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Abstract: A complex vector is a sum of a vector and a bivector and forms a natural
extension of a vector. The complex vectors have certain special geometric properties and
considered as algebraic entities. These represent rotations along with specified orientation
and direction in space. It has been shown that the association of complex vector with its
conjugate generates complex vector space and the corresponding basis elements defined
from the complex vector and its conjugate form a closed complex four dimensional linear
space. The complexification process in complex vector space allows the generation of higher
n-dimensional geometric algebra from (n− 1)-dimensional algebra by considering the unit
pseudoscalar identification with square root of minus one. The spacetime algebra can be
generated from the geometric algebra by considering a vector equal to square root of plus
one. The applications of complex vector algebra are discussed mainly in the electromagnetic
theory and in the dynamics of an elementary particle with extended structure. Complex
vector formalism simplifies the expressions and elucidates geometrical understanding of the
basic concepts. The analysis shows that the existence of spin transforms a classical oscillator
into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint
field leads to quantum mechanics.
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1. Introduction

The ideas and concepts of physics are well expressed in the language of mathematics. The language
of mathematics is improved from time to time to express new ideas. In the history of development of
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mathematics; complex algebra was developed from the real algebra, quaternion algebra was developed
from complex algebra, vector algebra was developed from quaternion algebra and vector algebra was the
basis for matrix algebra, tensor algebra and vector calculus. In 1880, Willard J Gibbs invented vector
algebra [1] building upon the work of Hamilton. Certain limitations of vector algebra were effectively
addressed in Clifford algebra by introducing a geometric product, a canonical composition of inner and
outer products. A cross product in vector algebra was replaced by a better product called outer product
which gives both rotation and the planar nature of the product. Clifford algebra or Geometric algebra is
more efficient than the matrix algebra because of the fact that the components of geometric algebra can
be expressed without introducing any arbitrary basis and turned out to be a superior mathematical tool
to express many of the physical concepts and proved to provide simpler and straightforward description
to the mathematical and physical problems. Clifford showed that the vector algebra is the subalgebra
of geometric algebra. However, for several decades the Clifford algebra was lost amongst the wealth of
vector algebra. Only much later, because of nature’s violation of parity symmetry, we make a distinction
between vectors and pseudovectors or axialvectors and between scalars and pseudoscalars which are
necessary for writing effective Hamiltonian for weak interaction. But the geometric algebra contains
bivectors and trivectors built into its foundations and these correspond directly to pseudovectors and
pseudoscalars. The Clifford algebra was rediscovered by Dirac in his relativistic theory of electron [2]
and introduced a complex operator γµ∂µ, where γ-matrices satisfy the anti-commutation relations. These
matrices have been thought of as an internal electron spin space. The geometric algebra was rediscovered
again by Hestenes [3–5] in the 1960s and it is being used by a growing number of physicists today.
A wider application of geometric algebra came into existence with the idea of Hestenes that the Dirac
matrices could be manipulated as vectors in spacetime algebra. In recent developments of mathematics,
Sobczyk [6] introduced unitary geometric algebra which deals with complex vectors.

The rotation in vector algebra has two serious problems. Firstly the physical quantities change
differently under space inversion, a reflection through a single chosen point. The displacements and
velocities are equal to negative of the corresponding noninverted quantities. Thus quantities like angular
velocity, torque remain same under space inversion. In vector algebra, this is handled with an ad-hoc
introduction of an axialvector. These are simply decreed to be vectors that do not change sign upon
space inversion of the corresponding physical systems. Secondly the cross product exists only in three
dimensions and in four dimensions the concept of a vector orthogonal to the plane defined by a pair
vectors is not unique. Thus rotations in four dimensional spacetime cannot be uniquely defined. Further,
in two dimensional mechanics to represent quantities like angular velocity in vector algebra, one must
somehow allow a vector perpendicular to a plane. Such limitations are simply removed by introducing
a bivector product. The standard tensor algebra has certain practical limitations like its inability to deal
with spinors. The tensor algebra is a coordinate based algebra and therefore so much of mathematical
labor is required for proving covariance of physical quantities. However, geometric algebra simplifies
and unifies mathematical methods in classical physics and non relativistic quantum mechanics.

