2

τ1

dτ (1.38)

on the suitable temporal interval [τ1,τ2] ⊂ R, where, by definition,

dτ := dt(1− |u|2)1/2 (1.39)

and τ ∈ R is the so-called, proper temporal parameter assigned to a freely moving particle with respect
to the rest reference frame Kr. The action (1.38) is rather questionable from the dynamical point of
view, since it is physically defined with respect to the rest reference frameKr, giving rise to the constant
action S = −m0(τ2 − τ1), as the limits of integrations τ1 < τ2 ∈ R were taken to be fixed from the very
beginning. Moreover, considering this particle to have charge ξ ∈ R and be moving in the Minkowski
space-time M4 under action of an electromagnetic field (ϕ,A) ∈ R × E3, the corresponding classical
(relativistic) action functional is chosen (see [2,3,9,17,18,30]) as follows:

S :=

∫ τ2

τ1

[−m0dτ + ξ < A, ṙ > dτ − ξϕ(1− |u|2)−1/2dτ ] (1.40)

with respect to the rest reference system, parameterized by the Euclidean space-time variables (τ, r) ∈
E4, where we have denoted ṙ := dr/dτ in contrast to the definition u := dr/dt. The action (1.40) can
be rewritten with respect to the laboratory reference frame K the moving with velocity vector u ∈ E3 as

S =

∫ t2

t1

Ldt, L := −m0(1− |u|2)1/2 + ξ < A, u > −ξϕ (1.41)

on the suitable temporal interval [t1, t2] ⊂ R, which gives rise to the following [2,3,9,17] dynamical
expressions

P = p+ ξA, p = mu, m = m0(1− |u|2)−1/2 (1.42)

for the particle momentum and

E0 = (m2
0 + |P − ξA|2)1/2 + ξϕ (1.43)

for the charged particle ξ energy, where, by definition, P ∈ E3 is the common momentum of the particle
and the ambient electromagnetic field at a space-time point (t, r) ∈M4.
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The expression (1.43) for the particle energy E0 also is open to question, since the potential energy
ξϕ, entering additively, has no affect on the particle mass m = m0(1 − |u|2)−1/2. This was noticed
by L. Brillouin [31], who remarked that the fact that the potential energy has no affect on the particle
mass tells us that “... any possibility of existence of a particle mass related with an external potential
energy, is completely excluded.” Moreover, it is necessary to stress here that the least action principle
(1.41), formulated with respect to the laboratory reference frame K time parameter t ∈ R, appears
logically inadequate, for there is a strong physical inconsistency with other time parameters of the
Lorentz equivalent reference frames. This was first mentioned by R. Feynman in [32], in his efforts
to rewrite the Lorentz force expression with respect to the rest reference frame Kr. This and other
special relativity theory and electrodynamics problems stimulated many prominent physicists of the
past [3,31–34] and present [21,24,26,35–44] to try to develop alternative relativity theories based on
completely different space-time and matter structure principles.

There also is another controversial inference from the action expression (1.41). As one can easily
show [2,3,9,17], the corresponding dynamical equation for the Lorentz force is given as

dp/dt = Fξ := ξE + ξu×B (1.44)

We have defined here, as before,
E := −∂A/∂t−∇ϕ (1.45)

for the corresponding electric field and
B := ∇× A (1.46)

for the related magnetic field, acting on the charged point particle ξ. The expression (1.44) means, in
particular, that the Lorentz force F depends linearly on the particle velocity vector u ∈ T (R3), and so
there is a strong dependence on the reference frame with respect to which the charged particle ξ moves.
Attempts to reconcile this and some related controversies [21,31,32,45] forced Einstein to devise his
special relativity theory and proceed further to creating his general relativity theory trying to explain the
gravity by means of geometrization of space-time and matter in the Universe. Here, we must mention that
the classical Lagrangian function L in (1.41) is written in terms of a combination of terms expressed by
means of both the Euclidean rest reference frame variables (τ, r) ∈ E4 and arbitrarily chosen Minkowski
reference frame variables (t, r) ∈M4.

These problems were recently analyzed using a completely different “no-geometry”
approach [19,21,22], where new dynamical equations were derived, which were free of the controversial
elements mentioned above. Moreover, this approach avoided the introduction of the well known Lorentz
transformations of the space-time reference frames with respect to which the action functional (1.41)
is invariant. From this point of view, there are interesting for discussion conclusions in [37,46–48], in
which some electrodynamic models, possessing intrinsic Galilean and Poincaré–Lorentz symmetries,
are reanalyzed from diverse geometrical points of view. Subject to a possible geometric space-type
structure and the related vacuum field background, exerting the decisive influence on the particle
dynamics, we need to mention the recent works [49,50] and the closely related classical articles [51,52].
Next, we shall revisit the results obtained in [18,19] from the classical Lagrangian and Hamiltonian
formalisms [30] in order to shed new light on the physical underpinnings of the vacuum field theory
approach to the study of combined electromagnetic and gravitational effects.
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1.3. Ampère’s Law in Electrodynamics–The Classical and Modified Lorentz Forces Derivations

Ampère’s ingenious classical analysis of magnetically interacting to each other two electric currents
in thin conductors, as is well known, was based [2,3,9,17] on the following experimental fact:
the force between two electric currents depends on the distance between conductors, their mutual
spatial orientation and the quantitative values of currents. Under the assumption of the infinitesimal
superposition principle, A.M. Ampère derived a general analytical expression for the force between two
infinitesimal elements of currents:

df(r, r′) = I I ′
(r − r′)
|r − r′|2

α(s, s′;n)dldl′ (1.47)

where vectors r, r′ ∈ E3 point at infinitesimal currents dr = sdl, dr′ = s′dl′ with normalized orientation
vectors s, s′ ∈ E3 of two closed conductors l and l′ carrying currents I ∈ R and I ′ ∈ R, respectively,
and the unit vector n := (r − r′)/|r − r′|, the spatial orientations of these infinitesimal elements are
fixed, and the function α : (S2)2 × S2 → R is a real-valued smooth mapping. Then taking into account
the mutual symmetry between the infinitesimal elements of currents dl and dl′, belonging respectively
to these two electric conductors, the infinitesimal force (1.47) was assumed by Ampère to locally satisfy
Newton’s third law:

df(r, r′) = −df(r′, r) (1.48)

with the mapping

α(s, s′;n) =
µ0

4π
(3k1 < s, n >< s′, n > +k2 < s, s′ >) (1.49)

where < ·, · > is the natural scalar product in E3 and k1, k2 ∈ R are some still undetermined real and
dimensionless parameters. The assumption (1.48) is apparently very restrictive and can be considered
as reasonable only subject to a stationary system of conductors under regard, when the mutual action at
a distance principle [2,9] can be applied. As J.C. Maxwell [53] observed “... we may draw the
conclusions, first, that action and reaction are not always equal and opposite, and second, that apparatus
may be constructed to generate any amount of work from its own resources. For let two oppositely
electrified bodies A and B travel along the line joining them with equal velocities in the direction AB,
then if either the potential or the attraction of the bodies at a given time is that due to their position at
some former time (as these authors suppose), B, the foremost body, will attract A forwards more than
B attracts A backwards. Now let A and B be kept apart by a rigid rod. The combined system, if set in
motion in the directionAB, will pull in that direction with a force which may either continually augment
the velocity, or may be used as an inexhaustible source of energy.”

Based on the fact that there is no possibility to measure the force between two infinitesimal current
elements, A.M. Ampère took into account (1.48), (1.49) and calculated the corresponding force exerted
by the whole conductor l′ on an infinitesimal current element of other conductor under regard:
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dF (r) :=
∮
l′
df(r, r′) =

= I I′µ0
4π

∮
l′

(r−r′)
|r−r′|2 (3k1 < dr, r−r

′

|r−r′| >< dr′, r−r
′

|r−r′| > +k2
r−r′
|r−r′| < dr, dr′ >) =

= I I′µ0
4π

∮
l′
∇r′

(
1

|r−r′|

)
(3k1 < dr, r − r′ >< dr′, r − r′ > +k2 < dr, dr′ >)

(1.50)

which can be equivalently transformed as

dF (r) = I I′µ0
4π

∮
l′
∇r′

(
1

|r−r′|

)
(3k1 < dr, r − r′ >< dr′, r − r′ > +k2 < dr, dr′ >) =

= I I′µ0
4π

∮
l′
∇r′

(
1

|r−r′|

)
[k1(3 < dr, r − r′ >< dr′, r − r′ > −

−< dr, dr′ >) + (k1 + k2) < dr, dr′ >] =

= −k1
µ0I
4π

< dr,∇
∮
l′

(
I′dr′

|r−r′|

)
> −(k1 + k2) < ∇,

∮
l′
< dr, I

′dr′

|r−r′| >

(1.51)

owing to the integral identity

∮
l′
∇r′

(
1

|r−r′|

)
(3 < dr, r − r′ >< dr′, r − r′ > − < dr, dr′ >) =< dr,∇ >

∮
l′

dr′

|r−r′| (1.52)

which can be easily checked by means of integration by parts. Introducing the vector potential

A(r) :=
µ0I

′

4π

∮
l′

dr′

|r − r′|
(1.53)

generated by the conductor l′ at point r ∈ E3, belonging to the infinitesimal element dl of the conductor
l, the resulting infinitesimal force (1.50) gives rise to the following expression:

dF (r) = k1(−I < dr,∇)A(r) + I∇ < dr,A(r) >)− (2k1 + k2)I∇ < dr,A(r) >=

= k1Idr × (∇× A(r))− (2k1 + k2)I∇ < dr,A(r) >=

= k1J(r)d3r ×B(r)− (2k1 + k2)∇ < Jd3r, A(r) >

(1.54)

where we have taken into account the standard magnetic field definition

B(r) := ∇× A(r) (1.55)

and the corresponding current density relationship

J(r)d3r := Idr (1.56)
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There are clearly many possible choices for the dimensionless parameters k1, k2 ∈ R. In his analysis,
Ampère chose the case when k1 = 1, k2 = −2 and obtained the now well-known magnetic
force expression

dF (r) = J(r)d3r ×B(r) (1.57)

which easily reduces to the classical Lorentz expression

dfL(r) = ξu×B(r) (1.58)

for a force exerted by an external magnetic field on a point particle moving with a constant velocity
u ∈ T (R3) with an electric charge ξ ∈ R.

If one takes an alternative choice and sets k1 = 1, k2 = −1, the expression (1.54) yields a modified
magnetic Lorentz type force, exerted by an external magnetic field generated by a moving charged
particle with a velocity u′ ∈ T (R3) on a point particle, endowed with the electric charge ξ ∈ R and
moving with a velocity u ∈ T (R3) :

dFL(r) = J(r)d3r ×B(r)−∇ < J(r)d3r, A(r) > (1.59)

which was briefly discussed in [21,54,55] and recently obtained and analyzed in detail from the
Lagrangian point of view in [18,19,22,56] in the following equivalent to (1.32) infinitesimal form:

δfL(r) = ξu× (∇× ξδA(r))− ξ∇ < u− uf , δA(r) > (1.60)

where δA(r) ∈ T ∗(R3) denotes the magnetic potential generated by an external charged point particle
moving with velocity uf ∈ T (R3) and exerting the magnetic force δfL(r) on the charged particle located
at point r ∈ R3 and moving with velocity u ∈ T (R3) with respect to a common reference system Kt.
We also need to mention here that the modified Lorentz force expression (1.59) does not take into
account the resulting pure electric force as the conductors l and l′ are considered to be electrically
neutral. Simultaneously, we see that the magnetic potential has a physical significance in its own
right [8,21,54,56] and has meaning in a way that extends beyond the calculation of force fields.

To obtain the Lorentz force (1.59) exerted by the external magnetic field generated by the whole
conductor l′ on an infinitesimal current element dl of the conductor l, it is necessary to integrate the
expression (1.60) along this conductor loop l′ :
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dFL(r) :=
∮
l′
δfL(r) = J(r)dr × (∇×

∮
l′
δA(r))−∇ < J(r)dr,

∮
l′
δA(r) > +

+∇
∮
l′
< u′, ξδA(r) >= J(r)dr × (∇× A(r))−∇ < J(r)dr,

∮
l′
δA(r) > +

+∇
∮
l′
< dr′, ξδA(r)/dt >= J(r)dr ×B(r)−∇ < J(r)dr,

∮
l′
δA(r) > +

+∇
∫
S(l′)

< dS(l′),∇× ξδA(r)/dt >= J(r)dr ×B(r)−∇ < J(r)dr,
∮
l′
δA(r) > +

+∇
∮
l′
< dS(l′), ξδB(r)/dt >= J(r)dr ×B(r)−∇ < J(r)dr,

∮
l′
δA(r) > +

+ξ∇(dΦ(r)/dt) = J(r)dr ×B(r)−∇ < J(r)dr,A(r) > −ρ(r)d3r∇W =

= J(r)dr ×B(r)−∇ < J(r)dr,
∮
l′
δA(r) > +ρ(r)d3r(−∇W − ∂A(r)/∂t) =

= J(r)dr ×B(r)−∇ < J(r)dr,
∮
l′
δA(r) > +ρ(r)d3rE(r)

(1.61)

that is the equality

dF (r) = ρ(r)d3rE(r) + J(r)d3r ×B(r)−∇ < J(r)d3r, A(r) > (1.62)

where, by the electric field E(r) := −∇W − ∂A(r)/∂t. Now one can easily derive from (1.62) the
desired Lorentz force expression (6.24), if one takes into account that the whole electric field E(r) ' 0

owing to the neutrality of the conductors. Concerning the latter it is worth mentioning the following
remark of D. Kastler [57] :

“It is true that Ampere’s formula is no more admissible today, because it is based on the Newtonian
idea of instantaneous action at a distance and it leads notably to the strange consequence that
two consecutive elements of the same current should repel each other. Ampere presumed to have
demonstrated experimentally this repulsion force, but on this point he was wrong. The modern method,
the more rational in order to establish the existence of electrodynamics forces and to determine their
value consists in starting from the electrostatic interaction law of Coulomb between two charges (two
electrons), whose one of them is at rest in the adopted frame of reference and studying how the interaction
forces transform when one goes, thanks to the Lorentz-Einstein relations, to a system of coordinates in
which both charges are in motion. One sees the appearance of additional forces proportional to e2/c2, e

being the electrostatic charge and c the light velocity, hence one sees that not only the spin but also the
magnetic moment of the electron are of relativistic origin - as Dirac has shown - but that the whole of
electromagnetic forces has such an origin.”

Thereby, the above analysis of Ampère’s derivation of the magnetic force expression (1.54), as well
as its consequences (1.59) and (1.60) make it possible to suppose that the missed modified Lorentz type
force expression (1.61) could also be embedded into the classical relativistic Lagrangian and related
Hamiltonian formalisms, eventually giving rise to new aspects and interpretations of many “strange”
experimental phenomena observed during the past few centuries.
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2. Vacuum Field Theory Electrodynamics Equations: Lagrangian Analysis

2.1. A Point Particle Moving in Vacuo—An Alternative Electrodynamic Model

In the vacuum field theory approach to combining electromagnetism and gravity, devised in [18,19],
the main vacuum potential field function W̄ : M4→ R, related to a charged point particle ξ under the
external stationary distributed field sources, satisfies the dynamical Equation (1.29), namely

d

dt
(−W̄u) = −∇W̄ (2.1)

in the case when the external charged particles are at rest, where, as above, u := dr/dt is the particle
velocity with respect to some reference system.

To analyze the dynamical Equation (2.1) from the Lagrangian point of view, we write the
corresponding action functional as

S := −
t2∫
t1

W̄dt = −
τ2∫
τ1

W̄ (1 + |ṙ|2)1/2 dτ (2.2)

expressed with respect to the rest reference frame Kr. Fixing the proper temporal parameters τ1 < τ2 ∈
R, one finds from the least action principle ( δS = 0) that

p := ∂L/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 = −W̄u, (2.3)

ṗ := dp/dτ = ∂L/∂r = −∇W̄ (1 + |ṙ|2)1/2

where, owing to (2.2), the corresponding Lagrangian function is

L := −W̄ (1 + |ṙ|2)1/2 (2.4)

Recalling now the definition of the particle mass

m := −W̄ (2.5)

and the relationships
dτ = dt(1− |u|2)1/2, ṙdτ = udt (2.6)

from (2.3) we easily obtain exactly the dynamical Equation (2.1). Moreover, one now readily find that
the dynamical mass, defined by means of expression (2.5), is given as

m = m0(1− |u|2)−1/2

which coincides with the Equation (1.35) of the preceding section. Now one can formulate the following
proposition using the above results

Proposition 2.1. The alternative freely moving point particle electrodynamic model (2.1) allows the least
action formulation (2.2) with respect to the “rest” reference frame variables, where the Lagrangian
function is given by expression (2.4). Its electrodynamics is completely equivalent to that of a classical
relativistic freely moving point particle, described in Subsection 1.2.
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2.2. A Moving Two Charge System in a Vacuum—An Alternative Electrodynamic Model

We proceed now to the case when our charged point particle ξ moves in the space-time with velocity
vector u ∈ T (R3) and interacts with another external charged point particle ξf , moving with velocity
vector uf ∈ T (R3) with respect to a common reference frame K. As was shown in [18,19], the
respectively modified dynamical equation for the vacuum potential field function W̄ ′ : M4→ R subject
to the moving reference frame K′ is given by equality (1.31), or

d

dt′
[−W̄ ′(u′ − u′f )] = −∇W̄ ′ (2.7)

where, as before, the velocity vectors u′ := dr/dt′, u′f := drf/dt
′ ∈ T (R3). Since the external

charged particle ξf moves in the space-time M4, it generates the related magnetic field B := ∇ × A,
whose magnetic vector potentials A : M4→ E3 and A′ : M4→ E3 are defined, owing to the results
of [18,19,21], as

ξA := W̄uf , ξA′ := W̄ ′u′f (2.8)

Whence, taking into account that the field potential

W̄ = W̄ ′(1− |uf |2)−1/2 (2.9)

and the particle momentum p′ = −W̄ ′u′ = −W̄u, equality (2.7) becomes equivalent to

d

dt′
(p′ + ξA′) = −∇W̄ ′ (2.10)

if considered with respect to the moving reference frame K′, or to the Lorentz type force equality

d

dt
(p+ ξA) = −∇W̄ (1− |uf |2) (2.11)

if considered with respect to the laboratory reference frame K, owing to the classical Lorentz invariance
relationship (2.9), as the corresponding magnetic vector potential, generated by the external charged
point test particle ξf with respect to the reference frame K′, is identically equal to zero. To imbed the
dynamical Equation (2.11) into the classical Lagrangian formalism, we start from the following action
functional, which naturally generalizes the functional (2.2):

S := −
τ2∫
τ1

W̄ ′(1 + |ṙ − ṙf |2)1/2 dτ (2.12)

Here, as before, W̄ ′ is the respectively calculated vacuum field potential W̄ subject to the moving
reference frame K′, ṙ = u′dt′/dτ, ṙf = u′fdt

′/dτ, dτ = dt′(1 − |u′ − u′f |2)1/2, which take into
account the relative velocity of the charged point particle ξ subject to the reference frame K′, specified
by the Euclidean coordinates (t′, r − rf ) ∈ R4, and moving simultaneously with velocity vector
uf ∈ T (R3) with respect to the laboratory reference frame K, specified by the Minkowski coordinates
(t, r) ∈ M4 and related to those of the reference frame K′ and Kτ by means of the following
infinitesimal relationships:

dt2 = (dt′)2 + |drf |2, (dt′)2 = dτ 2 + |dr − drf |2 (2.13)
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So, it is clear in this case that our charged point particle ξ moves with the velocity vector u′−u′f ∈ T (R3)

with respect to the reference frame K′ in which the external charged particle ξf is at rest. Thereby,
we have reduced the problem of deriving the charged point particle ξ dynamical equation solved in
Subsection 2.1.

