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Abstract: The Aharonov-Vaidman gauge additively transforms the mean energy of a 

quantum mechanical system into a weak valued system energy. In this paper, the equation 

of motion of this weak valued energy is used to provide a mathematical statement of an 

extended 1st Law of Thermodynamics that is applicable to the mean energy of a closed 

quantum system when the mean energy is expressed in the Aharonov-Vaidman gauge,  

i.e., when the system’s energy is weak valued. This is achieved by identifying the 

generalized heat and work exchange terms that appear in the equation of motion for weak 

valued energy. The complex valued contributions of the additive gauge term to these 

generalized exchange terms are discussed and this extended 1st Law is shown to subsume 

the usual 1st Law that is applicable for the mean energy of a closed quantum system. It is 

found that the gauge transformation introduces an additional energy uncertainty exchange 

term that—while it is neither a heat nor a work exchange term—is necessary for the 

conservation of weak valued energy. A spin-1/2 particle in a uniform magnetic field is used 

to illustrate aspects of the theory. It is demonstrated for this case that the extended 1st Law 

implies the existence of a gauge potential ω and that it generates a non-vanishing gauge 

field F. It is also shown for this case that the energy uncertainty exchange accumulated 

during the evolution of the system along a closed evolutionary cycle C in an associated 

parameter space is a geometric phase. This phase is equal to both the path integral of ω 

along C and the integral of the flux of F through the area enclosed by C. 
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1. Introduction 

State pre-selection and post-selection (PPS) techniques have been used in recent years to manipulate 

and control quantum systems in such diverse research areas as quantum system-environment 

interactions (e.g., [1]), the quantum eraser (e.g., [2]), and Pancharatnam phase (e.g., [3,4]). An 

especially important PPS application area is the time symmetric reformulation of quantum  

mechanics [5] and the closely related notion of the weak value of a quantum mechanical observable 

(e.g., [6–8]). 

The weak value  of a quantum mechanical observable  is the statistical result of a standard 

measurement procedure performed upon a PPS ensemble of quantum systems when the interaction 

between the measurement apparatus and each system is sufficiently weak. Unlike a standard strong 

measurement of , which significantly disturbs the measured system and yields the mean value 〈 〉 of 

the associated operator  as the measured value of the observable, a weak measurement of  

performed upon a PPS system does not appreciably disturb the system and yields  as the measured 

value of . Unlike 〈 〉—which is real valued and bounded by the eigenvalue spectral limits of —  

can exhibit such eccentric properties as being complex valued and having its real part greatly exceed 

’s spectral limits. While the interpretation of weak values remains somewhat controversial, several of 

the unusual properties predicted by weak value theory have been experimentally verified (e.g., [9–13]). 

Much attention has also been devoted to studying the intersection between thermodynamics  

and quantum mechanics. Such research includes a substantial body of literature discussing—for 

example—quantum heat engines (e.g., [14–18]), thermodynamics of open quantum systems  

(e.g., [19]), entanglement and work (e.g., [20]), quantum thermometry and heat baths (e.g., [21,22]), 

quantum refrigerators (e.g., [23,24]), Rényi entropy flow [25], qubit and qutrit work extraction  

(e.g., [26,27]), and quantum measurement control of thermodynamics [28]. 

Recently, a PPS defined uncertainty quantity called the Aharonov-Vaidman (AV) gauge was introduced 

as a new “scale of measurement” for the mean values of quantum mechanical observables [29]. This 

gauge additively transforms a mean value of an observable into an associated weak value and induces 

each of the eccentric characteristics exhibited by weak values. Since the total time derivative of the AV 

gauged mean value yields the equation of motion for the corresponding weak value, both the weak 

value and its equation of motion can be considered to be the associated mean value and its equation of 

motion expressed in the AV gauge. 

The purpose of this paper is to further examine the thermodynamics/quantum mechanics 

intersection from the perspective of AV gauge theory. In particular, by identifying heat and work 

exchange terms which appear in the equation of motion for the mean energy of a closed quantum 

system when the mean energy is expressed in the AV gauge, an extended version of the 1st Law of 

Thermodynamics that applies to weak valued energy systems and subsumes the 1st Law for closed 
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mean energy systems is obtained. A peculiar energy uncertainty exchange term which is neither a heat 

nor a work exchange term—but is nonetheless required for weak valued energy conservation—is 

shown to be induced by the gauge transformation. The extended 1st Law is illustrated via its 

application to a spin-1/2 particle in a uniform magnetic field. For this system it is shown that: (i) the 

extended 1st Law implies the existence of a gauge potential and an associated non-vanishing gauge 

field; and (ii) the energy uncertainty exchange accumulated during a cyclic evolution of the system in a 

requisite parameter space is a geometric phase. The value of this phase acquired along a closed 

evolutionary cycle C of the system in this parameter space is equal to the path integral of the gauge 

potential along C and—equivalently—it is also equal to the integral of the gauge field flux through the 

area enclosed by C. 