The outer product was first introduced by Grassmann in 1880. To develop inner and outer products
in a systematic way, first consider a square of the sum of two vectors a and b. A sum of two vectors is
simply another vector and its square must be a scalar. This is expressed in the following manner.

(a + b)2 = a2 + b2 + (ab + ba) (1)
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As the term ab + ba must be a scalar, the symmetric product or scalar product is then defined as

a.b =
1

2
(ab + ba). (2)

In the above expression, we are assuming the symmetry of the product ab = ba or ab − ba = 0

or in other words the vectors a and b commute. In the general case the products ab and ba are not
equal. Most probably by ignoring this simple fact, over hundred years the existence of the so called the
Grassmann product is not reflected in the entire field of vector algebra. To find this product, let us take
the product of vectors (a− b) and (a + b).

(a− b)(a + b) = a2 − b2 + (ab− ba) (3)

Since the vectors (a − b) and (a + b) are not collinear, their product cannot be a scalar. From
Equation (3) we see that a2 − b2 is a scalar and (ab − ba) must represent a plane containing both the
vectors a and b. Now, we are in a position to define a new product

a ∧ b =
1

2
(ab− ba), (4)

where the symbol ∧ is pronounced as wedge. Thus the outer product can be obtained by introducing
an asymmetric product by taking ab = −ba or ab + ba = 0 or in other words the vectors a and b

anticommute. This product represents an oriented plane with magnitude. The product a ∧ b is called a
bivector and hence the outer product is also called a bivector product. Now, we write Equation (2) in the
following form

a.b =
1

2
(ab + ba) = ab− 1

2
(ab− ba) = ab− a ∧ b. (5)

Rearranging the above equation, we find the geometric product of two vectors a and b.

ab = a.b + a ∧ b. (6)

Thus the geometric product of two vectors is equal to a sum of scalar product and bivector product
of the corresponding vectors. Changing the order of vectors in a geometric product is called reversion
operation and it is denoted by the symbol over bar.

ab = ba (7)

ba = a.b− a ∧ b. (8)

The essential feature of a geometric product is that it is a sum of two different types of objects;
a scalar and a bivector. Further these products are symmetric and asymmetric components of the
geometric product. It can be seen that the bivector product is invariant under space inversion. Unlike in
vector algebra, in geometric algebra the quantities such as rotations and angular velocity are correctly
represented by bivectors because the bivectors are unchanged under space inversion. A single vector is
used to represent all the information to abstract from a single curve by approximating with very small
straight vectors. Similarly, a bivector physical surface can be represented by approximating with many
small bivectors. It is independent of all details of the path of the actual rotation. The bivetor in a way
represents a physical rotation that depends only on orientation of the plane of direct rotation from the
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initial to final attitude on the total magnitude of the direct rotation. A product of three orthogonal vectors
is called a trivector which represents an oriented volume in space. If a, b and c are three orthogonal
vectors, then the product of these vectors can be expressed as a scalar times a pseudoscalar, abc = iα.
The pseudoscalar is the product of three orthonormal unit vectors along a, b and c and represents a
unit oriented volume. Geometric algebra is a graded algebra. The scalar is a grade zero element and
we call it a 0-vector, a vector grade is one ( 1-vector), a bivector grade is two (2-vector) and in general
an element with grade k is called k-vector. Thus the geometric algebra includes scalar, vector, bivector
and other higher grade vectors. The elements of this algebra are called multivectors and form a linear
space. Thus the mathematics developed for geometric product can be viewed as geometric algebra. In
fact the geometric product can be defined in any dimensional space. The starting point for geometric
algebra is the real vector space from which the entire algebra will be generated. The space of elements
of geometric algebra or multivectors is linear over the real numbers. It means, if α and β are scalars and
A and B are multivectors then αA+βB is also a multivector and hence multivecotrs form a linear space.
Any multivector can be written as a sum of geometric products of vectors. An r-vector is a product of r
orthogonal vectors with grade r. A vector of grade r is even (odd) when its grade is even (odd). Thus
scalars and bivectors are of even grade and vectors and trivectors are of odd grade. The inner product of
vectors Ak of grade k and Bm of grade m is defined as