Now we can compute the least action variational condition δS = 0, taking into account that, owing
to (2.12), the corresponding Lagrangian function with respect to the rest reference frame Kτ is given as

L := −W̄ ′(1 + |ṙ − ṙf |2)1/2 (2.14)

As a result of simple calculations, the generalized momentum of the charged particle ξ equals

P := ∂L/∂ṙ = −W̄ ′(ṙ − ṙf )(1 + |ṙ − ṙf |2)−1/2 = (2.15)

= −W̄ ′ṙ(1 + |ṙ − ṙf |2)−1/2 + W̄ ′ṙf (1 + |ṙ − ṙf |2)−1/2 =

= m′u′ + ξA′ := p′ + ξA′ = p+ ξA

where, owing to (2.9) the vectors p′ := −W̄ ′u′ = −W̄u = p ∈ E3, A′ = W̄ ′u′f = W̄uf = A ∈ E3,

and giving rise to the dynamical equality

d

dτ
(p′ + ξA′) = −∇W̄ ′(1 + |ṙ − ṙf |2)1/2 (2.16)

with respect to the rest reference frame Kτ . As dt′ = dτ(1 + |ṙ − ṙf |2)1/2 and (1 + |ṙ − ṙf |2)1/2 =

(1− |u′ − u′f |2)−1/2, we obtain from (2.16) the equality

d

dt′
(p′ + ξA′) = −∇W̄ ′ (2.17)

exactly coinciding with equality (2.10) subject to the moving reference frame K′. Now, making use of
expressions (2.13) and (2.9), one can rewrite (2.17) as that with respect to the laboratory reference
frame K :

d
dt′

(p′ + ξA′) = −∇W̄ ′ ⇒

⇒ d
dt′

( −W̄u′

(1+|u′f |2)1/2
+

ξW̄u′f
(1+|u′f |2)1/2

) = − ∇W̄
(1+|u′f |2)1/2

⇒

⇒ d
dt′

( −W̄dr
(1+|u′f |2)1/2dt′

+
ξW̄drf/

(1+|u′f |2)1/2
) = − ∇W̄

(1+|u′f |2)1/2
⇒

⇒ d
dt

(−W̄ dr
dt

+ ξW̄
drf
dt

) = −∇W̄ (1− |uf |2)

(2.18)

exactly coinciding with (2.11):

d

dt
(p+ ξA) = −∇W̄ (1− |uf |2) (2.19)

Remark 2.2. The Equation (2.19) allows to infer the following important and physically reasonable
phenomenon: if the test charged point particle velocity uf ∈ T (R3) tends to the light velocity c = 1, the
corresponding acceleration force Fac := −∇W̄ (1 − |uf |2) is vanishing. Thereby, the electromagnetic
fields, generated by such rapidly moving charged point particles, have no influence on the dynamics of
charged objects if observed with respect to an arbitrarily chosen laboratory reference frame K.
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The latter Equation (2.19) can be rewritten as

dp/dt = −∇W̄ − ξdA/dt+∇W̄ |uf |2 = (2.20)

= ξ(−ξ−1∇W̄ − ∂A/∂t)− ξ < u,∇ > A+ ξ∇ < A, uf >

or, using the well-known [2] identity

∇ < a, b >=< a,∇ > b+ < b,∇ > a+ b× (∇× a) + a× (∇× b) (2.21)

where a, b ∈ E3 are arbitrary vector functions, in the standard Lorentz type form

dp/dt = ξE + ξu×B − ∇ < ξA, u− uf > (2.22)

The result (2.22), being before found and written down with respect to the moving reference frame
K′ in [18,19,21] and in [58] yet with some inconsistency, makes it possible to formulate the next
important proposition.

Proposition 2.3. The alternative classical relativistic electrodynamic model (2.10) allows the least
action formulation based on the action functional (2.12) with respect to the rest reference frame Kτ ,
where the Lagrangian function is given by expression (2.14). The resulting Lorentz type force expression
equals (2.22) modified by the additional force component Fc := −∇ < ξA, u − uf >, important for
explanation [5–7] of the well known Aharonov–Bohm effect.

2.3. A moving charged point particle formulation dual to the classical alternative electrodynamic model

It is easy to see that the action functional (2.12) is written utilizes the classical Galilean
transformations. If we now consider the action functional (2.2) for a charged point particle moving
with respect to a reference frameKr, and take into account its interaction with an external magnetic field
generated by the vector potential A : M4 → E3, it can be naturally generalized as

S :=

t2∫
t1

(−W̄dt+ ξ < A, dr >) =

τ2∫
τ1

[−W̄ (1 + |ṙ|2)1/2 + ξ < A, ṙ >]dτ (2.23)

where dτ = dt(1− |u|2)1/2.

Thus, the corresponding common particle-field momentum takes the form

P := ∂L/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 + ξA = (2.24)

= mu+ ξA := p+ ξA

and satisfies

Ṗ := dP/dτ = ∂L/∂r = −∇W̄ (1 + |ṙ|2)1/2 + ξ∇ < A, ṙ >= (2.25)

= −∇W̄ (1− |u|2)−1/2 + ξ∇ < A, u > (1− |u|2)−1/2
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where
L := −W̄ (1 + |ṙ|2)1/2 + ξ < A, ṙ > (2.26)

is the corresponding Lagrangian function. Since dτ = dt(1− |u|2)1/2, one easily finds from (2.25) that

dP/dt = −∇W̄ + ξ∇ < A, u > (2.27)

Upon substituting (2.24) into (2.27) and making use of the identity (2.21), we obtain the classical
expression for the Lorentz force F acting on the moving charged point particle ξ :

dp/dt := F = ξE + ξu×B (2.28)

where,
E := −ξ−1∇W̄ − ∂A/∂t (2.29)

is its associated electric field and
B := ∇× A (2.30)

is the corresponding magnetic field. This result can be summarized as follows:

Proposition 2.4. The classical relativistic Lorentz force (2.28) allows the least action formulation (2.23)
with respect to the rest reference frame variables, where the Lagrangian function is given by formula
(2.26). Yet its electrodynamics, described by the Lorentz force (2.28), is not equivalent to the classical
relativistic moving point particle electrodynamics, described by means of the Lorentz force (1.44), as the
inertial mass expression m = −W̄ does not coincide with that of (1.35).

Expressions (2.28) and (2.22) are equal to the gradient term Fc := −ξ∇ < A, u − uf >, which
reconciles the Lorentz forces acting on a charged moving particle ξ with respect to different reference
frames. This fact is important for our vacuum field theory approach since it uses no special geometry and
makes it possible to analyze both electromagnetic and gravitational fields simultaneously by employing
the new definition of the dynamical mass by means of expression (2.5).

2.4. Vacuum Field Theory Electrodynamics Equations: Hamiltonian Analysis

Any Lagrangian theory has an equivalent canonical Hamiltonian representation via the classical
Legendre transformation [15,17,59–61]. As we have already formulated our vacuum field theory of
a moving charged particle ξ in Lagrangian form, we proceed now to its Hamiltonian analysis making use
of the action functionals (2.2), (2.14) and (2.23).

Take, first, the Lagrangian function (2.4) and the momentum expression (2.3) for defining the
corresponding Hamiltonian function with respect to the moving reference frame Kr :

H :=< p, ṙ > −L =

= − < p, p > W̄−1(1− |p|2/W̄ 2)−1/2 + W̄ (1− |p|2/W̄ 2)−1/2 =

= −|p|2W̄−1(1− |p|2/W̄ 2)−1/2 + W̄ 2W̄−1(1− |p|2/W̄ 2)−1/2 = (2.31)

= −(W̄ 2 − |p|2)(W̄ 2 − |p|2)−1/2 = −(W̄ 2 − |p|2)1/2
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It is easy to show [15–17,59,61] that the Hamiltonian function (2.31) is a conservation law of the
dynamical field Equation (2.1), that is for all τ, t ∈ R

dH/dτ = dH/dt = 0 (2.32)

which naturally leads to an energy interpretation of H . Thus, we can represent the particle energy as

E = (W̄ 2 − |p|2)1/2 (2.33)

Accordingly the Hamiltonian equivalent to the vacuum field Equation (2.1) can be written as

ṙ := dr/dτ = ∂H/∂p = p(W̄ 2 − |p|2)−1/2 (2.34)

ṗ := dp/dτ = −∂H/∂r = W̄∇W̄ (W̄ 2 − |p|2)−1/2

and we have the following result.

Proposition 2.5. The alternative freely moving point particle electrodynamic model (2.1) allows the
canonical Hamiltonian formulation (2.34) with respect to the “rest” reference frame variables, where
the Hamiltonian function is given by expression (2.31). Its electrodynamics is completely equivalent to
the classical relativistic freely moving point particle electrodynamics described in Subsection 2.1.

Analogously, one can now use the Lagrangian (2.14) to construct the Hamiltonian function for
the dynamical field Equation (4.14), describing the motion of charged particle ξ in an external
electromagnetic field in the canonical Hamiltonian form:

ṙ := dr/dτ = ∂H/∂P, Ṗ := dP/dτ = −∂H/∂r (2.35)

where

H :=< P, ṙ > −L =

=< P, ṙf − PW̄ ′,−1(1− |P |2/W̄ ′,2)−1/2 > +W̄ ′[W̄ ′,2(W̄ ′,2 − |P |2)−1]1/2 =

=< P, ṙf > +|P |2(W̄ ′,2 − |P |2)−1/2 − W̄ ′,2(W̄ ′,2 − |P |2)−1/2 =

= −(W̄ ′,2 − |P |2)(W̄ ′,2 − |P |2)−1/2+ < P, ṙf >= (2.36)

= −(W̄ ′,2 − |P |2)1/2 − ξ < A′, P > (W̄ ′,2 − |P |2)−1/2 =

= −(W̄ 2 − |ξA|2 − |P |2)1/2 − ξ < A, P > (W̄ 2 − |ξA|2 − |P |2)−1/2

with respect to the laboratory reference frame K. Here we took into account that, owing to definitions
(2.8), (2.9) and (4.17),

ξA′ := W̄ ′u′f = W̄ ′drf/dt
′ = ξA = (2.37)

= W̄ ′drf
dτ
· dτ
dt′

= W̄ ′ṙf (1− |u− uf |)1/2 =

= W̄ ′ṙf (1 + |ṙ − ṙf |2)−1/2 =

= −W̄ ′ṙf (W̄
′,2 − |P |2)1/2W̄ ′,−1 = −ṙf (W̄ ′,2 − |P |2)1/2
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and, in particular,
ṙf = −ξA(W̄

′,2 − |P |2)−1/2, W̄ = W̄ ′(1− |uf |2)−1/2 (2.38)

where A : M4→ R3 is the related magnetic vector potential generated by the moving external charged
particle ξf . Equations (2.35) can be rewritten with respect to the laboratory reference frameK in the form

dr/dt = u, dp/dt = ξE + ξu×B − ξ∇ < A, u− uf > (2.39)

which coincides with the result (2.22).
Whence, we see that the Hamiltonian function (2.36) satisfies the energy conservation conditions

dH/dτ = dH/dt′ = dH/dt = 0 (2.40)

for all τ, t′ and t ∈ R, and that the suitable energy expression is

E = (W̄ 2 − ξ2|A|2 − |P |2)1/2 + ξ < A, P > (W̄ 2 − ξ2|A|2 − |P |2)−1/2 (2.41)

where the generalized momentum P = p+ ξA. The result (2.41) differs essentially from that obtained
in [2], which makes use of the Einsteinian Lagrangian for a moving charged point particle ξ in an external
electromagnetic field. Thus, we obtain the following result:

Proposition 2.6. The alternative classical relativistic electrodynamic model (2.39), which is intrinsically
compatible with the classical Maxwell Equations (1.6), allows the Hamiltonian formulation (2.35)
with respect to the rest reference frame variables, where the Hamiltonian function is given by
expression (2.36).

The inference above is a natural candidate for experimental validation of our theory. It is strongly
motivated by the following remark.

Remark 2.7. It is necessary to mention here that the Lorentz force expression (2.39) uses the particle
momentum p = mu, where the dynamical “mass” m := −W̄ satisfies condition (2.41). This gives rise
to the following crucial relationship between the particle energy E0 and its rest mass m0 = −W̄0 (for the
initial velocity u = 0 at time t = 0) :

E0 = m0
(1− |ξA0/m0|2)

(1− 2|ξA0/m0|2)1/2
(2.42)

or, equivalently, under the condition |ξA0/m0|2 < 1/2

m0 = E0

(
1

2
+ |ξA0/E0|2 ±

1

2

√
1− 4|ξA0/E0|2

)1/2

(2.43)

where A0 := A|t=0 ∈ E3, which differs markedly from the classical expression m0 = E0 − ξϕ0,

following from (1.43) and does not a priori depend on the external potential energy ξϕ0. As the
quantity |ξA0/E0| → 0 if the energy modulus |E0| → ∞, the following asymptotic mass values follow
from (2.43):

m̄0 ' E0, m
(±)
0 ' ±

√
2|ξA0|. (2.44)

The first mass value m̄0 ' E0 looks like the relativistic physics standard, yet the second mass values
m

(±)
0 ' ±

√
2|ξA0| give rise to the existence at large enough energies of charged particle excitations of

the vacuo with both positive and negative mass values.
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To make this difference more clear, we now analyze the Lorentz force (2.28) from the Hamiltonian
point of view based on the Lagrangian function (2.26). Thus, we obtain that the corresponding
Hamiltonian function

H :=< P, ṙ > −L =< P, ṙ > +W̄ (1 + |ṙ|2)1/2 − ξ < A, ṙ >= (2.45)

=< P − ξA, ṙ > +W̄ (1 + |ṙ|2)1/2 =

= − < p, p > W̄−1(1− |p|2/W̄ 2)−1/2 + W̄ (1− |p|2/W̄ 2)−1/2 =

= −(W̄ 2 − |p|2)(W̄ 2 − |p|2)−1/2 = −(W̄ 2 − |p|2)1/2

Since p = P − ξA, expression (2.45) assumes the final “no interaction” [2,3,62,63] form

H = −(W̄ 2 − |P − ξA|2)1/2 (2.46)

which is conserved with respect to the evolution Equations (2.24) and (2.25), that is

dH/dτ = dH/dt = 0 (2.47)

for all τ, t ∈ R. These equations are equivalent to the following Hamiltonian system

ṙ = ∂H/∂P = (P − ξA)(W̄ 2 − |P − ξA|2)−1/2, (2.48)

Ṗ = −∂H/∂r = (W̄∇W̄ −∇ < ξA, (P − ξA) >)(W̄ 2 − |P − ξA|2)−1/2

as one can readily check by direct calculations. Actually, the first equation

ṙ = (P − ξA)(W̄ 2 − |P − ξA|2)−1/2 = p(W̄ 2 − |p|2)−1/2 = (2.49)

= mu(W̄ 2 − |p|2)−1/2 = −W̄u(W̄ 2 − |p|2)−1/2 = u(1− |u|2)−1/2

holds, owing to the condition dτ = dt(1− |u|2)1/2 and definitions p := mu, m = −W̄ , postulated from
the very beginning. Similarly we obtain that

Ṗ = −∇W̄ (1− |p|2/W̄ 2)−1/2 +∇ < ξA, u > (1− |p|2/W̄ 2)−1/2 = (2.50)

= −∇W̄ (1− |u|2)−1/2 +∇ < ξA, u > (1− |u|2)−1/2

coincides with Equation (2.27) in the evolution parameter t ∈ R. This can be formulated as the
next result.

Proposition 2.8. The dual to the classical relativistic electrodynamic model (2.28) allows the canonical
Hamiltonian formulation (2.48) with respect to the rest reference frame variables, where the Hamiltonian
function is given by expression (2.46). Moreover, this formulation circumvents the “mass-potential
energy” controversy surrounding the classical electrodynamical model (1.41).

The modified Lorentz force expression (2.28) and the related rest energy relationship are characterized
by the following remark.