The remainder of this paper is organized as follows: a brief overview of the AV gauge for energy is 

presented in the next section. The general theory of the extended 1st Law is derived in Section 3 and is 

applied to a spin-1/2 particle in a uniform magnetic field in Section 4. The theory of the weak valued 

energy gauge potential and gauge field for a spin-1/2 particle in a uniform magnetic field is developed 

in Section 5 and the associated geometric phase is introduced and discussed in Section 6. Closing 

remarks comprise the final section of this paper. 

2. The AV Gauge for Energy 

A quantum mechanical Hamiltonian operator  acting upon a pre-selected energy state |  at time  

t can be uniquely expressed as [8] 

| 〈 〉| ∆  (1)

where 〈 〉  is the mean energy and ∆ 〈 〉 〈 〉  is the energy uncertainty. The 

state  is | ’s orthogonal companion state at t that belongs to the subspace of ’s Hilbert space 

H that is the orthogonal complement of the subspace of H that contains | . This companion state 

satisfies the conditions 

0 ∆  (2)

The AV gauge is a consequence of the second term on the right-hand side of Equation (1). More 

specifically, it is obtained when both sides of Equation (1) are multiplied from the left by the  
post-selection bra state  at time t and then divided by the scalar product 0. This yields 

the following identity for the weak valued energy  at t: 

≡ 〈 〉  (3)

Thus,  is related to 〈 〉 by an additive transformation—the AV transformation in gauge  

(or—more simply—the AV gauge transformation)—of 〈 〉. The additive term 

≡ ∆ ∆ ∙  (4)

is the associated AV gauge for energy. 
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Equations (3) and (4) show that weak valued energy generalizes the notion of mean energy in the 
sense that  can be considered to be 〈 〉 expressed in AV gauge . Thus, from a measurement 

perspective, an apparatus that measures  actually measures 〈 〉 in an AV gauge (the special AV 
gauge | is called the mean gauge since 0 and 〈 〉). It is also clear from these 

equations that the gauge term  is solely responsible for any eccentric properties associated with the 

weak valued energy, i.e.,  is complex valued only when  is complex valued and  can exceed 
the eigen-energy spectral limits of  only when →  since in this case | | → ∞. 

In summary,  is an additive blending of the standard properties of 〈 〉 with the non-standard 

eccentric properties introduced by . Consequently,  completely subsumes the properties  

of 〈 〉—regardless of the choice of gauge. This is also the case for ’s equation of motion. To see 

this, assume that  is time dependent and simply observe that the equation of motion for  is given 

by the total time derivative of Equation (3), i.e., 

〈 〉 〈 〉 ∆ ∆  (5)

Thus, the equation of motion for  subsumes that for 〈 〉 and can be viewed as an AV gauge 

transformation of 〈 〉 by . 

3. The Extended 1st Law 

In this section, the results and notation of Section 2 are used to develop a mathematical statement of 

an extended version of the 1st Law of Thermodynamics that applies to a closed quantum system when 

the system’s mean energy is expressed in an AV gauge. To this end, consider a closed quantum system 

described by a time dependent Hamiltonian  and let 

|  

 

and 

 

be time dependent energy states, where  and  is an eigen-energy indexing set. Using 

these, the results in Section 2, and setting , it is found that 

〈 〉 ∗ ∗  (6)

∆ ∗ ∗  

∆
1

2∆
∗ 2 ∗ 2 ∗ ∗  (7)

∑ ∗

∑ ∗ ≡  
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and 

∗

∗  (8)

where 

∗
∗

∗

∗

∗

∗

∗ , ∈ ,  (9)

After multiplying both sides of Equations (5)–(9) by the time infinitesimal ; substituting the 
resulting expressions for 〈 〉 〈 〉 , ∆ ∆ , , and  into the  

right-hand side of ;  and identifying and collecting together those terms containing 
infinitesimal changes in probability (i.e., ∗ , ∈ , , ) and those terms containing 

infinitesimal changes  in eigen-energy as heat and work exchange terms (e.g., [30]), respectively, 

the following mathematical statement of the extended 1st Law of Thermodynamics for the mean energy 

of a closed quantum system in the AV gauge is obtained:  