Ak.Bm =
1

2
[AkBm + (−1)|k−m|BmAk]. (9)

Similarly the outer product satisfies

Ak ∧Bm =
1

2
[AkBm − (−1)|k−m|BmAk]. (10)

Then the geometric product of vectors Ak of grade k and Bm of grade m is defined as

AkBm = Ak.Bm + Ak ∧Bm. (11)

Detailed account of geometric algebra was discussed in many books, particularly by Hestenes [7] and
Doran and Lasenby [8].

In this article, the imaginary vector introduced by Gibbs has been reformulated by replacing the unit
imaginary by pseudoscalar. Then the complex vector is defined as a sum of a vector and a bivector,
and found to be a natural extension of a vector. The complex vector is expressed as Z = a + i b.
The complex vector Z along with its conjugate Z̄ generate a complex vector space. The complexification
process in complex vector space allows the generation of higher n dimensional geometric algebra G(n)

from (n−1) dimensional algebra G(n−1) by considering the unit pseudoscalar identification with square
root of minus one. A quaternion can be defined from the set of basis bivectors and such quaternions form
four dimensional algebra. The spacetime algebra of four dimensional spacetime G(1, 3) can be generated
from the geometric algebra G(3) by considering a vector identification with square root of plus one.
A higer dimensional complex spacetime G(1, n+ 1) can be generated from G(1, n) by considering a unit
pseudoscalar of (n + 1) dimensions. The complex vector algebra and the generation of complex vector
space and spacetime are presented in Section 2.

It is well known that the elliptic harmonic motion can be better visualized in the complex vector
approach and complex vector methods can be easily incorporated into the electromagnetic theory. In a



Mathematics 2015, 3 785

finite transverse extent of an electromagnetic wave, the electromagnetic field lines are closed loops and
represent circulating energy flow in addition to the energy flow in the propagation direction. Considering
this view, we have expressed the photon energy as a multivector and explored the internal field rotations
or oscillations in the complex vector formalism. In the microcosm, particles are treated as oscillators
and hence their paths are blurred. The entire quantum mechanics was developed based on the fact
that the particles are associated with waves or their positions and momenta are not exactly determined.
The ineternal oscillatory behavior of particles has been found to be due to the presence of fluctuating
electromagnetic zeropoint field. In the complex vector space such oscillations of the particles are
considered as spatial local rotations and the angular momentum corresponding to these rotations is
the zeropoint angular momentum or particle spin. The particles are in general not considered as point
particles but with internal rotation as its structure. The superposition of internal rotation and translational
motion of a particle can be expressed in terms of complex vector representing the particle complex
position and complex momentum. The dynamics of a particle with extended structure and the particle
internal harmonic oscillator in the complex vector formalism are developed. Section 3 is devoted to
the applications of complex vector algebra in the electromagnetic theory and dynamics of the particles
with extended structure. A short account of the algebra of complex vectors and its applications in
electromagnetic theory and quantum mechanics is presented in the summary.

2. Algebra of Complex Vectors

The idea of complex vector has its origin in the formulation of elliptic harmonic motion was described
by Gibbs and he called these as imaginary vectors or bivectors [1]. An imaginary vector is defined as
a sum of two real vectors of which one has been multiplied by the imaginary scalar or unit imaginary
i =
√
−1. An imaginary vector A is then defined as

A = a + ib. (12)

Here, a and b are real vectors. From the above definition, Gibbs stated that the imaginary vector may
be regarded as an inevitable extension of a real vector. This form of complex vector has been widely used
as a Faraday bivector to represent electromagnetic fields, and to study polarization of the electromagnetic
field [9,10]. However, considering the property of pseudoscalar i2 = −1, we reformulate the imaginary
vector in geometric algebra by replacing the unit imaginary by pseudoscalar and the resulting complex
vector is defined as a sum of a vector and a bivector in three dimensions.