Remark 2.9. If we make use of the modified relativistic Lorentz force expression (2.28) as an alternative
to the classical one of (1.44), the corresponding charged particle ξ energy expression (2.46) also gives
rise to a true physically reasonable energy expression (at the velocity u := 0 ∈ E3 at the initial
time moment t = 0); namely, E0 = m0 instead of the physically controversial classical expression
E0 = m0 + ξϕ0, where ϕ0 := ϕ|t=0, corresponding to the case (1.43).
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2.5. Quantization of Electrodynamics Models via the Vacuum Field Theory Approach

2.5.1. The Problem Setting

Recently [18,19] we devised a new regular no-geometry approach to deriving the electrodynamics of
a moving charged point particle ξ in an external electromagnetic field from first principles. This approach
has, in part, reconciled the mass-energy controversy [31] in classical relativistic electrodynamics. Using
the vacuum field theory approach initially proposed in [18,19,21], we reanalyzed this problem above both
from the Lagrangian and Hamiltonian perspective and derived key expressions for the corresponding
energy functions and Lorentz type forces acting on a moving charged point particle ξ.

Since all of our electrodynamics models were represented here in canonical Hamiltonian form, they
are well suited to the application of Dirac quantization [64–69] and the corresponding derivation of
related Schrödinger type evolution equations. We describe these procedures in this section.

2.5.2. Free Point Particle Electrodynamics Model and Its Quantization

The charged point particle electrodynamics models, discussed in Sections 1.2 and 1.3, were also
considered in [18] from the dynamical point of view, where a Dirac quantization of the corresponding
conserved energy expressions was attempted. However, from the canonical point of view, the true
quantization procedure should be based on the relevant canonical Hamiltonian formulation of the models
given in (2.34), (2.35) and (2.48).

In particular, consider a free charged point particle electrodynamics model characterized by (2.34)
and having the Hamiltonian equations

dr/dτ := ∂H/∂p = −p(W̄ 2 − |p|2)−1/2 (2.51)

dp/dτ := −∂H/∂r = −W̄∇W̄ (W̄ 2 − |p|2)−1/2

where W̄ : M4 → R defined in the preceding sections is the corresponding vacuum field potential
characterizing the medium field structure, (r, p) ∈ T ∗(R3) ' E3 × E3 are the standard canonical
coordinate-momentum variables on the cotangent space T ∗(R3), τ ∈ R, is the proper rest reference
frame Kr time parameter of the moving particle, and H : T ∗(R3)→ R is the Hamiltonian function

H := −(W̄ 2 − |p|2)1/2 (2.52)

expressed here and hereafter in light speed units. The rest reference frameKr, parameterized by variables
(τ, r) ∈ E4, is related to any other reference frame K in which our charged point particle ξ moves with
velocity vector u ∈ E3. The frame K is parameterized by variables (t, r) ∈ M4 via the Euclidean
infinitesimal relationship

dt2 = dτ 2 + |dr|2 (2.53)

which is equivalent to the Minkowskian infinitesimal relationship

dτ 2 = dt2 − |dr|2. (2.54)
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The Hamiltonian function (2.52) clearly satisfies the energy conservation conditions

dH/dτ = dH/dt = 0 (2.55)

for all t, τ ∈ R. This means that the energy

E = (W̄ 2 − |p|2)1/2 (2.56)

can be treated by means of the Dirac quantization scheme [64,67] to obtain, as ~ → 0, (or the light
speed c → ∞) the governing Schrödinger type dynamical equation. To do this following the approach
in [18,67], we need to make canonical operator replacements E → Ê := −~

i
∂
∂τ
, p → p̂ := ~

i
∇, as

~→ 0, in the following energy expression:

E2 := (Êψ, Êψ) = (ψ, Ê2ψ) = (ψ, Ĥ+Ĥψ) (2.57)

where (·, ·) is the standard L2 - inner product. It follows from (2.56) that

Ê2 = W̄ 2 − |p|2 = Ĥ+Ĥ (2.58)

is a suitable operator factorization in the Hilbert spaceH := L2(R3;C) and ψ ∈ H is the corresponding
normalized quantum vector state. Since the following elementary identity

W̄ 2 − |p|2 = W̄ (1− W̄−1|p|2W̄−1)1/2(1− W̄−1|p|2W̄−1)1/2W̄ (2.59)

holds, we can use (2.58) and (2.59) to define the operator

Ĥ := (1− W̄−1|p|2W̄−1)1/2W̄ (2.60)

Upon calculating the operator expression (2.60) as ~ → 0 up to operator accuracy O( ~4), it is easy
see that

Ĥ =
|p|2

2m(u)
+ W̄ := − ~2

2m(u)
∇2 + W̄ , (2.61)

where we have taken into account the dynamical mass definition m(u) := −W̄ (in the light speed
units). Consequently, using (2.57) and (2.61), we obtain up to operator accuracy O( ~4) the following
Schrödinger type evolution equation

i~
∂ψ

∂τ
:= Êψ = Ĥψ = − ~2

2m(u)
∇2ψ + W̄ψ (2.62)

with respect to the rest reference frameKr evolution parameter τ ∈ R. For a related evolution parameter
t ∈ R parameterizing a reference frame K, the Equation (2.62) takes the form

i~
∂ψ

∂t
= − ~2m0

2m(u)2
∇2ψ −m0ψ (2.63)

Here we used the fact that it follows from (2.56) that the classical mass relationship

m(u) = m0(1− |u|2)−1/2 (2.64)

holds, where m0 ∈ R+ is the corresponding rest mass of our point particle ξ.
The linear Schrödinger Equation (2.63) for the case ~/c→ 0 actually coincides with the well-known

expression [2,9,67,68] from classical quantum mechanics.
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2.5.3. Classical Charged Point Particle Electrodynamics Model and Its Quantization

We start here from the first vacuum field theory reformulation of the classical charged point particle
electrodynamics (introduced in Subsection 2.1 ) and based on the conserved Hamiltonian function (2.46)

H := −(W̄ 2 − |P − ξA|2)1/2 (2.65)

where ξ ∈ R is the particle charge, (W̄ , A) ∈ R× E3 is the corresponding representation of the
electromagnetic field potentials and P ∈ E3 is the common generalized particle-field momentum

P := p+ ξA, p := mu (2.66)

which satisfies the classical Lorentz force equation. Here m := −W̄ is the observable dynamical mass
of our charged particle, and u ∈ E3 is its velocity vector with respect to a chosen reference frame K, all
expressed in light speed units.

Our electrodynamics based on (2.65) is canonically Hamiltonian, so the Dirac quantization scheme

P → P̂ :=
~
i
∇, E → Ê := −~

i

∂

∂τ
(2.67)

should be applied to the energy expression

E := (W̄ 2 − |P − ξA|2)1/2 (2.68)

following from the conservation conditions

dH/dt = 0 = dH/dτ (2.69)

satisfied for all τ, t ∈ R.
Proceeding as above, we can factorize the operator Ê2 as

W̄ 2 − |P̂ − ξA|2 = W̄ (1− W̄−1|P̂ − ξA|2W̄ )1/2×
×(1− W̄−1|P̂ − ξA|2W̄−1)1/2W̄ := Ĥ+Ĥ

where (as ~/c→ 0, ~c = const)

Ĥ :=
1

2m(u)
|~
i
∇− ξA|2 + W̄ (2.70)

up to operator accuracy O(~4). Hence, the related Schrödinger evolution equation in the Hilbert space
H = L2(R3;C) is

i~
∂ψ

∂τ
:= Êψ = Ĥψ =

1

2m(u)
|~
i
∇− ξA|2ψ + W̄ψ (2.71)

with respect to the rest reference frame Kr evolution parameter τ ∈ R, and corresponding Schrödinger
type evolution equation with respect to the evolution parameter t ∈ R takes the form

i~
∂ψ

∂t
=

m0

2m(u)2
|~
i
∇− ξA|2ψ −m0ψ (2.72)

The Schrödinger Equation (2.71) (as ~/c → 0) coincides [67,70] with the classical quantum
mechanics version.
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2.5.4. Modified Charged Point Particle Electrodynamics Model and Its Quantization

From the canonical viewpoint, we now turn to the true quantization procedure for the electrodynamics
model, characterized by (2.16) and having the Hamiltonian function (2.36)

H := −(W̄ 2 − ξ2|A|2 − |P |2)1/2 − ξ < A, P > (W̄ 2 − ξ2|A|2 − |P |2)−1/2 (2.73)

Accordingly the suitable energy function is

E := (W̄ 2 − ξ2|A|2 − |P |2)1/2 + ξ < A, P > (W̄ 2 − ξ2|A|2 − |P |2)−1/2 (2.74)

where, as before,
P := p+ ξA, p := mu, m := −W̄ , (2.75)

is a conserved quantity for (2.16), which we shall canonically quantize via the Dirac procedure (2.67).
Toward this end, let us consider the quantum condition

E2 := (Êψ, Êψ) = (ψ, Ê2ψ), (ψ, ψ) := 1, (2.76)

where, Ê := −~
i
∂
∂t

and ψ ∈ H = L2(R3;C) is a normalized quantum state vector. Making use of the
energy function (2.74), one readily computes that

E2 = W̄ 2 − |P − ξA|2 + ξ2 < A,P > (W̄ 2 − |P |2)−1 < P,A >,

which transforms by the canonical Dirac type quantization P → P̂ := ~
i
∇ into the symmetrized operator

expression
Ê2 = W̄ 2 − |P̂ − ξA|2 + ξ2 < A, P̂ > (W̄ 2 − |P̂ |2)−1 < P̂ ,A > . (2.77)

Factorizing the operator (2.77) in the form Ê2 = Ĥ+Ĥ, and retaining only terms up to O(~4) (as ~/c→
0), we compute that

Ĥ :=
1

2m(u)
|~
i
∇− ξA|2 − ξ2

2m3(u)
< A,

~
i
∇ ><

~
i
∇, A >, (2.78)

where, as before, m(u) = −W̄ in light speed units. Thus, owing to (2.76) and (2.78), the resulting
Schrödinger evolution equation is

i~
∂ψ

∂τ
:= Ĥψ =

1

2m(u)
|~
i
∇− ξA|2ψ − ξ2

2m3(u)
< A,

~
i
∇ ><

~
i
∇, A > ψ (2.79)

with respect to the rest reference frame proper evolution parameter τ ∈ R, which can be recast in
the form

i~
∂ψ

∂τ
= − ~2

2m(u)
∆ψ − 1

2m(u)
< [

~
i
∇, ξA]+ > ψ− (2.80)

− ξ2

2m3(u)
< A,

~
i
∇ ><

~
i
∇, A > ψ
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where [·, ·]+ is the formal anti-commutator of operators. Similarly one also obtains the related
Schrödinger equation with respect to the time parameter t ∈ R, which we shall not dwell upon
here. The result (2.79) differs only slightly from the classical Schrödinger evolution Equation (2.71).
Simultaneously, its form (2.80) almost completely coincides with the classical ones from [3,67,70]
modulo the evolution considered with respect to the rest reference time parameter τ ∈ R. This suggests
that we must more thoroughly reexamine the physical motivation of the principles underlying the
classical electrodynamic models, described by the Hamiltonian functions (2.65) and (2.73) and giving
rise to different Lorentz type force expressions. A more deeply considered and extended analysis of this
matter is forthcoming in a paper now in preparation.

Remark 2.10. All of the dynamical field equations discussed above are canonical Hamiltonian systems
with respect to the corresponding proper rest reference frames Kr, parameterized by suitable time
parameters τ ∈ R. Upon passing to the basic laboratory reference frame K with the time parameter
t ∈ R, naturally the related Hamiltonian structure is lost, giving rise to a new interpretation of the real
particle motion. Namely, one that has an absolute sense only with respect to the proper reference system,
and otherwise is completely relative with respect to all other reference frames. As for the Hamiltonian
expressions (2.31), (2.36) and (2.46), one observes that they all depend strongly on the vacuum potential
energy field function W̄ : M4→ R, thereby avoiding the mass problem of the classical energy expression
pointed out by L. Brillouin [31]. It should be noted that the canonical Dirac quantization procedure can
be applied only to the corresponding dynamical field systems considered with respect to their proper
rest reference frames. Some comments are in order concerning the classical relativity principle. We
have obtained our results relying only on the natural notion of the rest reference frame and its suitable
Lorentzian parametrization with respect to any other moving reference frame. It seems reasonable then
that the true state changes of a moving charged particle ξ are exactly realized only with respect to its
proper rest reference system. Then the only remaining question would be about the physical justification
of the corresponding relationship between time parameters of moving and rest reference frames.

The relationship between reference frames that we have used throughout is expressed as

dτ = dt(1− |u|2)1/2 (2.81)

where u := dr/dt ∈ E3 is the velocity vector with which the rest reference frame Kr moves with respect
to another arbitrarily chosen reference frame K. Expression (2.81) implies, in particular, that

dt2 − |dr|2 = dτ 2 (2.82)

which is identical to the classical infinitesimal Lorentz invariant. This is not a coincidence, since all
our dynamical vacuum field equations were derived in turn [18,19] from the governing equations of the
vacuum potential field function W : M4→ R in the form

∂2W/∂t2 −∇2W = ξρ, ∂W/∂t+∇(vW ) = 0, ∂ρ/∂t+∇(vρ) = 0 (2.83)

which is a priori Lorentz invariant. Here ρ ∈ R is the charge density and v := dr/dt the associated local
velocity of the vacuum field potential evolution. Consequently, the dynamical infinitesimal Lorentz
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invariant (2.82) reflects this intrinsic structure of Equation (2.83). If it is rewritten in the following
nonstandard Euclidean form:

dt2 = dτ 2 + |dr|2 (2.84)

it gives rise to a completely different relationship between the reference frames K and Kr, namely

dt = dτ(1 + |ṙ|2)1/2 (2.85)

where ṙ := dr/dτ is the related particle velocity with respect to the rest reference system. Thus,
we observe that all our Lagrangian analysis in this section is based on the corresponding functional
expressions written in these “Euclidean” space-time coordinates and with respect to which the least
action principle was applied. Thus, there are two alternatives - the first is to apply the least action
principle to the corresponding Lagrangian functions expressed in the Minkowski space-time variables
with respect to an arbitrarily chosen reference frame K, and the second is to apply the least action
principle to the corresponding Lagrangian functions expressed in Euclidean space-time variables with
respect to the rest reference frame Kr.

This leads us to a slightly amusing but thought-provoking observation: It follows from our analysis
that all of the results of classical special relativity related with the electrodynamics of charged point
particles can be obtained (in a one-to-one correspondence) using our new definitions of the dynamical
particle mass and the least action principle with respect to the associated Euclidean space-time variables
in the rest reference system.

An additional remark concerning the quantization procedure of the proposed electrodynamics models
is in order: If the dynamical vacuum field equations are expressed in canonical Hamiltonian form,
as we have done in this paper, only straightforward technical details are required to quantize the
equations and obtain the corresponding Schrödinger evolution equations in suitable Hilbert spaces of
quantum states. There is another striking implication from our approach: the Einsteinian equivalence
principle [2,3,9,32,45] is rendered superfluous for our vacuum field theory of electromagnetism
and gravity.

Using the canonical Hamiltonian formalism devised here for the alternative charged point particle
electrodynamics models, we found it rather easy to treat the Dirac quantization. The results obtained
compared favorably with classical quantization, but it must be admitted that we still have not given
a compelling physical motivation for our new models. This is something that we plan to revisit in
future investigations. Another important aspect of our vacuum field theory no-geometry (geometry-free)
approach to combining the electrodynamics with the gravity, is the manner in which it singles out
the decisive role of the rest reference frame Kr. More precisely, all of our electrodynamics models
allow both Lagrangian and Hamiltonian formulations with respect to the rest reference system evolution
parameter τ ∈ R, which are well suited to the canonical quantization. The physical nature of this
fact remains is as yet not quite clear. In fact, as far as we know [2,3,38,39,45], there is no physically
reasonable explanation of this decisive role of the rest reference system, except for that given by R.
Feynman who argued in [9] that the relativistic expression for the classical Lorentz force (1.44) has
physical sense only with respect to the rest reference frame variables (τ, r) ∈ R×E3. In future research
we plan to analyze the quantization scheme in more detail and begin work on formulating a vacuum
quantum field theory of infinitely many particle systems.
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3. The Modified Lorentz Force, Radiation Theory and the Abraham–Lorentz Electron
Inertia Problem

3.1. Introductory Setting

It is well known that Maxwell equations, which are fundamental in modern physics, allow two main
forms of representations: either by means of the electric and magnetic fields or by the electric and
magnetic potentials. The latter were mainly considered as a mathematically motivated representation
useful for different applications but having no physical significance.

That the situation is not so simple and the evidence that the magnetic potential demonstrates
the physical properties was doubtless, the physics community understood when Y. Aharonov and
D. Bohm [5] formulated their “paradox” concerning the measurement of magnetic field outside a
separated region where it is completely vanishing. Later, similar effects were also revealed in the
superconductivity theory of Josephson media. As the existence of any electromagnetic field in the
ambient space can be tested only owing to its interaction with electric charges, their dynamical behavior,
being of great importance, was deeply studied by M. Faraday, A. Ampère and H. Lorentz subject to its
classical Newton’s second law form. Namely, the classical Lorentz force

dp/dt = ξE + ξ
u

c
×B (3.1)

was derived, where E and B ∈ E3 are, respectively, electric and magnetic fields, acting on a point
charged particle ξ ∈ R, possessing the momentum p = mu, where m ∈ R+ is the observed particle mass
and u ∈ T (R3) is its velocity, measured with respect to a suitably chosen laboratory reference frame K.