 

where (subscripts “ ” and “ ” denote the real and imaginary parts of a complex valued quantity) 

 

is the complex valued heat exchange term, 

 

is the complex valued work exchange term, and 

 

is the complex valued energy uncertainty exchange term. Here 

∗  

∗  

∗

2	∆ | |
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∆ 	 ∗ 	 ∗
∗

∗

∗

∗
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∗

∗

∗
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∗

∆ 	| |
∗ ∗  

∗

∆ 	| |
∗ ∗  

∆ 	  

and 

∆ 	 	  

where 

∗
∗

∗ , ∈ ,  

 

 

 

and 

 

It is obvious from this that the extended 1st Law subsumes the 1st Law for mean energy systems 

since 〈 〉 when the AV gauge is the mean gauge. 

The theory also shows that there are several peculiar thermodynamic properties associated with 

weak valued energy systems when 0. The most obvious of these is the fact that the exchange 

terms can be complex valued. This is clearly expected since  can be complex valued. Perhaps the 

most peculiar property is that energy uncertainty is used and exchanged by weak valued energy 

systems. In particular, observe that , ∈ , , varies inversely with energy uncertainty ∆ . This 

suggests that systems for which ∆  is small can perform more work than those for which ∆  is large. 

Also note that , ∈ , , varies directly with ∆ 	since the factors in brackets are dimensionless 

scale factors. This direct variation of  with ∆  is the reason  is herein called the “energy 

uncertainty exchange term” and —as will be shown in Section 6—this term can produce a geometric 

phase (or, equivalently, it can contribute to the strength of an associated gauge field) in weak valued 

energy systems. Finally, the fact that the first and second summations in , ∈ , , vary inversely 

and directly with ∆ , respectively, indicates there is an “ambivalence” in the heat exchange process in 

weak valued energy systems, i.e., both small and large energy uncertainties can enhance heat exchange. 

When the system Hamiltonian, eigen-energies, and pure energy states are known (as is assumed 

here), then the functional forms for  and 〈 〉 are also known. Consequently, both  and 〈 〉 are 

exact differentials (recall that  is exact in a region  of some space  if there exists a function  
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defined on  such that ). The following theorem is an obvious consequence of this exactness 

and is stated without proof. 

Theorem 3.1 Suppose  is a Cartesian space with axes corresponding to quantities that parameterize 
the variations of , , , and , ∈ . If  is defined on region ⊂  and C is a smooth closed cycle 

in , then 

0 

Thus, the heat, work, and energy uncertainty exchange terms vary during the evolution along C of a 

closed quantum system in an AV gauge in precisely the manner required to insure there is no change in 

the associated weak valued energy—i.e., ∆ 0 (here “∆ 	” refers to either the change in quantity 

“ ” or the amount of “ ” exchanged; the meaning of “∆”—i.e., “uncertainty” or “change”—is clear 

from the context in which it is used). The next two corollaries to this theorem are also stated  
without proof since they obviously follow from this theorem and the fact that  is 

complex valued: 

Corollary 3.2 

0  

Corollary 3.3 The total work, heat, and energy uncertainty exchanged during an evolution of a weak 
valued energy system in AV gauge | along C conform to the following equalities: 

∆ ∆ ∆ ∆ ∆  

∆ ∆ ∆  

Note that, for mean gauge systems, this theorem and its corollaries also apply to mean energy 

systems. In this case, since 〈 〉 and ∆ ∆ ∆ 0, ∈ , , then 

〈 〉 0 

and 

∆ ∆  

4. The Extended 1st Law for a Spin-1/2 Particle in a Uniform Magnetic Field 

In order to illustrate aspects of the theory developed above, consider a spin-½ particle with 

magnetic moment  under the influence of a magnetic field  that is assumed to be uniform at  and 

is oriented along the positive  axis of a three dimensional Cartesian reference frame. The Hamiltonian 

for this system is 

 

where  is a Pauli spin operator and 
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| |  

Here ∓  are the system’s energy eigenvalues and |  are the associated 

orthonormal eigen-states (i.e., |∓ 0 and | 1). 

Let the time dependent angle θ  and the fixed angle  parameterize the mixing of  

superposed energy eigen-states when forming the PPS and orthogonal companion states. For the sake 

of simplicity choose 

| sin | cos |  

sin | cos |  

and 

cos | sin |  

so that the imaginary parts of all exchange terms vanish. Note that these states are pure and 
normalized; the AV gauge of the system is | ; 0	when ; and—as 

required— 0 and ∆ . 