Z = a + i b (13)

The advantage of this definition of complex vector is that it gives additional geometric understanding
of orientation of plane of rotation in space. We define a complex scalar as a sum of a scalar and a trivector
and it can be expressed as z = α + i β which is analogous to a complex number. A reversion operation
on a complex vector changes the sign of bivector.

Z̄ = a− i b (14)



Mathematics 2015, 3 786

The complex vector Z̄ is known as complex conjugate of Z. Two complex vectors are equal when
their vector and bivector parts are equal. The inner product of two complex vectors Z = a + i b and
Y = c + i d can be expressed as

Z.Y = (a.c− b.d) + i (b.c + a.d) = α + i β. (15)

Thus the scalar product of two complex vectors is a complex scalar. The outer product of complex
vectors Z and Y is

Z ∧ Y = (a ∧ c− b ∧ d) + i (b ∧ c + a ∧ d). (16)

The term (a∧c−b∧d) is a bivector and the term i (b∧c+a∧d) is vector. Thus the bivector product
of two complex vectors is a complex vector. From the above two products one can see that the geometric
product of two complex vectors is a combination of a scalar, vector, bivector and trivector parts. Thus
the geometric product of two complex vectors is a multivector. The inner and outer products of complex
vectors are in general known as symmetric and asymmetric products respectively [11]. Multiplying a
complex vector by a complex scalar does not change the form of complex vector.

Zz = (a + i b)(α + i β) = (αa− βb) + i (αb + βa) (17)

If we express the complex scalar as a rotor, z = eiθ, then it can be seen that the multiplication
of a complex vector by a complex scalar rotates the complex vector in the plane ab by an angle θ.
Two complex vectors Z = a + i b and Y = c + i d are said to be perpendicular when the condition
a.c = 0 is satisfied and when they are parallel when the condition a∧ c = 0 is satisfied. The square of a
complex vector is a complex scalar.

Z2 = (a + i b)(a + i b) = a2 − b2 + 2i (a.b) (18)

Consider that the vectors a and b are orthogonal to each other then we have a.b = 0. In this case the
complex vector represents an oriented directional ellipse. The bivector i b represents an oriented plane
and the vector a lies in the plane of i b. The rotation in the plane i b is counterclockwise for the complex
vector Z = a + i b and clockwise for Z̄. Since the vectors a and b are orthogonal, the square of a
complex vector is a scalar.

Z2 = Z̄2 = a2 − b2 (19)

The product of a complex vector with its conjugate contains a scalar and a vector parts. The products
ZZ̄ and Z̄Z are written as

ZZ̄ = a2 + b2 − 2i (a ∧ b), (20)

Z̄Z = a2 + b2 + 2i (a ∧ b). (21)

Since, i is a pseudoscalar which commutes with all vectors in three dimensional space, the quantity
2i (a ∧ b) is a vector and it is normal to the orientation of the bivector a ∧ b. The scalar part is equal to
the scalar product of Z̄ and Z.

Z̄.Z =
1

2
(Z̄Z + ZZ̄) = a2 + b2 (22)

The vector part is equal to the bivector product of Z̄ and Z.

Z̄ ∧ Z =
1

2
(Z̄Z − ZZ̄) = 2i (a ∧ b) (23)
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In the case when the magnitudes of vectors a and b are equal, then the complex vector represents
an oriented directional circle. Then the square of complex vector is Z2 = Z̄2 = 0 and therefore in this
case the complex vector may be called complex null vector. In spacetime algebra, a complex vector is
defined as a combination of relative vector and spatial bivector. We shall study these complex vectors
in the next section. In n-dimensional space, one can define a complex vector as a sum of k-grade vector
and a product of pseudoscalar times another k-grade vector. A complex vector of k-grade is defined as

Ck = ak + inbk. (24)