That the Lorentz force (3.1) is not a completely satisfactory expression was well known by
Lorentz himself, as the nonuniform Maxwell equations also describe the electromagnetic fields,
radiated by any accelerated charged particle. This follows directly from well-known expressions
for the Lienard–Wiechert electromagnetic four-potential (ϕ,A) : M4 → T ∗(M4), related to the
electromagnetic fields by means of the well-known [1,2,8] relationships

E := −∇ϕ− 1

c

∂A

∂t
, B := ∇× A (3.2)

This fact had inspired many physicists to “improve” the classical Lorentz force expression (3.1) and
its modification was then suggested by G.A. Schott [14] and later by M. Abraham and P.A.M. Dirac
(see [1,8]), who found that the so called classical “radiation reaction” force, owing to the self-interaction
of a charged particle with charge ξ ∈ R, equals

dp/dt = ξE + ξ
u

c
×B +

2ξ2

3c3
d2u/dt2 (3.3)

The additional self-reaction force expression

Fr :=
2ξ2

3c3

d2u

dt2
(3.4)

depending on the particle acceleration immediately begged questions concerning its physical meaning,
since for instance, a uniformly accelerated charged particle, owing to the expression (3.3), feels no
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radiation reaction, contradicting the fact that any accelerated charged particle radiates electromagnetic
waves. This “paradox” was a challenging problem during the twentieth century [1,14,67,71–73]
and still remains to be explained [4,58,74] . As there exist different approaches to explaining
this reaction radiation phenomenon, we mention here only the most popular ones such as the
Wheeler–Feynman [75] “absorber radiation” theory, based on a very sophisticated elaboration of the
retarded and advanced solutions to the nonuniform Maxwell equations, the vacuum Casimir effect
approach devised in [25,76], and the construction of Teitelbom [77] which extensively exploits the
intrinsic structure of the electromagnetic energy tensor subject to the advanced and retarded solutions to
the nonuniform Maxwell equations.

It is also worth mentioning here very the nontrivial development of the Teitelbom’s theory
devised recently in [78,79] and applied to the non-abelian Yang–Mills equations, which are natural
generalizations of the Maxwell equations. Nonetheless, all of these explanations do not prove to be
satisfactory from the modern physics of view. Taking this state of art into account, we will reanalyze the
structure of the “radiative” Lorentz type force (3.3) using the vacuum field theory approach of Section 1
and find that this force allows some natural slight modification.

3.2. The Radiation Reaction Force: Vacuum Field Theory Approach

In this section, we will develop further our vacuum field theory approach, devised in [18,19], to the
electromagnetic Maxwell and Lorentz electron theories and show that it is in complete agreement with
the classical results and even more: it allows some nontrivial generalizations, which may have some
important physical applications. It will also be shown that the closely related electron mass problem
can be satisfactorily explained via the devised vacuum field theory approach and the spatial electron
structure assumption.

The modified Lorentz force, acting on a particle of charge ξ ∈ R and exerted by a moving with
velocity uf ∈ T (R3) charged particle ξf ∈ R, was derived in Section 1 and is

dp/dt := Fs = ξE + ξ
u

c
×B − ∇ < ξA , (u− uf )/c > (3.5)

where (ϕ,A) ∈ T ∗(M4) is the external electromagnetic potential calculated with respect to a fixed
laboratory reference frame K. To take into account the self-interaction of this particle we will make use
of a spatially distributed charge density ρ : M4 → R, satisfying the condition

ξ =

∫
R3

ρ(t, r)d3r (3.6)

for all t ∈ R subject to this laboratory reference frame K with coordinates (t, r) ∈ M4. Then, owing to
(3.5) and results from Section 1, the self-interacting force of this spatially structured charge ξ ∈ R can
be expressed with respect to this laboratory reference frame K in the following equivalent form:

dp/dt = − 1
c

∫
R3 d

3rρ(t, r) d
dt
As(t, r)−

−
∫
R3 d

3rρ(t, r)∇ϕs(t, r) (1− |u/c|2) =
(3.7)

where

ϕs(t, r) =

∫
R3

ρ(t′, r′)|retd3r′

|r − r′|
, As(t, r) =

1

c

∫
R3

J(t′, r′)|retd3r′

|r − r′|
(3.8)
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the well-known retarded Lienard–Wiechert potentials, which should be calculated at the retarded time
parameter t′ := t− |r − r′| /c ∈ R. Taking into account the continuity relationship

∂ρ/∂t+ < ∇, J >= 0 (3.9)

for the spatially distributed charge density ρ : M4 → R and current J = ρu : M4 → E3 and the Taylor
expansions for retarded potentials (3.8)

ϕs(t, r) =
∑
n∈Z+

∂n

∂tn

∫
R3

(−|r − r′|)n

cnn!

ρ(t, r′)d3r′

|r − r′|
, (3.10)

As(t, r) =
∑
n∈Z+

∂n

∂tn

∫
R3

(−|r − r′|)n

cn+1n!

J(t, r′)d3r′

|r − r′|

from (3.7) and (3.10). assuming for brevity the spherical charge distribution is small ( |u/c| � 1) and,
respectively, slow acceleration, followed by calculations similar to those of [1,58], one can obtain that

Fs =
∑

n∈Z+

(−1)n+1

n!cn
(1− |u/c|2)

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ∂
n

∂tn
ρ(t, r′)∇|r − r′|n−1 +

+
∑

n∈Z+

(−1)n+1

n!cn+2

∫
R3 d

3rρ(t, r)|r − r′|n−1 ∂n+1

∂tn+1J(t, r′] =

=
∑

n∈Z+

(−1)n+1

n!cn+2 (1− |u/c|2)
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ∂
n=2

∂tn+2ρ(t, r′)∇|r − r′|n+1+

+
∑

n∈Z+

(−1)n+1

n!cn+2

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1J(t, r′)

(3.11)

The relationship above can be rewritten, owing to the charge continuity Equation (3.9), and gives rise to
the radiation force expression

Fs =
∑

n∈Z+

(−1)n

n!cn+2 (1− |u/c|2)
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2

+ n−1
n+2

<r−r′,J(t,r′)>(r−r′)
|r−r′|2

)
+

+
∑

n∈Z+

(−1)n+1

n!cn+2

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1J(t, r′) =

=
∑

n∈Z+

(−1)n+1

n!cn+2 (1− |u/c|2)
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2

+ n−1
n+2

|r−r′,u|2J(t,r′)
|r−r′|2|u|2

)
+

+
∑

n∈Z+

(−1)n+1

n!cn+2

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1J(t, r′)
(3.12)

Now, having applied to (3.12) the rotational symmetry property for calculation of the internal integral,
one easily obtains that

Fs =
∑

n∈Z+

(−1)n

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2

+ (n−1)J(t,r′)
3(n+2)

)
+

+
∑

n∈Z+

(−1)n+1

n!cn

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ |r−r
′|n+1

c2
∂n+1

∂tn+1J(t, r′) =

= d
dt

[
∑

n∈Z+

2(−1)n+1

3n!cn+2

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n

∂tn
J(t, r′)−

−
∑

n∈Z+

(−1)n |u|2
3n!cn+4 )

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′|r − r′|n−1 ∂n

∂tn
J(t, r′)]

(3.13)
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where we took into account [1] that in case of the spherical charge distribution the following equalities∫
E3 d

3r
∫
R3 d

3r′ρ(t, r)ρ(t, r′) |<r−r
′,u(t)>|2

|r−r′|2|u(t)|2 = 1
3
ξ2,

∫
R3 d

3r < ∇, J(t, r) >
∫
R3 d

3r′|r − r′|n−1 ∂n

∂tn
J(t, r′) = 0,

∫
R3 d

3r
∫
R3 d

3rρ(t, r)ρ(t, r′) (r−r′)
|r−r′|3 = 0

(3.14)

hold for all n ∈ Z+. Thus, from (3.14) one easily finds up to theO(1/c4) accuracy the following radiation
reaction force expression:

dp/dt = Fs = − d

dt

(
4Ees
3c2

u(t)

)
− d

dt

(
2Ees
3c2
|u/c|2 u(t)

)
+

2ξ2

3c3

d2u

dt2
+O(1/c4) = (3.15)

= − d

dt

(
4

3
m0,es(1 +

|u/c|2

2
)u(t)

)
+

2ξ2

3c3

d2u

dt2
+O(1/c4) =

= − d

dt

(
4

3

m0,esu(t)

(1− |u/c|2)1/2

)
+

2ξ2

3c3

d2u

dt2
+O(1/c4) =

= − d

dt

(
4

3
mesu(t)

)
+

2ξ2

3c3

d2u

dt2
+O(1/c4)

where we defined, respectively, the electrostatic self-interaction repulsive energy as

Ees :=
1

2

∫
R3

d3r

∫
R3

d3r′
ρ(t, r)ρ(t, r′)

|r − r′|
(3.16)

the electromagnetic charged particle rest and inertial masses as

m0,es :=
Ees
c2
, mes :=

m0,es

(1− |u/c|2)1/2
(3.17)

Now from (3.5) one obtains that

d

dt

[
(mg +

4

3
mes)u

]
=

2ξ2

3c3

d2u

dt2
+O(1/c4) (3.18)

where we made use of the inertial mass definition

mg := −W̄g/c
2, ∇W̄g ' 0 (3.19)

following from the vacuum field theory approach, where the mg ∈ R is the corresponding gravitational
mass of the charged particle ξ, generated by the vacuum field potential W̄g. The corresponding
radiation force

Fr =
2ξ2

3c3

d2u

dt2
+O(1/c4) (3.20)
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coincides exactly with the classical Abraham–Lorentz–Dirac results. From (3.18) it follows that
the observable physical charged particle mass mph ' mg + 4

3
mes consists of two impacts: the

electromagnetic and gravitational components, giving rise to the final force expression

d

dt
(mphu) =

2ξ2

3c3

d2u

dt2
+O(1/c4) (3.21)

This means, in particular, that the real physically observed “inertial” mass mph of an electron strongly
depends on the external physical interaction with the ambient vacuum medium, as was recently
demonstrated using completely different approaches in [25,76], based on the vacuum Casimir effect
considerations. Moreover, the assumed above boundedness of the electrostatic self-energy Ees appears
to be completely equivalent to the existence of so-called intrinsic Poincaré type “tensions”, analyzed
in [71,76], and to the existence of a special compensating Coulomb “pressure”, suggested in [25],
guaranteeing the observable electron stability.

3.3. Comments

The charged particle radiation problem, revisited in this section, allows to conceive the following
explanation of the point charged particle mass as that of a compact and stable object which should
possess the vacuum interaction potential W̄ ∈ R3 of negative sign as follows from (3.19). The
latter can be satisfied iff the equality (3.19) holds, thereby imposing on the intrinsic charged particle
structure [74] some nontrivial geometrical constraints. Moreover, as follows from the physically
observed particle mass expressions (3.19) the electrostatic potential energy, being of repulsive force
origin, does contribute to the full mass as its main component.

There exist different relativistic generalizations of the force expression (3.18), which suffer the
same common physical inconsistency related with the no radiation effect of a charged point particle
at uniform motion.

Another problem closely related to the radiation reaction force analyzed above is the search for
an explanation to the Wheeler and Feynman reaction radiation mechanisms, called the absorption
radiation theory, based on the Mach type interaction of a charged point particle with the ambient vacuum
electromagnetic medium. Concerning this problem, one can also observe some of its relationships with
the one devised here via the vacuum field theory approach, but this question needs a more detailed and
extended analysis.

4. Electron Inertia via the Feynman Proper Time Paradigm and Vacuum Field Theory Approach

4.1. Introduction

As was reported by F. Dyson [10], the original Feynman approach derivation of the electromagnetic
Maxwell equations was based on an a priori general form of the classical Newton type force, acting
on a charged point particle moving in three-dimensional space R3 endowed with the canonical Poisson
brackets on the phase variables, defined on the associated tangent space T (R3). As a result of this
approach there only the first part of the Maxwell equations were derived, as the second part, owing to F.
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Dyson [10], is related with the charged matter nature, which appeared to be hidden. Trying to complete
this Feynman approach to the derivation of Maxwell’s equations more systematically we have
observed [80] that the original Feynman’s calculations, based on Poisson brackets analysis, were
performed on the tangent space T (R3) which is, subject to the problem posed, not physically proper. The
true Poisson brackets can be correctly defined only on the coadjoint phase space T ∗(R3), as seen from
the classical Lagrangian equations and the related Legendre transformation [15,16,59,81] from T (R3)

to T ∗(R3). Moreover, within this observation, the corresponding dynamical Lorentz type equation for a
charged point particle should be written for the particle momentum, not for the particle velocity,

whose value is well defined only with respect to the proper relativistic reference frame, associated
with the charged point particle owing to the fact that the Maxwell equations are Lorentz invariant.

Thus, from the very beginning, we shall reanalyze the structure of the Lorentz force exerted on a
moving charged point particle with a charge ξ ∈ R by another point charged particle with a charge ξf ∈
R, making use of the classical Lagrangian approach, and rederive the corresponding electromagnetic
Maxwell equations. The latter appears to be strongly related to the charged point mass structure of the
electromagnetic origin as was suggested by R. Feynman and F. Dyson.

4.2. Feynman Proper Time Paradigm Analysis

Consider a charged point particle moving in an electromagnetic field. For its description, it is
convenient to introduce a trivial fiber bundle structure π: M → R3,M = R3 × G, with the abelian
structure group G := R\{0}, equivariantly acting on the canonically symplectic coadjoint space T ∗(M)

endowed both with the canonical symplectic structure

ω(2)(p, y; r, g) := d pr∗α(1)(r, g) =< dp,∧dr > + (4.1)

+ < dy,∧g−1dg >G + < ydg−1,∧dg >G

for all (p, y; r, g) ∈ T ∗(M), where α(1)(r, g) :=< p, dr > + < y, g−1dg >G∈ T ∗(M) is the
corresponding Liouville form onM, and with a connection one-form A : M → T ∗(M)× G as

A(r, g) := g−1 < ξA(r), dr > g + g−1dg (4.2)

with ξ ∈ G∗, (r, g) ∈ R3 × G,< ·, · > being the scalar product in E3. The corresponding curvature
2-form Σ(2) ∈ Λ2(R3)⊗ G is

Σ(2)(r) := dA(r, g) +A(r, g) ∧ A(r, g) = ξ
3∑

i,j=1

Fij(r)dr
i ∧ drj (4.3)

where
Fij(r) :=

∂Aj
∂ri
− ∂Ai
∂rj

(4.4)

for i, j = 1, 3 with respect to the reference frame Kt, characterized by the phase space coordinates
(r, p) ∈ T ∗(R3). As an element ξ ∈ G∗ is still not fixed, it is natural to apply the standard [15,16,59]
invariant Marsden–Weinstein–Meyer reduction to the orbit factor space P̃ξ := Pξ/Gξ subject to the
related momentum mapping l : T ∗(M) → G∗, constructed with respect to the canonical symplectic
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structure (4.1) on T ∗(M), where, by definition, ξ ∈ G∗ is constant, Pξ := l−1(ξ) ⊂ T ∗(M) and
Gξ = {g ∈ G : Ad∗Gξ} is the isotropy group of the element ξ ∈ G∗.

As a result of the Marsden–Weinstein–Meyer reduction, one finds thatGξ ' G, the factor-space P̃ξ '
T ∗(R3) is endowed with a suitably reduced symplectic structure ω̄(2)

ξ ∈ T ∗(P̃ξ) and the corresponding
Poisson brackets on the reduced manifold P̃ξ are

{ri, rj}ξ = 0, {pj, ri}ξ = δij, (4.5)

{pi, pj}ξ = ξFij(r)

for i, j = 1, 3, considered with respect to the reference frame K(t; r). Introducing a new momentum
variable

π̃ := p+ ξA(r) (4.6)

on P̃ξ, it is easy to verify that ω̄
(2)
ξ → ω̃

(2)
ξ :=< dπ̃,∧dr >, giving rise to the following “minimal

interaction” canonical Poisson brackets:

{ri, rj}
ω̃
(2)
ξ

= 0, {π̃j, ri}ω̃(2)
ξ

= δij, {π̃i, π̃j}ω̃(2)
ξ

= 0 (4.7)

for i, j = 1, 3 with respect to some new reference frame K̃t′ , characterized by the phase space
coordinates (r, π̃) ∈ P̃ξ and an evolution parameter t′ ∈ R if and only if the Maxwell field equations

∂Fij/∂rk + ∂Fjk/∂ri + ∂Fki/∂rj = 0 (4.8)

are satisfied on R3 for all i, j, k = 1, 3 with the curvature tensor Fij(r) := ∂Aj/∂r
i − ∂Ai/∂r

j,

i, j = 1, 3, r ∈ R3.

Now we proceed to a dynamic description of the interaction between two moving charged point
particles ξ and ξf , moving respectively, with the velocities u := dr/dt and uf := drf/df subject to the
reference frame Kt. Unfortunately, there is a fundamental problem in correctly formulating a physically
suitable action functional and the related least action condition. There are clearly possibilities such as

S(t)
p :=

∫ t2

t1

dtL(t)
p (r; dr/dt) (4.9)

on a temporal interval [t1, t2] ⊂ R with respect to the laboratory reference frame K(t; r),

S(t′)
p :=

∫ t′2

t′1

dt′L(t′)
p (r; dr/dt′) (4.10)

on a temporal interval [t′1, t
′
2] ⊂ R with respect to the moving reference frame Kt′ and

S(τ)
p :=

∫ τ2

τ1

dtL(τ)
p (r; dr/dτ) (4.11)

on a temporal interval [τ1, τ2] ⊂ R with respect to the proper time reference frame Kτ , naturally related
to the moving charged point particle ξ.