From this, the following identifications can be made with quantities appearing in the extended 1st 

Law theory developed in Section 3 (hereafter the time dependence of , , and  will not be shown): 

 

sin cos  

	 sin cos  

and 

	 cos sin  

It follows that 

∆ sin 2  

cos  

sin  

1
cos

 

tan
cos

 

and 

0  

in which case 

4 sin cos  

2 cos 2 tan 2 sin 2 sec  
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cos sin  

sin 2 tan  

sin 2 sec  

and 

0 

Thus, for this system the extended 1st Law can be stated as 

4 sin cos 2 cos 2 tan 2sin 2 sec
cos sin sin 2 tan sin 2 sec  

where the first and second terms on the right hand side of this expression are the heat and work 

exchange terms, respectively, and the last term corresponds to the energy uncertainty exchange term. 

It is easily verified that this result agrees exactly with that obtained directly from Equations (3)–(4), i.e., 

〈 〉 ∆ ∙  

where 

〈 〉 cos sin  

and 

tan  

Note that, unlike the general development in Section 3, obtaining the extended 1st Law directly 

from this expression does not straightforwardly discriminate between heat and energy uncertainty 

exchange terms since they both depend upon . 

5. The Weak Valued Energy Gauge Field 

Using the results of the last section, define 

≡ 4 sin cos  

≡ 2 cos 2 tan sin 2 sec  

≡ cos sin  

≡ sin 2 tan  

and introduce the 1-form 

≡  

Here  is the weak valued energy gauge potential for the spin-1/2 system, where 

≡  

and 
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≡  

are recognized as the two components of the associated vector potential (note that ). 

This will become more clear in the geometric setting of the next section where  defines a principle 

fiber bundle connection. 

Let 

≡ , ∈ 0,2 0,  

be the region in the real Cartesian plane that is parameterized by the superposition mixing angle  and 

the magnetic field strength , where it is assumed that  is (spatially) uniform at every , ∈ . 

Since the following theorem is an obvious consequence of Green’s theorem and the definitions of  

and , it is stated without proof. 

Theorem 5.1 If a closed spin-1/2 system in AV gauge | evolves along a closed cycle  in  

such that the area  enclosed by  is convex, then  

 

where 

≡ sin 2 sec  

Here  is the field strength—i.e., the weak valued energy gauge field—derived from the vector 

potential associated with . 

Corollary 5.2 The field strength vanishes if a closed spin-1/2 system is in the mean gauge and 

0 

Proof. In the mean gauge 0  so that  and . Since 

4 sin cos  

then 0. It follows from this or from Green’s theorem that  

0  

Observe that 

0 

where use is made of the fact that 0. It follows from this that a non-vanishing 

gauge field  is generated only when the system is in AV gauge | and that it results from a 

changing vector potential. More specifically, it is produced by changes (“accelerations”) in the rates of 

heat and work exchange with respect to  and , respectively. 
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6. The Geometric Phase 

Now consider the principal fiber bundle ,  which has as its base space the region ; 
as its typical fiber the additive (structure) group  of real numbers; the map : , , ↦ ,  as 

its bundle projection (in this geometric setting,  is the curvature of the connection  on , and  

corresponds to the gauge symmetry group); and define the 1 form 

≡  

which is clearly a connection on . Let : 0,1 →  be a smooth curve in ;	  be a horizontal lift of  
in  starting at point , , ; and 

≡  

be tangent to . Since  is a horizontal lift, then it must be the case that 0 so that 

0 

or 

 

It is clear from the last equation that, in general, the gauge potential  governs how the fiber 

coordinate  changes as  and  vary in . 

Suppose  describes a closed cycle  in  such that  is convex. Then—from Theorem 5.1, 

∆  

Although the cycle  is closed in , its horizontal lift is not (in general) closed and returns to the 
point , , ∆  at the end of the cycle in . Since the net change in the fiber coordinate over 

 is ∆  (and in general ∆ 0), then ∆  is a geometric phase and the following theorem has been 

proved (because ∆  does not depend upon , ∆  is said to be gauge invariant for any choice of  

gauge ): 

Theorem 6.1 If a closed spin-1/2 system in AV gauge | evolves along a closed cycle  in  

such that the area  enclosed by  is convex, it accumulates a net geometric phase ∆  given by 

∆  

when the cycle is completed. 