It was first observed by Poincaré and by Minkowski [3,82,83] that the temporal differentials dt
and dt′ are not closed differential one-forms, which physically means that a particle can traverse many
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different paths in space R3 during any given proper time interval dτ, naturally related to its motion. This
fact was stressed [3,84–87] by Einstein, Minkowski and Poincaré, and later exhaustively analyzed by R.
Feynman, who argued [9] that the dynamical equation of a moving point charged particle is physically
sensible only with respect to its proper time reference frame. This is Feynman’s proper time reference
frame paradigm, which was recently further elaborated and applied both to the electromagnetic Maxwell
equations in [82,83] and to the Lorentz type equation for a moving charged point particle under external
electromagnetic field in [18,65,80,88]. As it was there argued from a physical point of view, the least
action principle should be applied only to the expression (4.11) written with respect to the proper time
reference frame Kτ , whose temporal parameter τ ∈ R is independent of an observer and is a closed
differential one-form. Consequently, this action functional is also mathematically sensible, which in part
reflects the Poincaré’s and Minkowski’s observation that the infinitesimal quadratic interval

dτ 2 = (dt′)2 − |dr − drf |2 (4.12)

relating the reference frames Kt′ and Kτ , can be invariantly used for the four-dimensional relativistic
geometry. The most natural way to contend with this problem is to first consider the quasi-relativistic
dynamics of the charged point particle ξ with respect to the moving reference frameKt′ subject to which
the charged point particle ξf is at rest. Therefore, it possible to write down a suitable action functional
(4.10), up to O(1/c2), as the light velocity c → ∞, where the Lagrangian function L(t′)

p (r; dr/dt′) can
be naturally chosen as

L(t′)
p (r; dr/dt′) := m′(r) |dr/dt′ − drf/dt′|2 /2− ξϕ′(r) (4.13)

where m′(r) ∈ R+ is the charged particle ξ mass parameter and ϕ′(r) is the potential function generated
by the charged particle ξf at a point r ∈ R3 with respect to the reference frame Kt′ . Since the standard
temporal relationships between reference frames Kt and Kt′ :

dt′ = dt(1− |drf/dt′|2)1/2 (4.14)

as well as between the reference frames Kt′ and Kτ :

dt = dt′(1− |dr/dt′ − drf/dt′|2)1/2 (4.15)

give rise, up to O(1/c2), as c → ∞, to dt′ ' dt and dτ ' dt′, respectively, it is easy to verify that the
least action condition δS(t′)

p = 0 is equivalent to the dynamical equation

dπ/dt = ∇L(t′)
p (r; dr/dt) = ∇m(

1

2
|dr/dt− drf/dt|2)− ξ∇ϕ(r) (4.16)

where we have defined the generalized canonical momentum as

π := ∂L(t′)
p (r; dr/dt)/∂(dr/dt) = m(dr/dt− drf/dt) (4.17)

with the dash signs dropped and denoted by “∇” the usual gradient operator in E3. Equating the canonical
momentum expression (4.17) with respect to the reference frame Kt′ to that of (4.6) with respect to the
reference frame K̃t′ , and identifying the reference frame K̃t with Kt′ , one obtains the important particle
mass determining expression

m = −ξϕ(r) (4.18)
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which follows from the relationship
ϕ(r)drf/dt = A(r) (4.19)

This is well known in the classical electromagnetic theory [1] for potentials (ϕ,A) ∈ T ∗(M4) satisfying
the Lorentz condition

∂ϕ(r)/∂t+ < ∇, A(r) >= 0 (4.20)

yet the expression (4.18) looks very nontrivial in relating the “inertial” mass of the charged point
particle ξ to the electric potential, both generated by the ambient charged point particles ξf . As
was argued in articles [56,65,80], the above mass phenomenon is closely related and from a physical
perspective shows its deep relationship to the classical electromagnetic mass problem.

Before further analysis of the completely relativistic the charge ξ motion under consideration,
we substitute the mass expression (4.18) into the quasi-relativistic action functional (4.10) with the
Lagrangian (4.13). As a result, we obtain two possible action functional expressions, taking into account
two main temporal parameters choices:

S(t′)
p = −

∫ t′2

t′1

ξϕ′(r)(1 +
1

2
|dr/dt′ − drf/dt′|2)dt′ (4.21)

on an interval [t′1, t
′
2] ⊂ R, or

S(τ)
p = −

∫ τ2

τ1

ξϕ′(r)(1 +
1

2
|dr/dτ − drf/dτ |2)dτ (4.22)

on an [τ1, τ2] ⊂ R. It is easy to see that the first expression (4.16) is unsatisfactory upon transforming
to the proper time relativistic representation form the suitable quasi-relativistic limit for the Lagrangian
function (4.13). On the other hand, the direct relativistic generalization of (4.22) follows:

S(τ)
p = −

∫ τ2

τ1

ξϕ′(r)(1 +
1

2
|dr/dτ − drf/dτ |2)dτ ' (4.23)

' −
∫ τ2

τ1

ξϕ′(r)(1 + |dr/dτ − drf/dτ |2)1/2dτ =

= −
∫ τ2

τ1

ξϕ′(r)(1− |dr/dt′ − drf/dt′|)−1/2dτ = −
∫ t′2

t′1

ξϕ′(r)dt′

giving rise to the correct (from the physical point of view) relativistic action functional form (4.10),
suitably transformed to the proper time reference frame representation (4.11) via the Feynman proper
time paradigm. Thus, we have shown that the true action functional procedure consists in a physically
motivated choice of either the action functional expression form (4.9) or (4.10). Then, it is transformed
to the proper time action functional representation form (4.11) in the Feynman paradigm, and the least
action principle is applied.

Concerning the above problem of describing the motion of a charged point particle ξ in the
electromagnetic field generated by another moving charged point particle ξ, it must be mentioned that
we have chosen the quasi-relativistic functional expression (4.13) in the form (4.10) with respect to the
moving reference frame Kt′ , because its form is more physically acceptable, since the charged point
particle ξf is then at rest.
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Based on the above relativistic action functional expression

S(τ)
p := −

∫ τ2

τ1

ξϕ′(r)(1 + |dr/dτ − drf/dτ |2)1/2dτ (4.24)

written with respect to the proper reference fromK(τ ; r−rf ), one finds the following evolution equation:

dπp/dτ = −ξ∇ϕ′(r)(1 + |dr/dτ − drf/dτ |2)1/2 (4.25)

where the generalized momentum is given by the relationship (4.17):

πp = m(dr/dt− drf/dt) (4.26)

Making use of the relativistic transformation (4.14) and the next one (4.15), the Equation (4.25) is easily
transformed to

d

dt
(p+ ξA) = −∇ϕ(r)(1− |uf |2) (4.27)

where we took into account the definitions: (4.18) for the charged particle ξ mass, (4.19) for the magnetic
vector potential and ϕ(r) = ϕ′(r)/(1 − |uf |2)1/2 for the scalar electric potential with respect to the
laboratory reference frame Kt. Equation (4.27) can be further transformed, using elementary vector
algebra, to the classical Lorentz type form:

dp/dt = ξE + ξu×B − ξ∇ < u− uf , A > (4.28)

where
E := −∂A/∂t−∇ϕ (4.29)

is the related electric field and
B := ∇× A (4.30)

is the related magnetic field, exerted by the moving charged point particle ξf on the charged point particle
ξ with respect to the laboratory reference frame K(t; r). The Lorentz type force Equation (4.28) was
obtained in [18,80] in terms of the moving reference frame Kt′ , and recently reanalyzed in [88,89]. The
reanalysis was derived in part from Ampère’s classical works [90,91] on constructing the magnetic force
between two neutral conductors with stationary currents.

For the Lorentz force Equation (4.28) it is a natural problem to analyze its form in the case of many
external charged point particles ξj ∈ R, j ∈ Z+, moving with velocities drj/dt, j ∈ Z+, with respect
to the laboratory reference frame Kt. In this case there is no possibility of choosing a common moving
reference frame Kt′ with respect to which all of the charged particles ξj, j ∈ Z+, are at rest. However,
we do have the unique proper time parameter τ ∈ R, related to each charged point particle ξj, j ∈ Z+,

via the infinitesimal relativistic transformation expressions

dt′j = dτ(1− |dr/dt′j − drf/dt′j|2)−1/2 (4.31)

to the moving reference frames Kt′j , j ∈ Z+, fixing the τ -clock for all the charged particles. Thus,
making use of the same scheme as demonstrated above, we can express together with the superposition
principle, the net Lorentz type force expression for the charged point particle ξ as

dp/dt = ξĒ + ξu× B̄ − ξ∇
∑
j∈Z+

< u− uj, Aj > (4.32)



Mathematics 2015, 3 228

where
Ē :=

∑
j∈Z+

Ej, B̄ =
∑
j∈Z+

Bj (4.33)

and Aj ∈ T ∗(R3), j ∈ Z+, are magnetic vector potentials generated by the set of distant charged point
particles ξj, j ∈ Z+. As this system of external charges is on average neutral, that is

∑
j∈Z+

ξj ' 0,

and their spatial distribution is on average symmetric with respect to the charge signs and velocities, one
obtains from (4.32) that

dp/dt = ξ Ē + ξu× B̄ (4.34)

which the classical Lorentz type expression for the charged point particle ξ moving under the influence
of an external electromagnetic field with respect to the laboratory reference frame Kt.

Equation (4.34) can naturally be physically interpreted as the Lorentz type force exerted by a virtual
net charge ξ at rest and located at the centroid of the charges with respect to Kt. Consequently, one can
write the corresponding effective relativistic invariant action functional in the form

S̄(t)
p :=

∫ t2

t1

dt(mξ+ < Ā, dr/dt > −ξ ϕ̄) (4.35)

on an interval [t1, t2] ⊂ R with respect to Kt. Here mξ ∈ R is a possible internal charged particle mass
energy value and as before, ϕ̄ :=

∑
j∈Z+

ϕj, Ā :=
∑

j∈Z+
Aj, and we also took into account took the

suitable relativistic electric potentials transformations from the moving reference frames Kt′j , j ∈ Z+, to
the laboratory reference frame Kt with respect to which the averaged set of charges ξ is assumed to be
virtually at rest so that

− ϕ′jdt′j = ϕjdt+ < Aj, dr > (4.36)

holds for all j ∈ Z+ and gives rise, upon summing over j ∈ Z+, to

−
∑
j∈Z+

ϕ′jdt
′
j = − ϕ̄dt+ < Ā, dr > (4.37)

used for construction of the action functional (4.35). As this is considered to be written for the
averaged set of charges ξ, whose virtual location is now assumed to be at rest, we can apply to this
action functional (4.35) the Feynman proper time paradigm and construct the corresponding physically
reasonable action functional

S̄(τ)
p =

∫ τ2

τ1

dτ(−ξ ϕ̄+ ξ < Ā, dr/dτ >)(1 + |dr/dτ |2)1/2 (4.38)

defined on an independent time interval [τ1, τ2] ⊂ R with respect to the proper time reference frame Kτ ,
whose time parameter τ ∈ R is infinitesimally related to the laboratory time parameter t ∈ R as

dτ = dt(1− |dr/dt|2)−1/2 (4.39)

Applying the least action principle to the functional (4.38) one easily obtains the evolution equation

d

dt
(p+ ξĀ) = −ξ∇ ϕ̄+ ξ∇ < Ā, u >, (4.40)
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where, as before, the charged particle ξ momentum is defined classically as

p := m dr/dt (4.41)

and its mass parameter is defined as
m := −ξ ϕ̄(r). (4.42)

As the four-vector potentials (ϕj, Aj) ∈ T ∗(M4), j ∈ Z+, where M4 := R× E3 is the standard
Minkowski pseudo-Euclidean metric space, satisfy the Lorentz conditions

∂ϕj/∂t+ < ∇, Aj >= 0 (4.43)

for any j ∈ Z+, it is evident that the same condition

∂ ϕ̄/∂t+ < ∇, Ā >= 0 (4.44)

holds also for the averaged potentials ( ϕ̄, Ā) ∈ T ∗(M4). The same standard calculations applied to the
expression (4.40) yield the (same as (4.34)) Lorentz force equation

dp/dt = ξĒ + ξu× B̄, (4.45)

thereby demonstrating the mathematical agreement between two physically different approaches to its
derivation, based on the classical averaging procedure and the superposition principle.

4.3. Analysis of the Maxwell and Lorentz Force Equations

4.3.1. The Maxwell Equations

As a moving charged particle ξf generates the suitable electric field (4.29) and magnetic field (4.30)
via their electromagnetic potential (ϕ,A) ∈ T ∗(M4) with respect a laboratory reference frame K(t; r),

we will supplement them naturally by means of the external material equations describing the relativistic
charge conservation law:

∂ρ/∂t+ < ∇, J >= 0 (4.46)

where (ρ, J) ∈ T ∗(M4) is a related four-vector for the charge and current distribution in the space R3.

Moreover, one can augment the Equation (4.46) with the experimentally well established the Gauss law

< ∇, E >= ρ (4.47)

to calculate the quantity ∆ϕ :=< ∇,∇ϕ > from the expression (4.29):

∆ϕ = − ∂

∂t
< ∇, A > − < ∇, E > (4.48)

Having taken into account the relativistic Lorentz condition (4.20) and the expression (4.47) one easily
finds that the wave equation

∂2ϕ/∂t2 −∆ϕ = ρ (4.49)
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holds with respect to the laboratory reference frame K(t; r). Applying the rot-operation “∇×” to the
expression (4.29) we obtain, owing to the expression (4.30), the equation

∇× E + ∂B/∂t = 0 (4.50)

giving rise, together with (4.47), to the first pair of the classical Maxwell equations. To obtain the
second pair of the Maxwell equations, it is first necessary to apply the rot-operation “∇×”to the
expression (4.30):

∇×B = ∂E/∂t+ (∂2A/∂t2 −∆A) (4.51)

and then apply −∂/∂t to the wave Equation (4.49) to obtain

− ∂2

∂t2
(∂ϕ
∂t

)+ < ∇,∇∂ϕ
∂t
>= ∂2

∂t2
< ∇, A > −

− < ∇,∇ < ∇, A >>=< ∇, ∂2A
∂t2
−∇× (∇× A)−∆A >=

=< ∇, ∂2A
∂t2
−∆A >=< ∇, J >

(4.52)

The result (4.52) leads to the relationship

∂2A/∂t2 −∆A = J (4.53)

if we take into account that both the vector potential A ∈ E3 and the vector of current J ∈ E are
determined up to a rot-vector expression∇×S for some smooth vector-function S : M4 → E3. Inserting
the relationship (4.53) into (4.51), we obtain (4.50) and the second pair of the Maxwell equations:

∇×B = ∂E/∂t+ J, ∇× E = ∂B/∂t (4.54)

It is important that the system of Equation (4.54) can be represented by means of the least action
principle δS(t)

f−p = 0, where the action functional

S
(t)
f−p :=

∫ t2

t1

dtL(t)
f−p (4.55)

is defined on an interval [t1, t2] ⊂ R by the Lagrangian function

L(t)
f−p =

∫
R3

d3r((|E|2 − |B|2)/2+ < J,A > −ρϕ) (4.56)

with respect to the laboratory reference frame K(t; r). From (4.56) we deduce that the generalized
field momentum

πf := ∂L(t)
f−p/∂(∂A/∂t) = −E (4.57)

and its evolution is given as
∂πf/∂t := δL(t)

f−p/δA = J −∇×B, (4.58)

which is equivalent to the first Maxwell equation of (4.54). As the Maxwell equations allow the least
action representation, it is easy to derive [15,16,18,59,65] their dual Hamiltonian formulation with the
Hamiltonian function

Hf−p :=

∫
R3

d3r < πf , ∂A/∂t > −L(t)
f−p =

∫
R3

d3r((|E|2 − |B|2)/2− < J,A >) (4.59)
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satisfying the invariant condition
dHf−p/dt = 0 (4.60)

for all t ∈ R.
It is worth noting here that the Maxwell equations were derived under the important condition that

the charged system (ρ, J) ∈ T ∗(M4) exerts no influence on the ambient electromagnetic field potentials
(ϕ,A) ∈ T ∗(M4). As this is not actually the case owing to the damping radiation reaction on accelerated
charged particles, one can try to describe this self-interacting influence by means of the modified least
action

principle, making use of the Lagrangian expression (4.56) in the case of a separate charged particle ξ.
Following the well-known approach from [2] this Lagrangian can be recast (in the Gauss units) as

L(t)
f−p =

∫
R3 d

3r(1
2
< −∇ϕ− 1

c
∂A/∂t,−∇ϕ− 1

c
∂A/∂t > −1

2
< ∇× (∇× A), A >)+

+
∫
R3 d

3r(1
c
< J,A > −ρϕ)− < k(t), dr/dt >=

=
∫
R3 d

3r(1
2
< −∇ϕ,E > − 1

2c
< ∂A/∂t, E > −1

2
< A,∇×B > +

+1
c
< J,A > −ρϕ)+ < k(t), dr/dt >=

, (4.61)

=
∫
R3 d

3r(1
2
ϕ < ∇, E > + 1

2c
< A, ∂E/∂t > − 1

2c
< A, J + ∂E/∂t > +1

c
< J,A > −ρϕ)−

− 1
2c

d
dt

∫
R3 d

3r < A,E > −1
2

limr→∞
∫
S2r
< ϕE+ < A×B, dS2

r > − < k(t), dr/dt > =

= 1
2

∫
R3 d

3r(1
c
< J,A > −ρϕ)− 1

2c
d
dt

∫
R3 d

3r < A,E > −

−1
2

limr→∞
∫
S2r
< ϕE+ < A×B, dS2

r > − < k(t), dr/dt > −

where we have introduced an as yet undetermined internal charged particle stability energy impact mξc
2

and radiation damping force k(t) ∈ E3, as well as a two-dimensional sphere S2
r of radius r →∞. If we

also assume that the radiated charged particle energy at infinity is negligible, the Lagrangian function
(4.61) becomes equivalent to

L(t)
f−p = 1

2

∫
R3 d

3r(1
c
< J,A > −ρϕ)− < k(t), dr/dt > (4.62)

which we now need to calculate taking into account that the electromagnetic potentials (ϕ,A) ∈ T ∗(M4)

are retarded and given as 1/c→ 0 in the following Lienard–Wiechert form:

ϕ =

∫
R3

d3r′
ρ(t′, r′)

|r − r′|

∣∣∣∣
t′=t−|r−r′|/c

= lim
ε↓0

∫
R3

d3r′
ρ(t− ε, r′)
|r − r′|

+

+
1

2c2

∫
R3

d3r′|r − r′|∂2ρ(t, r′)/∂t2 +
1

6c3

∫
R3

d3r′|r − r′|2∂ρ(t, r′)/∂t+O(1/c4),



Mathematics 2015, 3 232

A =
1

c

∫
R3

d3r′
J(t′, r′)

|r − r′|

∣∣∣∣
t′=t−|r−r′|/c

= lim
ε↓0

1

c

∫
R3

d3r′
J(t− ε, r′)
|r − r′|

− (4.63)

− 1

c2

∫
R3

d3r′∂J(t, r′)/∂t+
1

2c3

∫
R3

d3r′|r − r′|∂2J(t, r′)/∂t2 +O(1/c4).

Here the current density J(t, r) = ρ(t, r)dr(t)/dt for all t ∈ R, r ∈ Ω(ξ) := supp ρ(t; r) ⊂ R3 is the
compact support of the charged particle density distribution. Moreover, the limit as ε→ +0 takes into
account that the potentials (4.63) are both retarded and singular at the charged particle ξ center, moving
in space with the velocity u ∈ T (R3) with respect to the laboratory reference frame K(t; r). As a result
of simple calculations of the kind in [1] and the suitable regularization procedure one finds that, up to
O(1/c4) , the electric potential integral in (4.62), equals

limε↓0
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t−ε,r′)
|r−r′| =

=
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r′)
|r′−r| − limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ε∂ρ(t,r′)/∂t
|r−r′| =

=
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r′)
|r−r′| + limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ε<∇
′,J(t;r′)>
|r′−r| =

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r′)
|r−r′|

− limε↓0
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ < εu
|r′−r| ,

r′−r
|r−r′|2 > ρ(t; r′) := 2Ees −mξ|u|2,

(4.64)
where we denoted the averaged, as ε ↓ 0, limiting integral expression by

lim
ε↓0

∫
R3

d3rρ(t, r)

∫
R3

d3r′ <
εu

|r′ − r|
,
r′ − r
|r − r′|2

> ρ(t; r′) := mξ|u|2. (4.65)

This expression depends strongly on the internal electron structure, thus ensuring its stability. The same
regularization scheme applied to the expression limε↓0

∫
R3 d

3r′∂J(t−ε, r′)/∂t does not change its value.
Thus, making use of the expressions (4.63), (4.64), the Lagrangian function (4.62) yields

L(t)
f−p =

Ees

6c2
|dr/dt|2− < k(t), dr/dt > −Ees(1− |u|2/c2)−mξ|u|2/2, (4.66)

where
Ees :=

1

2

∫
R3

d3r

∫
R3

d3r′
ρ(t, r′)ρ(t, r′)

|r − r′|
(4.67)

is the electrostatic energy of the charged particle ξ.
To obtain the corresponding evolution equation for our charged particle ξ we need, within the

Feynman proper time paradigm, to transform the Lagrangian function (4.66) to one with respect to
the charged particle proper time reference frame Kτ :

L(τ)
f−p = (mes/6)|ṙ|2(1 + |ṙ|2/c2)−1/2 −mesc

2(1 + |ṙ|2/c2)−1/2− (4.68)

− < k(t), ṙ > −mξ|ṙ|2/2(1 + |ṙ|2/c2)−1/2
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where ṙ := dr/dτ is the charged particle ξ velocity with respect to the proper reference frame Kτ and
by mes := Ees/c2 is its so called electrostatic mass.

As a result, the generalized charged particle ξ momentum up to O(1/c4) equals

πp := ∂L(τ)
f−p/∂r = 1

3
mesṙ

(1+|ṙ|2/c2)1/2
− mes|ṙ|2ṙ

6c2(1+|ṙ|2/c2)3/2
+ mesṙ

(1+|ṙ|2/c2)1/2
−

−k(t)− mξ ṙ

(1+|ṙ|2/c2)1/2
+

mξ|ṙ|2ṙ
2(1+|ṙ|2/c2)1/2

' 1
3
mesu(1− |u|2/c2)1/2+

+mesu(1− |u|2/c2)1/2 − k(t)−mξu ' (−mξ + 4
3
mes)u− k(t),

(4.69)

where u := dr/dt is the charged particle ξ velocity with respect to the laboratory reference frame Kt.
The generalized momentum (4.69) satisfies the following evolution equation with respect to Kτ

dπp/dτ := ∂L(τ)
f−p/∂r = 0, (4.70)

which is equivalent to, with respect to the laboratory reference frame K(t; r), the Lorentz type equation

d

dt
(−mξu+

4

3
mesu) = −dk(t)/dt. (4.71)

The evolution Equation (4.70) allows the corresponding canonical Hamiltonian formulation on the phase
space T ∗(R3) with the Hamiltonian function

Hf−p :=< πp, ṙ > −L(τ)
f−p '< 1

3
mesṙ

(1+|ṙ|2/c2)1/2
+ mesṙ

(1+|ṙ|2/c2)1/2
−

−k(t)− mξ ṙ

(1+|ṙ|2/c2)1/2
, ṙ > −(mes/6)|ṙ|2(1 + |ṙ|2/c2)−1/2+

+mesc
2(1 + |ṙ|2/c2)−1/2+ < k(t), ṙ > +(mξ/2)|ṙ|2(1 + |ṙ|2/c2)−1/2 =

= 1
3
mes|ṙ|2(1 + |ṙ|2/c2)−1/2 + mes|ṙ|2(1 + |ṙ|2/c2)−1/2− < k(t), ṙ > −

−mξ|ṙ|2(1 + |ṙ|2/c2)−1/2 − (mes/6)|ṙ|2(1 + |ṙ|2/c2)−1/2+

+mesc
2(1 + |ṙ|2/c2)−1/2+ < k(t), ṙ > +(mξ/2)|ṙ|2(1 + |ṙ|2/c2)−1/2

' [
(−mξ+mes/3)|πp+k(t)|2

2(−mξ+4mes/3)2
+mesc

2](1− |πp+k(t)|2
(−mξ+4mes/3)2c2

)−1/2

(4.72)

satisfying for all τ ,t ∈ R the conservation conditions

d

dτ
Hf−p = 0 =

d

dt
Hf−p . (4.73)

To determine the damping radiation force k(t) ∈ E3, we can make use of the Lorentz type force
expression (4.28) in the proper case u = uf ∈ T (R3) and obtain, as in [1], up to O(1/c4) accuracy, the
resulting Abraham–Lorentz force as

d

dt
(−mξu+

4

3
mesu) =

2ξ2

3c3
d2u/dt2. (4.74)
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Comparing the force expressions (4.71) and (4.74), one finds that, up to O(1/c4) accuracy,

k(t) =
2ξ2

3c3
du/dt, (4.75)

which should be understood as a smooth function of the temporal parameter t ∈ R. Moreover, looking
at the Equation (4.74) one can define the physical observable charged particle ξ mass parameter as

mph := −mξ +
4

3
mes. (4.76)

For the mass parameter mξ ∈ R in the expression (4.76) to be determined, we need to analyze in
detail the charged particle ξ stability condition and try to understand its relationship to the additional
momentum production. Before proceeding to this analysis, we review some important results devoted
to the stability problem of a charged particle such as an electron and try to determine a related additional
momentum generation mechanism.

Remark 4.1. Some years ago in [58] a “solution” to the above “4/3-electron mass” problem was
suggested that was expressed by the physical mass relationship (4.76) and formulated more than
one hundred years ago by H. Lorentz and M. Abraham. Unfortunately, the “solution” appeared to be
erroneous as one can easily see from the incorrect assumptions on which the work in [58] was based.
The first one concerns the particle-field momentum conservation, taken there in the form

d

dt
(p+ ξA) = 0 (4.77)

and the second one is a speculation about the 1/2-coefficient imbedded into the calculation of the Lorentz
type self-interaction force

F := − 1

2c

∫
R3

d3rρ(t; r)∂A(t; r)/∂t. (4.78)

There it was incorrectly argued by the reasoning that the expression (4.78) represents “... the interaction
of a given element of charge with all other parts, otherwise we count twice that reciprocal action” (cited
from [58], page 2710). This claim is fallacious as it was not taken into account the important fact that
the interaction in the integral (4.78) is, in reality, retarded and it should be considered as that calculated
for two virtually different charged particles, as in the classical works of H. Lorentz and M. Abraham.
As for the first assumption (4.77), it suffices to recall that a vector of the field momentum ξA ∈ E3 is
not independent and is, in the charged particle model considered, strongly related to the local flow of the
electromagnetic energy in the Lorentz constraint form:

∂(ξϕ)/∂t+ < ∇, cξA >= 0. (4.79)

The constraint implies the validity of the Lienard–Wiechert expressions (4.62) for potentials for
calculation of the integral (4.78), which was exploited in [58]. Thus, the Equation (4.77), following the
classical Newton second law, should be replaced by

d

dt′
(p+ ξA) = −∇(ξϕ′) (4.80)
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written with respect to the reference frame K(t′; r) subject to which the charged particle ξ is at rest.
Taking into account that the relativistic relationships dt = dt′(1−|u|2/c2)1/2 and ϕ′ = ϕ(1−|u|2/c2)1/2

hold with respect to the laboratory reference frame Kt, it follows from (4.80) that

d
dt

(p+ ξA) = −ξ∇ϕ(1− |u|2/c2) =

= −ξ∇ϕ+ ξ
c
∇ < u, uϕ/c >= −ξ∇ϕ+ ξ

c
∇ < u,A > .

(4.81)

Here we made use of the well-known relationship A = uϕ/c for the vector potential generated by
this charged particle ξ moving in space with the velocity u ∈ T (R3) with respect to Kt. Now from
the Equation (4.81) one can derive the final expression for the evolution of the charged particle
ξ momentum:

dp/dt = −ξ∇ϕ− ξ

c
dA/dt+

ξ

c
∇ < u,A >= (4.82)

= −ξ∇ϕ− ξ

c
∂A/∂t− ξ

c
< u,∇ > A+

ξ

c
∇ < u,A >=

= ξE +
ξ

c
u× (∇× A) = ξE +

ξ

c
u×B,

which is exactly the well-known Lorentz force expression, used in the works of H. Lorentz and
M. Abraham.

Recently, there has been other interesting research devoted to this “4/3-electron mass” problem,
amongst which we would like to mention [25,76], whose arguments are based on the charged shell
electron model and are quite similar - each assumes a virtual interaction of the electron with the
ambient “dark” radiation energy. This interaction was first clearly demonstrated in [25], where a suitable
compensation mechanism for the related singular electrostatic Coulomb electron energy and the wide
band vacuum electromagnetic radiation energy fluctuations deficit inside the electron shell was shown to
be harmonically realized as the electron shell radius a → 0. Moreover, this compensation occurs when
the induced outward directed electrostatic Coulomb pressure on the whole electron coincides, up to the
sign, with that induced by the above vacuum electromagnetic energy fluctuations outside the electron
shell, as was manifested by their absence inside the electron shell.

Actually, the outward directed electrostatic spatial Coulomb pressure on the electron is

ηcoul := lim
a→0

ε0|E|2

2

∣∣∣∣
r=a

= lim
a→0

ξ2

32ε0π2a4
, (4.83)

where E = ξr
4πε0|r|3 ∈ E3 is the electrostatic field at point r ∈ R with respect to the electron center at the

point r = 0 ∈ R. The related inward directed vacuum electromagnetic fluctuations spatial pressure is

ηvac := lim
Ω→∞

1

3

∫ Ω

0

dE(ω), (4.84)
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where dE(ω) is the electromagnetic energy fluctuations density for a frequency ω ∈ R, and Ω ∈ R is the
corresponding electromagnetic frequency cutoff. The integral (4.84) can be calculated by taking into
account the quantum statistical recipe [32,35,92] that

dE(ω) := ~ω
d3p(ω)

h3
, (4.85)

where the Planck constant h := 2π~ and the electromagnetic wave momentum p(ω) ∈ E3 satisfy the
relativistic relationship

|p(ω)| = ~ω/c. (4.86)

Whence, by substituting (4.86) into (4.85) one obtains

dE(ω) =
~ω3

2π2c3
dω, (4.87)

which implies, in view of (4.84), the following vacuum electromagnetic energy fluctuations spatial
pressure

ηvac = lim
Ω→∞

~Ω4

24π2c3
. (4.88)

For the charged electron shell model to be stable at rest it is necessary to equate the inward (4.88) and
outward (4.83) spatial pressures:

lim
Ω→∞

~Ω4

24π2c3
= lim

a→0

ξ2

32ε0π2a4
, (4.89)

giving rise to the balance electron shell radius ab → 0 limiting condition:

ab = lim
Ω→∞

[
Ω−1

(
3ξ2c2

2~

)1/4
]
. (4.90)

Simultaneously we can calculate the corresponding Coulomb and electromagnetic fluctuations energy
deficit inside the electron shell:

∆Wb :=
1

2

∫ ∞
ab

ε0|E|2d3r −
∫ ab

0

d3r

∫ Ω

0

dE(ω) =
ξ2

8πε0ab
− ~Ω4a3

b

6πc3
= 0, (4.91)

additionally ensuring the electron shell model stability.
Another important consequence of this pressure-energy compensation mechanism can be derived

concerning the electron mass component mξ ∈ R, entering the momentum expression (4.69) in the
case of the electron movement. Namely, following the reasoning in [76], one can observe that during
the electron movement there arises an additional hidden and not compensated for, velocity u ∈ T (R3)

directed electrostatic Coulomb surface self-pressure acting only on the front half part of the electron
shell and equal to

ηsurf :=
|Eξ|
4πa2

b

1

2
=

ξ2

32πε0a4
b

, (4.92)

apparently coinciding with the already compensated for outward directed electrostatic Coulomb spatial
pressure (4.83). As it is evident that during the electron motion in space its surface electric current energy
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flow does not vanish [76], it follows that the electron momentum gains an additional mechanical impact,
which can be expressed as

πξ := −ηsurf
4πa3

b

3c2
u = −1

3

ξ2

8πε0abc2
u = −1

3
mesu, (4.93)

where we took into account that in this electron shell model the corresponding electrostatic electron mass
equals its electrostatic energy

mes =
ξ2

8πε0abc2
. (4.94)

Thus, one can claim that, owing to the structural stability of the electron shell model, its generalized
self-interaction momentum πp ∈ T ∗(R3) gains during the movement with velocity u = dr/dt ∈
T (R3) the additional backward directed hidden impact (4.93), which can be identified with the
momentum component

πξ = −mξu, (4.95)

entering the momentum expression (4.69). Owing to (4.75), this becomes

πp = (−mξ +
4

3
mes)u−

2ξ2

3c3
d2u/dt2 = (4.96)

= (−1

3
mes +

4

3
mes)u−

2ξ2

3c3
d2u/dt2 =

= mesu−
2ξ2

3c3
d2u/dt2,

which strongly supports the electromagnetic origin of the electron mass that was first conceived by H.
Lorentz and M. Abraham.

The result above makes it possible to reanalyze the calculation of the Lagrangian function (4.66),
based on the averaged limiting integral expression (4.65), taking into account the electron shell model
and its dynamical stability. In particular, the averaged limiting integral expression (4.65) can be
calculated in the above dynamically stable electron shell model as follows:

limε↓0
∫
R3 d

3rρ(t; r)
∫
R3 d

3r′ < εu
|r′−r| ,

r′−r
|r−r′|2 > ρ(t; r′) '

' 1
2

limε↓0
1
3

∫
R3 d

3rρ(t; r)
∫
R3 d

3r′ < εu
|r′−r| ,

εu
ε2c2

> ρ(t; r′) =

= 1
2
· 2Ees

3
|u|2 = 1

3
mes|u|2 := mξ|u|2.

(4.97)

Here, we took into account that, owing to the retarded electron self-interaction, only one half of the
charged electron shell, separated by the distance |r′ − r| = εc, generates an additional impact in the
Lagrangian function (4.66), as the second half is shadowed by the electron shell interior with the absent
electric field. Thus, upon substituting mξ = 1

3
mes into the final electron physical mass expression

(4.76), one obtains

mph := −1

3
mes +

4

3
mes = mes, (4.98)

which also supports the Abraham–Lorentz suggestion about the origin of the electromagnetic
electron mass.
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4.3.2. Comments

The electromagnetic mass origin problem was reanalyzed in details within the Feynman proper time
paradigm and related vacuum field theory approach by means of the fundamental least action principle
and the Lagrangian and Hamiltonian formalisms. The resulting electron inertia appeared to coincide in
part, in the quasi-relativistic limit, with the momentum expression obtained more than one hundred years
ago by M. Abraham and H. Lorentz [93–96], yet it proved to contain an additional hidden impact owing
to the imposed electron stability constraint, which was taken into account in the original action functional
as some preliminarily undetermined constant component. As it was demonstrated in [25,76], this stability
constraint can be successfully realized within the charged shell model of electron at rest, if to take into
account the existing ambient electromagnetic “dark” energy fluctuations, whose inward directed spatial
pressure on the electron shell is compensated by the related outward directed electrostatic Coulomb
spatial pressure as the electron shell radius satisfies some limiting compatibility condition. The latter
also allows to compensate simultaneously the corresponding electromagnetic energy fluctuations deficit
inside the electron shell, thereby forbidding the external energy to flow into the electron. In contrary
to the lack of energy flow inside the electron shell, during the electron movement the corresponding
internal momentum flow is not vanishing owing to the non vanishing hidden electron momentum flow
caused by the surface pressure flow and compensated by the suitably generated surface electric current
flow. As it was shown, this backward directed hidden momentum flow makes it possible to justify the
corresponding self-interaction electron mass expression and to state, within the electron shell model, the
fully electromagnetic electron mass origin, as it has been conceived by H. Lorentz and M. Abraham
and strongly supported by R. Feynman in his Lectures [9]. This consequence is also independently
supported by means of the least action approach, based on the Feynman proper time paradigm and the
suitably calculated regularized retarded electric potential impact into the charged particle Lagrangian
function.