Corollary 6.2 The net geometric phase ∆  accumulated during a complete cycle  in  by a closed 

spin-1/2 system in the mean gauge is zero. 

Proof. This is a trivial consequence of Corollary 5.2. 

Theorem 6.3 The net geometric phase ∆  accumulated by a closed spin-1/2 system in AV gauge 
| during a complete closed cycle  in  is 
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∆  

Proof. Because 

 

then 

 

and 

∆  

Use of the fact that 

0 

completes the proof. 

The next two corollaries to this theorem are obvious and are stated without proof for the sake  

of completeness. 

Corollary 6.4 

 

Corollary 6.5 

∆ sin 2 sec  

In closing this section, it is useful to verify that Corollary 6.5 and Theorem 6.1 give the same result 

for ∆ . Let the projection of  onto the  axis of  be the closed interval ,  so that  is the set 

of all points ,  such that  and ,  where  and  are 

continuous functions forming the top and bottom portions of the boundary of . Using this in 

Corollary 6.5 yields 

∆ sin 2 sec

sin 2 sec sin 2 sec  

or 

∆ sin 2 sec  

Applying this approach to Theorem 6.1 yields the same result, i.e., 
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∆ sin 2 sec  

or 

∆ sin 2 sec  

7. Conclusions 

Closed weak valued energy quantum systems have been shown to conform to a 1st Law of 

Thermodynamics that is an extension of the usual 1st Law of Thermodynamics for closed mean energy 

quantum systems. In particular, the mathematical statement of the extended 1st Law not only includes 

the real valued heat and work exchange terms of the usual 1st Law, but it also contains additional 

complex valued heat and work exchange terms introduced by the AV energy gauge transformation that 

utilize energy uncertainty in their exchange processes. A peculiar unanticipated complex valued “pure” 

energy uncertainty exchange term that is required for weak valued energy conservation also appears in 

the mathematical statement of the extended 1st Law. 

Application of the extended 1st Law to a real valued spin-1/2 system in a uniform magnetic field 

revealed that the (real valued) heat and work exchange terms define a gauge potential and an 

associated non-vanishing gauge field which is produced by a changing gauge potential—or 

equivalently—by changes in the rates of heat and work exchange. It was also shown that the path 

integral of this gauge potential along a closed cycle C in an appropriately parameterized plane and the 

integral of the gauge field flux through the area in the plane enclosed by C are equal. 

When this system is examined from the perspective of a principle fiber bundle with an appropriately 

parameterized plane as its base space and the additive group of real numbers as its typical fiber, the 

gauge potential was shown to define a “non-flat” connection on the bundle with the associated 

curvature specified by the gauge field. Interestingly, in this geometric setting, the path integral of the 

energy uncertainty exchange term along a closed cycle C in this base space is such that the horizontal 

lift of C does not close—i.e., it yields a geometric phase ∆  that is equal to (the negative of) this path 

integral. It was also shown that ∆  is also equal to the (negative) path integral of the gauge potential 

along C, as well as to the (negative) integral of the gauge field flux through the area enclosed by C. 

In closing, it is noted that the results of this paper pose several open questions: (1) How can a closed 

quantum system be prepared so that its energy is weak valued? (2) What are the physical meanings of 

imaginary heat, work, and energy uncertainty exchange in a thermodynamic system? and (3) Does the 

principle fiber bundle model used in this paper and its consequences reflect physical reality? 

The first question has been partially answered for the special case of the weak energy of evolution 

which is generated during the measurement of weak values when the PPS states are time dependent 

(for further detail the reader is referred to [31]). A more general answer to this question is currently 

under investigation by the author. Clues to answering the second question may reside in how the 

imaginary part of the weak energy of evolution affects the weak value measurement process [31] and 

the role it plays in the weak energy stationary action principle [32]. Although question (3) is more of a 

philosophical question than the other two, it is possible that the geometric phase ∆  exists physically 

and can be observed experimentally. Although the existence of ∆  is somewhat supported by the 
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theoretical findings in [33] and [34], making such a measurement will likely depend upon finding a 

satisfactory answer to question (1). Nonetheless, a philosophical argument has been made to support 

the physical reality of the fiber bundle model presented in this paper. Specifically, Guttmann and  

Lyre [35] point out that the very successful “quantum gauge theories and gravitation give rise to fiber 

bundles with non-flat connections”. They also suggest that “the existence of non-flat connections 

signifies the physical non-triviality of the fiber bundles involved” and believe that “in those cases 

involving bundles with non-flat connections, the fiber bundle formulations are to be taken seriously”. 
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