The charged particle radiation problem, revisited in this Section, allowed to conceive the explanation
of the charged particle mass as that of a compact and stable object which should be exerted by a vacuum
field interaction energy potential W̄ : M4 → R of negative sign as follows from (3.19). The latter can
be satisfied iff the expression (3.18) holds, thereby imposing on the intrinsic charged particle structure
[74] some nontrivial geometrical constraints. Moreover, as follows from the physically observed particle
mass expressions (3.19) the electrostatic potential energy, having its origin in the repulsive force, does
contribute to the full mass as its main energy component.

There exist different relativistic generalizations of the force expression (3.18), which suffer the same
common physical inconsistency related to the no radiation effect of a charged particle in uniform motion.

Another deeply related problem to the radiation reaction force analyzed above is the search for an
explanation to the Wheeler and Feynman reaction radiation mechanism, called the absorption radiation
theory, strongly based on the Mach type interaction of a charged particle with the ambient vacuum
electromagnetic medium. Concerning this problem, one can also observe some of its relationships with
the one devised here within the vacuum field theory approach, but this question needs a more detailed
and extended analysis.
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5. Charged Point Particle Dynamics and a Hadronic String Model Analysis

5.1. Classical Relativistic Electrodynamics Foundations: A Charged Point Particle Analysis

It is well known [2,3,9,97] that the relativistic least action principle for a point charged particle ξ in
the Minkowski space-time M4 ' E3 × R can be formulated on a time interval [t1, t2] ⊂ R (in the light
speed units) as

δS(t) = 0, S(t) :=

∫ τ(t2)

τ(t1)

(−m0dτ − ξ < A, dx >M4) =

=

∫ s(t2)

s(t1)

(−m0 < ẋ, ẋ >
1/2

M4 −ξ < A, ẋ >M4)ds. (5.1)

Here δx(s(t1)) = 0 = δx(s(t2)) are the boundary constraints, m0 ∈ R+ is the so called particle rest
mass, the four-vector x := (r, t) ∈ M4 is the particle location in M4 and ẋ := dx/ds ∈ T (M4) is the
particle Euclidean “four-vector” velocity with respect to a laboratory reference frame K, parameterized
by means of the Minkowski space-time parameters (r, s(t)) ∈ M4 and related to each other vis the
infinitesimal Lorentz interval relationship

dτ :=< dx, dx >
1/2

M4 := ds < ẋ, ẋ >
1/2

M4 , (5.2)

A ∈ T ∗(M4) is an external electromagnetic four-vector potential, satisfying the classical Maxwell
equations [2,3,9], < ·, · >H is the corresponding scalar product in a finite-dimensional vector space
H and T (M4), T ∗(M4) are, respectively, the tangent and cotangent spaces [15,17,59,60,98] to the
Minkowski space M4. In particular, < x, x >M4 := t2− < r, r >E3 for any x := (r, t) ∈M4.

The subintegral expression in (5.1)

L(t) := −m0 < ẋ, ẋ >
1/2

M4 −ξ < A, ẋ >M4 , (5.3)

is the related Lagrangian function, whose first part is proportional to the particle world line length
with respect to the proper rest reference frame Kr and the second part is proportional to the pure
electromagnetic particle-field interaction with respect to the Minkowski laboratory reference frame K.
Moreover, the positive rest mass parameter m0 ∈ R+ is introduced into (5.3) as an external physical
ingredient, also describing the point particle with respect to the proper rest reference frame Kr. The
electromagnetic four-vector potential A ∈ T ∗(M4) is at the same time expressed as a four-vector,
constructed and measured with respect to the Minkowski laboratory reference frame K that appears to
be rather controversial from physical point of view, since the action functional (5.1) is forced to be
extremal with respect to the laboratory reference frame K. This, in particular, means that the actual
physical motion of our charged point particle, realized with respect to the proper rest reference frame
Kr, somehow depends on external observation data [9,31,38,39,99] with respect to the chosen laboratory
reference frame K. This aspect was never discussed in the physical literature except by R. Feynman in
[9], who argued that the relativistic expression for the classical Lorentz force has a physical sense only
with respect to the Euclidean rest reference frame Kr variables (r, τ) ∈ E4 related to the Minkowski
laboratory reference frame K parameters (r, t) ∈M4 by means of the infinitesimal relationship

dτ :=< dx, dx >
1/2

M4= dt(1− |u|2)1/2, (5.4)
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where u := dr/dt ∈ T (E3) is the point particle velocity with respect to the reference frame K.
It should be pointed out here that to be correct, it would be necessary to include in the action functional

the additional part describing the electromagnetic field itself. But this part is not taken into account,
since it is generally assumed [29,34,35,41–43,45,71,100] that the charged particle influence on the
electromagnetic field is negligible. This is true if the particle charge value ξ is very small and the
support suppA ⊂ M4 of the electromagnetic four-vector potential is compact. It is clear that in the
case of two interacting charged particles, the above assumption is invalid, as it is necessary to take into
account the relative motion of two particles and the varying interaction energy. This aspect of the action
functional selection problem appears to be very important when one tries to analyze the related Lorentz
type forces exerted on each other by charged particles. We shall return to this problem in the sequel.

Having calculated the least action condition (5.1), we easily obtain from (5.3) the classical relativistic
dynamical equations

dP/ds := −∂L(t)/∂x = −ξ∇x < A, ẋ >M4 , (5.5)

P := −∂L(t)/∂ẋ = m0ẋ < ẋ, ẋ >
−1/2

M4 +ξA,

where P ∈ T ∗(M4) is the common particle-field momentum of the interacting system.
Now at s = t ∈ R, by means of the standard infinitesimal change of variables (5.4) we can easily

obtain from (5.5) the classical Lorentz force expression

dp/dt = ξE + ξu×B (5.6)

with the relativistic particle momentum and mass

p := mu, m := m0(1− |u|2)−1/2, (5.7)

the electric field
E := −∂A/∂t−∇ϕ (5.8)

and the magnetic field
B := ∇× A, (5.9)

where we have expressed the electromagnetic four-vector potential as A := (A,ϕ) ∈ T ∗(M4).

The Lorentz force (5.6), owing to our preceding assumption, is the force exerted by the external
electromagnetic field on our charged point particle, whose charge ξ is so negligible that it does not exert
any influence on the field. This fact becomes very important if we try to make use of the Lorentz force
expression (5.6) for the case of two interacting charged particles, since then one cannot assume that ξ
exerts negligible influence on other charged particle. Thus, the corresponding Lorentz force between two
charged particles should be suitably altered. Nevertheless, modern physics [1,2,8,24,40,47,64,67] did
not make this necessary Lorentz force modification, and the classical expression (5.6) is used just about
everywhere. This situation was observed and analyzed concerning the related physical aspects in [21],
where it was shown that the electromagnetic Lorentz force between two moving charged particles can be
modified in such a way that it ceases to be dependent on their relative motion, which is contrary to the
classical relativistic case.
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Unfortunately, the least action principle approach to analyzing the Lorentz force structure in was
completely ignored in [21], thereby giving rise to some incorrect and physically unmotivated conclusions
concerning the mathematical physics foundations of modern electrodynamics. To make the problem
more transparent, we will analyze it in the next section from the vacuum field theory approach recently
devised in [18,19,30].

5.2. Least Action Principle Analysis

Consider the least action principle (5.1) and observe that the extremality condition

δS(t) = 0, δx(s(t1)) = 0 = δx(s(t2)) (5.10)

is calculated with respect to the laboratory reference frame K, whose point particle coordinates (r, t) ∈
M4 are parameterized by means of an arbitrary parameter s ∈ R owing to expression (5.2). Recalling
now the definition of the invariant proper rest reference frame Kr time parameter (5.4), we compute that
at the critical parameter value s = τ ∈ R the action functional (5.1) on the fixed interval [τ1, τ2] ⊂ R is

S(t) =

τ2∫
τ1

(−m0 − ξ < A, ẋ >M4)dτ (5.11)

under the additional constraint
< ẋ, ẋ >

1/2

M4= 1, (5.12)

where ẋ := dx/dτ, τ ∈ R.
The expressions (5.11) and (5.12) require comment since the Lagrangian function

L(t) := −m0 − ξ < A, ẋ >M4 (5.13)

corresponding to (5.11) depends only virtually on the unobservable rest mass parameter m0 ∈ R and,
evidently, it has no direct impact on the resulting particle dynamical equations following from the
condition δS(t) = 0. However, the rest mass springs up as a suitable Lagrangian multiplier owing to
the imposed constraint (5.12). To demonstrate this, consider the extended Lagrangian function (5.13) in
the form

L(t)
λ := −m0 − ξ < A, ẋ >M4 −λ(< ẋ, ẋ >

1/2

M4 −1), (5.14)

where λ ∈ R is a suitable Lagrangian multiplier. The resulting Euler equations are

Pr := ∂L(t)
λ /∂ṙ = ξA+ λṙ, Pt := ∂L(t)

λ /∂ṫ = −ξϕ− λṫ,

∂L(t)
λ /∂λ =< ẋ, ẋ >

1/2

M4 −1 = 0, dPr/dτ = ξ∇r < A, ṙ >E3 −ξṫ∇rϕ,

dPt/dτ = ξ < ∂A/∂t, ṙ >E3 −ξṫ∂ϕ/∂t, (5.15)

giving rise, owing to relationship (5.4), to the following dynamical equations:

d

dt
(λuṫ) = ξE + ξu×B, d

dt
(λṫ) = ξ < E, u >E3 . (5.16)
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Here
E := −∂A/∂t−∇ϕ, B = ∇× A (5.17)

are the corresponding electric and magnetic fields. As a simple consequence of (5.16), one obtains

d

dt
ln(λṫ) +

d

dt
ln(1− |u|2)1/2 = 0, (5.18)

which is equivalent for all t ∈ R, to the relationship

λṫ(1− |u|2)1/2 = λ := m0 (5.19)

in virtue of the relationship (5.4), where m0 ∈ R+ is a constant, which could be interpreted as the rest
mass of our charged point particle ξ. Actually, the first equation of (5.16) can be rewritten as

dp/dt = ξE + ξu×B, (5.20)

where
p := mu, m := λṫ = m0(1− |u|2)−1/2, (5.21)

coinciding exactly with that of (5.4).
Thus, we have retrieved all of the results obtained in section above, making use of the action functional

(5.11), represented with respect to the rest reference frame Kr under the constraint (5.12). During these
derivations, we faced a very delicate inconsistency property in the definition of the action functional
S(t), defined with respect to the rest reference frame Kr and depending on the external electromagnetic
potential function A : M4 → T ∗(M4) constructed with respect to the laboratory reference frame K.
Namely, this potential function, as a physically observable quantity, is defined and measurable only with
respect to the fixed laboratory reference frame K. This, in particular, means that a physically reasonable
action functional should be constructed by means of an expression depending strongly on the laboratory
reference frame K by means of coordinates (r, t) ∈ M4 and subsequently transformed with respect to
the rest reference frame Kr coordinates (r, τ) ∈ E4, to obtain the charged point particle ξ motion. Thus,
the corresponding action functional should initially be cast in the form

S(τ) =

t(τ2)∫
t(τ1)

(−ξ < A, ẋ >E3)dt, (5.22)

where ẋ := dx/dt, t ∈ R is calculated on a time interval [t(τ1), t(τ2)] ⊂ R, suitably related to the
proper motion of the charged point particle ξ on the true time interval [τ1, τ2] ⊂ R with respect to the
rest reference frame Kr and whose charge value is assumed to be so negligible that it exerts no influence
on the external electromagnetic field. The problem now arises: how does one correctly compute the
variation δS(τ) = 0 of the action functional (5.22)?

To reply to this question, we turn to Feynman [9], where he argued, when deriving the relativistic
Lorentz force expression, that the real charged particle dynamics can be physically and unambiguously
determined only with respect to the rest reference frame time parameter. In particular, Feynman wrote:
“...we calculate a growth ∆x for a small time interval ∆t. But in the other reference frame the interval
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∆t may correspond to changing both t′ and x′, thereby at the change of the only t′ the suitable change
of x will be other... Making use of the quantity dτ one can determine a good differential operator d/dτ,
as it is invariant with respect to the Lorentz reference frames transformations”. This means that if our
charged particle ξ moves in the Minkowski space M4 during the time interval [t1, t2] ⊂ R with respect
to the laboratory reference frame K, its proper real and invariant time of motion with respect to the rest
reference frame Kr will be [τ1, τ2] ⊂ R.

As a corollary of Feynman’s arguments, we arrive at the necessity to rewrite the action functional
(5.22) as

S(τ) =

τ2∫
τ1

(−ξ < A, ẋ >M4)dτ, δx(τ1) = 0 = δx(τ2), (5.23)

where ẋ := dx/dτ, τ ∈ R, under the additional constraint

< ẋ, ẋ >
1/2

M4= 1, (5.24)

which is equivalent to the infinitesimal transformation (5.4). Simultaneously the proper time interval
[τ1, τ2] ⊂ R is mapped on the time interval [t1, t2] ⊂ R by means of the infinitesimal transformation

dt = dτ(1 + |ṙ|2)1/2, (5.25)

where ṙ := dr/dτ, τ ∈ R. Thus, we can now pose the true least action problem equivalent to (5.23) as

δS(τ) = 0, δr(τ1) = 0 = δr(τ2), (5.26)

where the functional

S(τ) =

τ2∫
τ1

[−W̄ (1 + |ṙ|2)1/2 + ξ < A, ṙ >E3 ]dτ (5.27)

is characterized by the Lagrangian function

L(τ) := −W̄ (1 + |ṙ|2)1/2 + ξ < A, ṙ >E3 (5.28)

Here, W̄ := ξϕ, which is a suitable vacuum field [18,19,21,30] potential function. The resulting Euler
equation gives rise to the following relationships

P := ∂L(τ)/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 + ξA, (5.29)

dP/dτ := ∂L(τ)/∂r = −∇W̄ (1 + |ṙ|2)1/2 + ξ∇ < A, ṙ >E3 .

Making now use once more of the infinitesimal transformation (5.25) and the crucial dynamical particle
mass definition [18,19,21] (in the light speed units)

m := −W̄ (5.30)

we can easily rewrite Equations (5.29) with respect to the parameter t ∈ R as the classical relativistic
Lorentz force:

dp/dt = ξE + ξu×B, (5.31)
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where

p := mu, u := dr/dt, (5.32)

B := ∇× A, E := −ξ−1∇W̄ − ∂A/∂t.

Thus, we have again obtained the relativistic Lorentz force expression (5.31), which is slightly different
from (5.6), since the classical relativistic momentum expression of (5.7) does not completely coincide
with our modified relativistic momentum expression

p = −W̄u (5.33)

that is strongly on the scalar vacuum field potential function W̄ : M4 → R. But if we recall that our
action functional (5.23) was written under the assumption that the particle charge value ξ is negligible
and does not influence on the electromagnetic field source, we can make use of the result in [19,21,30]
that the vacuum field potential function W̄ : M4 → R, owing to (5.31)-(5.33), satisfies as ξ → 0 the
dynamical equation

d(−W̄u)/dt = −∇W̄ , (5.34)

having the solution
− W̄ = m0(1− |u|2)−1/2, m0 = − W̄

∣∣
u=0

. (5.35)

Accordingly we have arrived, owing to (5.35) and (5.33), at an almost complete agreement of our result
(5.31) for the relativistic Lorentz force with that of (5.6) under the condition ξ → 0. Moreover, we have
also proved the following result.

Proposition 5.1. Under the assumption of negligible influence of a charged point particle ξ on an
external electromagnetic field source, a true physically reasonable action functional can be given by
expression (5.22), which is equivalently defined with respect to the rest reference frame Kr in form
(5.23),(5.24). The resulting relativistic Lorentz force (5.31) coincides almost exactly with that of (5.6),
obtained from the classical Einstein type action functional (5.1), but the momentum expression (5.33)
differs from the classical expression (5.7), which takes into account the related vacuum field potential
interaction energy impact.

The next result then follows directly.

Corollary 5.2. The Lorentz force expression (5.31) must in due course corrected in the case when the
weak charge ξ influence assumption is not valid.

Remark 5.3. The infinitesimal relationship (5.25) reflects the Euclidean nature of transformations R 3
t
 τ ∈ R.

In spite of the results obtained above by means of two different least action principles (5.1) and (5.23),
we admit that the first one has some logical gaps, which may give rise to unpredictable, unexplainable
and even nonphysical effects. Among these gaps we mention: i) the definition of Lagrangian function
(5.3) depends on the external and undefined rest mass parameter with respect to the rest reference frame
Kr time τ ∈ R, and serving as a variational integrand with respect to the laboratory reference frame K
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time t ∈ R; ii) the least action condition (5.1) is calculated with respect to fixed boundary conditions at
the ends of a time interval [t1, t2] ⊂ R, so the resulting dynamics are strongly dependent on the chosen
laboratory reference frame K, and following the Feynman argument [9,32], is physically unreasonable;
iii) the resulting relativistic particle mass and its energy depend only on the particle velocity in the
laboratory reference frame K and do not take into account the vacuum field potential energy, which
exerts a significant action on the particle motion; iv) the negligible influence assumption for a charged
point particle is also physically inconsistent.

6. The Dirac–Fock–Podolsky Problem and Symplectic Properties of the Maxwell and Yang–Mills
Dynamical Systems

6.1. Introduction

When investigating different dynamical systems on canonical symplectic manifolds, invariant under
the action of symmetry groups, additional mathematical structures often appear, the analysis of which
shows their importance for understanding many related problems. For example there is the Cartan
connection on an associated principal fiber bundle, which enables a more detailed description of the
properties of a dynamical system in the case of its reduction on certain associated invariant submanifolds
and quotient spaces.

Problems related to the investigation of properties of reduced dynamical systems on symplectic
manifolds were studied, e.g., in [15,60–62,89], where the relationship between a symplectic structure
on the reduced space and the available connection on a principal fiber bundle was formulated in explicit
form. Other aspects of dynamical systems related to properties of reduced symplectic structures were
studied in [63,101], where, in particular, the reduced symplectic structure was explicitly described in
the framework of the classical Dirac scheme, and several applications to nonlinear (including celestial)
dynamics were given.

It is well known [3,17,19,30,64,67] that the Hamiltonian theory of Maxwell’s equations faces
a very important classical problem; namely, introducing into its unique formalism the well-known
Lorentz conditions, ensuring both the wave structure of propagating quanta and the positivity of energy.
Unfortunately, in spite of classical studies on this problem by Dirac, Fock and Podolsky [69], the problem
remains open, and the Lorentz condition is included in modern electrodynamics as an external constraint
- and not one that follows from the initial Hamiltonian (or Lagrangian) theory. Moreover, when trying
to quantize the electromagnetic theory, as was shown by Pauli, Dirac, Bogolubov and Shirkov and
others [3,64,67], the quantum Lorentz condition could not be satisfied in the context of the existing
quantum approaches, except in the average sense, since it is incompatible with the related quantum
dynamics. This problem motivated us to seek a solution from the so-called symplectic reduction
theory [62,89,101], which allows the systematic introduction into the Hamiltonian formalism the external
charge and current conditions, giving rise to a partial solution to the Lorentz condition problem.
Some applications of the method to Yang–Mills type equations interacting with a point charged
particle, are presented in detail. In particular, based on the analysis of reduced geometric structures
on fibered manifolds, invariant under the action of a symmetry group, we construct the symplectic
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structures associated with connection forms on suitable principal fiber bundles. We present mathematical
preliminaries of the related Poissonian structures on the corresponding reduced symplectic manifolds,
which are often used [15,63,101] in various problems of dynamics in modern mathematical physics.
Then we apply them to study the non-standard Hamiltonian properties of the Maxwell and Yang–Mills
type dynamical systems. In addition, we formulate a symplectic analysis of the important Lorentz type
constraints, which describe the electrodynamic vacuum properties.

We formulate a symplectic reduction theory of the classical Maxwell electromagnetic field equations
and prove [18] that the important Lorentz condition, ensuring the existence of electromagnetic
waves [2,9,64], can be naturally included in the Hamiltonian picture, thereby solving the Dirac, Fock
and Podolsky problem [69] mentioned above. Moreover, we use symplectic reduction theory to study
the Poissonian structures and the classical minimal interaction principle related to Yang–Mills equations.

6.2. Hamiltonian Analysis of the Maxwell Dynamical Systems

We take the Maxwell electromagnetic equations to be

∂E/∂t = ∇×B − J, ∂B/∂t = −∇× E, (6.1)

< ∇, E >= ρ, < ∇, B >= 0

on the cotangent phase space T ∗(N) to N ⊂ T (D;E3), which is the smooth manifold of smooth vector
fields on an open domain D ⊂ R3, all expressed in light speed units. Here (E,B) ∈ T ∗(N) is a vector
of electric and magnetic fields, ρ : D → R and J : D → E3 are, respectively, fixed charge and current
densities in the domain D, satisfying the equation of continuity

∂ρ/∂t+ < ∇, J >= 0 (6.2)

holding for all t ∈ R, where the symbol “∇” is the gradient operation with respect to a variable x ∈
D, and × is the usual vector product in E3 := (R3, < ·, · >), which is the standard three-dimensional
Euclidean vector space R3 endowed with the usual scalar product < ·, · > .

Aiming to represent Equations (6.1) as those on reduced symplectic space, we define an appropriate
configuration space M ⊂ T (D;E3) with a vector potential field coordinate A ∈ M. The cotangent
space T ∗(M) may be identified with pairs (A;Y ) ∈ T ∗(M), where Y ∈ T ∗(D;E3) is a suitable vector
field density in D. On the space T ∗(M) there exists the canonical symplectic form ω(2) ∈ Λ2(T ∗(M)),

allowing, owing to the definition of the Liouville from

λ(α(1))(A;Y ) =

∫
D

d3x(< Y, dA >:= (Y, dA) (6.3)

the canonical expression
ω(2) := dλ(α(1)) = (dY,∧dA). (6.4)

Here ∧ denotes exterior differentiation, d3x, x ∈ D, is the Lebesgue measure in the domain D and
pr : T ∗(M) → M is the standard projection on the base space M. Now, we define a Hamiltonian
function H̃ ∈ D(T ∗(M)) as

H(A, Y ) = 1/2[(Y, Y ) + (∇× A,∇× A) + (< ∇, A >,< ∇, A >)] (6.5)
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describing the well-known vacuum Maxwell equations when the densities ρ = 0 and J = 0. Actually,
owing to (6.4), one easily obtains from (6.5) the equations

∂A/∂t := δH/δY = Y, (6.6)

∂Y/∂t := −δH/δA = −∇×B +∇ < ∇, A >,

which are the true vacuum wave equations, where

B := ∇× A (6.7)

is the corresponding magnetic field. Now defining

E := −Y −∇W (6.8)

for some functionW : M → R as the corresponding electric field, the system of Equation (6.6) becomes,
in view of definition (6.7),

∂B/∂t = −∇× E, ∂E/∂t = ∇×B (6.9)

exactly coinciding with the Maxwell equations in a vacuum when the Lorentz condition

∂W/∂t+ < ∇, A >= 0 (6.10)

is included.
Since definition (6.8) was essentially imposed rather than arising naturally from the Hamiltonian

approach and our equations are valid only for a vacuum, we shall try to improve upon these matters
by employing the reduction approach devised in Section 2. We start with the Hamiltonian (6.5) and
observe that it is invariant with respect to the following abelian symmetry group G := expG, where
G ' C(1)(D;R), acts on the base manifold M naturally lifted to T ∗(M); namely, for any ψ ∈ G and
(A, Y ) ∈ T ∗(M)

ϕψ(A) := A+∇ψ, ϕψ(Y ) = Y. (6.11)

The 1-form (6.3) is also invariant under the transformation (6.11) since

ϕ∗ψλ(α(1))(A, Y ) = (Y, dA+∇dψ) =

= (Y, dA)− (< ∇, Y >, dψ) = λ(α(1))(A, Y )
(6.12)

where we used the condition dψ ' 0 in Λ1(T ∗(M)) for any ψ ∈ G. Thus, the corresponding momentum
mapping (6.11) is given as

l(A, Y ) = − < ∇, Y > (6.13)

for all (A, Y ) ∈ T ∗(M). If ρ ∈ G∗ is fixed, one can define the reduced phase space M̄ρ := l−1(ρ)/G,

since the isotropy group Gρ = G, owing to its commutativity and the condition (6.11). Consider now a
principal fiber bundle p : M → N with the abelian structure group G and a base manifold N taken as

N := {B ∈ T (D;E3) : < ∇, B >= 0, < ∇, E(S) >= ρ}, (6.14)

where
p(A) := B = ∇× A. (6.15)
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We can construct a connection 1-form A ∈ Λ1(M)⊗G on this bundle, where for all A ∈M

A(A) · Â∗(l) = 1, d < ρ,A(A) >G= Ω(2)
ρ (A) ∈ H2(M ;Z), (6.16)

where A(A) ∈ Λ1(M) is a differential 1-form, which we choose in the following form:

A(A) := −(W,d < ∇, A >) (6.17)

where W ∈ C(1)(D;R) is a scalar function, not yet defined. As a result, the Liouville form (6.3)
transforms into

λ(α̃(1)
ρ ) := (Y, dA)− (W,d < ∇, A >) = (Y +∇W,dA) := (Ỹ , dA), Ỹ := Y +∇W (6.18)

giving rise to the corresponding canonical symplectic structure on T ∗(M) as

ω̃(2)
ρ := dλ(α̃(1)

ρ ) = (dỸ ,∧dA). (6.19)

Then the Hamiltonian function (6.5), as a function on T ∗(M), transforms into

H̃ρ(A, Ỹ ) = 1/2[(Ỹ , Ỹ ) + (∇× A,∇× A) + (< ∇, A >,< ∇, A >)] (6.20)

coinciding with the well-known Dirac–Fock–Podolsky [64,69] Hamiltonian expression. The
corresponding Hamiltonian equations on the cotangent space T ∗(M),

∂A/∂t := δH̃/δỸ = Ỹ , Ỹ := −E −∇W,
∂Ỹ /∂t := −δH̃/δA = −∇× (∇× A) +∇ < ∇, A >

describe true wave processes related to the Maxwell equations in a vacuum, which do not take into
account boundary charge and current density conditions. Actually, from (6.20) we obtain

∂2A/∂t2 −∇2A = 0 =⇒ ∂E/∂t+∇(∂W/∂t + < ∇, A >) = −∇×B (6.21)

giving rise to the true vector potential wave equation, but the electromagnetic Faraday induction law is
only satisfied if the Lorentz condition (6.10) is imposed.

To remedy this situation, we will apply the symplectic space reduction technique devised in Section 2.
Namely, owing to the standard reduction theorem [15,59,61,101], the constructed cotangent manifold
T ∗(N) is symplectomorphic to the corresponding reduced phase space M̄ρ, that is

M̄ρ ' {(B;S) ∈ T ∗(N) : < ∇, E(S) >= ρ, < ∇, B >= 0} (6.22)

with the reduced canonical symplectic 2-form

ω(2)
ρ (B, S) = (dB,∧dS = dλ(α(1)

ρ )(B, S), λ(α(1)
ρ )(B, S) := −(S, dB), (6.23)

where

∇× S + F +∇W = −Ỹ := E +∇W, < ∇, F >:= ρ (6.24)



Mathematics 2015, 3 249

for some fixed vector mapping F ∈ C(1)(D;E3), depending on the imposed boundary conditions. The
result (6.23) follows directly from substituting the expression for the electric field E = ∇× S + F into
the symplectic structure (6.19), and taking into account that dF = 0 in Λ1(M). Then the Hamiltonian
function (6.20) reduces to the following symbolic form:

Hρ(B, S) = 1/2[(B,B) + (∇× S + F +∇W,∇× S + F +∇W )+

+( < ∇, (∇×)−1B >,< ∇, (∇×)−1B >)], (6.25)

where (∇×)−1 denotes the corresponding inverse curl-operation, mapping [101] the divergence-free
subspace C(1)

div(D;E3) ⊂ C(1)(D;E3) into itself. Then, it follows from (6.25) that the Maxwell Equation
(6.1) become a canonical Hamiltonian system on the reduced phase space T ∗(N), endowed with the
canonical symplectic structure (6.23) and the modified Hamiltonian function (6.25). In fact, one easily
calculates that

∂S/∂t := δH/δB = B − (∇×)−1∇ < ∇, (∇×)−1B >, (6.26)

∂B/∂t := −δH/δS = −∇× (∇× S + F +∇W ) := −∇× E

where we made use of the definition E = ∇× S +F and the elementary identity∇×∇ = 0. Thus, the
second equation of (6.26) coincides with the second Maxwell equation of (6.1) in the classical form

∂B/∂t = −∇× E.

Moreover, from (6.24), owing to (6.26), one finds via differentiation with respect to t ∈ R that

∂E/∂t = ∂F/∂t+∇× ∂S/∂t = (6.27)

= ∂F/∂t+∇×B

as well as, in virtue of (6.2),

< ∇, ∂F/∂t >= ∂ρ/∂t = − < ∇, J > (6.28)

So, we can find from (6.28) that, up to the non-essential curl-terms∇× (·), the following relationship

∂F/∂t = −J (6.29)

holds. Actually, it follows from the equation of continuity (6.2) that the current density vector J ∈
C(1)(D;E3) is defined up to curl-terms ∇ × (·) which can be included in the right-hand side of (6.29).
Now, substituting (6.29) into (6.27), we obtain exactly the first Maxwell equation of (6.1):

∂E/∂t = ∇×B − J, (6.30)

which is supplemented, naturally, with the external boundary constraint conditions

< ∇, B >= 0, < ∇, E >= ρ,

∂ρ/∂t+ < ∇, J >= 0,
(6.31)

owing to the continuity relationship (6.2) and definition (6.22).
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Concerning the wave equations related to the Hamiltonian system (6.26), it can readily be shown that
the electric field E is recovered from the second equation as

E := −∂A/∂t−∇W, (6.32)

where W ∈ C(1)(D;R) is a smooth function depending on the vector field A ∈ M. To determine this
dependence, we substitute (6.29) into Equation (6.30), taking into account thatB = ∇×A which yields

∂2A/∂t2 −∇(∂W/∂t+ < ∇, A >) = ∇2A+ J (6.33)

With the above, if we now impose the Lorentz condition (6.10), we obtain from (6.33) the
corresponding true wave equations in space-time, taking into account the external charge and current
density conditions (6.31).

Notwithstanding our progress so far, the problem of naturally fulfilling the Lorentz constraint (6.10)
in the canonical Hamiltonian formalism still remains to be completely solved. To this end, we are
compelled to analyze the structure of the Liouville 1-form (6.18) for Maxwell equations in vacuo on a
slightly extended functional manifold M × L. As a first step, we rewrite the 1-form (6.18) as

λ(α̃(1)
ρ ) := (Ỹ , dA) = (Y +∇W,dA) = (Y, dA)+

+(W,−d < ∇, A >) := (Y, dA) + (W,dχ), (6.34)

where
χ := − < ∇, A > . (6.35)

Considering now the elements (Y,A;χ,W ) ∈ T ∗(M × L) as new canonical variables on the extended
cotangent phase space T ∗(M × L), where L := C(1)(D;R), we can rewrite the symplectic structure
(6.19) in the following canonical form

ω̃(2)
ρ := dλ(α̃(1)

ρ ) = (dY,∧dA) + (dW,∧dχ) (6.36)

Subject to the Hamiltonian function (6.20), we obtain the expression

H(A, Y ;χ,W ) = 1/2[(Y −∇W,Y −∇W ) + (∇× A,∇× A) + (χ, χ)] (6.37)

with respect to which the corresponding Hamiltonian equations take the form:

∂A/∂t := δH/δY = Y −∇W, Y := −E,
∂Y/∂t := −δH/δA = −∇× (∇× A),

∂χ/∂t := δH/δW =< ∇, Y −∇W >,

∂W/∂t := −δH/δχ = −χ. (6.38)

From (6.38), we obtain the following using the external boundary conditions (6.31):

∂B/∂t+∇× E = 0, ∂2W/∂t2 −∇2W = ρ, (6.39)

∂E/∂t−∇×B = 0, ∂2A/∂t2 −∇2A = −∇(∂W/∂t+ < ∇, A >).
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Clearly, these equations describe electromagnetic Maxwell equations in a vacuum, but without the
Lorentz condition (6.10). Consequently, as above, we shall apply the reduction technique devised in
Section 2 to the symplectic structure (6.36) . We find that under transformations (6.24) the corresponding
reduced manifold M̄ρ becomes endowed with the symplectic structure

ω̄(2)
ρ := (dB,∧dS) + (dW,∧dχ) (6.40)

and the Hamiltonian (6.37) assumes the form

H(S,B;χ,W ) = 1/2[(∇× S + F +∇W,∇× S + F +∇W ) + (B,B) + (χ, χ)] (6.41)

having Hamiltonian equations

∂S/∂t := δH/δB = B, ∂W/∂t := −δH/δχ = −χ (6.42)

∂B/∂t := −δH/δS = −∇× (∇× S + F +∇W ) = −∇× E
∂χ/∂t := δH/δW = − < ∇,∇× S + F +∇W >= − < ∇, E > −∆W

coinciding with the Maxwell equation (6.1) under conditions (6.24). Thus, they describe true wave
processes in a vacuum, as well as the electromagnetic Maxwell equations, taking into account a priori
both the imposed external boundary conditions (6.31) and the Lorentz condition (6.10), and solving the
problem mentioned in [64,69]. Actually, it follows readily from (6.42) that

∂2W/∂t2 −∆W = ρ, ∂W/∂t+ < ∇, A >= 0 (6.43)

∇×B = J + ∂E/∂t, ∂B/∂t = −∇× E

Now from (6.43) and (6.31) one can easily calculate [19,30] the magnetic wave equation

∂2A/∂t2 −∆A = J (6.44)

supplementing the suitable wave equation on the scalar potential W ∈ L and finishing the calculations.
Thus, we have proved the following result.

Proposition 6.1. The electromagnetic Maxwell Equation (6.1) together with the Lorentz condition (6.10)
are equivalent to the Hamiltonian system (6.42) with respect to the canonical symplectic structure (6.40)
and Hamiltonian function (6.41), which reduce to the electromagnetic Equation (6.43) and (6.44) under
the external boundary conditions (6.31).

The above result can (eventually) be used to develop an alternative quantization procedure for
Maxwell’s electromagnetic equations that is free of some of the quantum operator problems discussed
in detail in [64]. We hope to consider this aspect of the quantization problem in an investigation planned
for the near future.
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7. Conclusions

In this section we have demonstrated the complete legacy of the Feynman’s approach to the Lorentz
force based derivation of the Maxwell electromagnetic field equations. Moreover, we have succeeded
in finding the exact relationship between Feynman’s approach and the vacuum field approach of
Sections 1–3, and introduced in [18,19]. The results obtained provide strong arguments for the deep
physical foundations residing in the vacuum field theory approach, based on which one can describe the
physical phenomena of electromagnetism and gravity, and (perhaps) eventually do both simultaneously.
For gravity, the approach is physically based on the particle “inertial” mass expression (4.98), which
follows naturally both from Feynman’s proper time paradigm applied to the Lorentz force derivation,
and from the vacuum field theory.
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