The inner product of a vector d and a k-grade complex vector Ck is defined for odd k ≥ 1 as

d.Ck =

[
1

2
(d.Ck + C̄k.d)

]
k−1

, (25)

d.Ck+1 =

[
1

2
(d.Ck − C̄k.d)

]
k

. (26)

Similarly, the outer product of vector d and a k-grade complex vector Ck is defined for odd k ≥ 1 as

d ∧ Ck =

[
1

2
(d.Ck − C̄k.d)

]
k+1

, (27)

d ∧ Ck+1 =

[
1

2
(d.Ck + C̄k.d)

]
k+2

. (28)

Further, a detailed account of complex vectors including products of trivectors has been given by
Sobczyk [6].

2.1. Complex Vector Space

A short version of complex vector space has been developed by the author in the reference [12] and
a complete account of which is presented in this section. The complex vectors Z = a + i b and its
conjugate Z̄ = a − i b defined in the Equations (13) and (14) actually form a physical space when the
third direction is chosen normal to the plane containing the orthogonal vetors a and b. Let c = 2i (a∧b)

be a vector normal to both a and b. Now, the vectors a, b and c can be expressed in terms of Z and Z̄
complex vectors in the following form.

a =
Z + Z̄

2
(29)

b =
Z − Z̄

2i
(30)

c =
ZZ̄ − Z̄Z

2
(31)

If we choose a set of orthonormal right handed unit vectors {σk; k = 1, 2, 3} along the directions of
orthogonal vectors a, b and c respectively, then one can express the set of unit vectors {σk} in terms of
complex vectors Z and Z̄.

σ1 =
Z + Z̄

2a
(32)
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σ2 =
Z − Z̄

2ib
(33)

σ3 =
ZZ̄ − Z̄Z

4ab
(34)

From the scalar product Z.Z̄ the unit scalar can be expressed as

1 =
ZZ̄ + Z̄Z

2(a2 + b2)
. (35)

Here, a and b are magnitudes of the respective vectors and the magnitude |c| = 2ab. The algebra
of complex vectors Z and its conjugate Z̄ generates complex vector space. The basis elements {1,σk;
k = 1, 2, 3} form a closed complex four dimensional linear space. When the magnitudes of vectors a

and b are equal, the complex vectors Z and Z̄ represent complex null vectors and these are expressed as

Z = a(σ1 + iσ2), (36)

Z̄ = a(σ1 − iσ2). (37)

The complex null vectors represent local rotation in space and hence these are found to be important
entities in space. It will be shown in the later sections that the complex vectors Z and Z̄ are analogous
to the creation and annihilation operators in quantum mechanics. The physical space formed by the
complex null vectors is also analogous to the physical space formed by the creation and annihilation
operators. Such physical space from fermion creation and annihilation operators was introduced by
Baylis [13].

2.1.1. Geoemtric Algebra of One and Two Dimensions

The association of complex vector Z with its conjugate Z̄ generates a space in one dimension and
a unit vector σ1 along a line can be defined as in Equation (32). The set of elements {1,σ1} form
geometric algebra G(1) of one dimension and the number of elements are 21. The algebra G(1) does not
contain any pseudoscalar. Complexifying G(1) generates the geometric algebra in two dimensions G(2).

G(2) = G(1) + iG(1) (38)

The unit vector σ2 is defined in terms of complex vectors in Equation (33) and the product σ1σ2 = i

represents the pseudoscalar or unit bivector. The vector σ2 is now defined as σ2 = σ1i. The set of
elements {1,σ1,σ2, i} form geometric algebra G(2) of two dimensions and the number of elements
are 22. The pseudoscalar anticommutes with all vectors of the algebra, σ1i = −iσ1 and σ2i = −iσ2.
A reversion operation represented by an over bar on σ1σ2 changes its order (σ1σ2) = σ2σ1, therefore
ī = −i. A general multivector in G(2) can be expressed as a combination of scalar, vector and bivector.

M = α + d + i δ (39)

Here, α and δ are scalars and d is a vector. The even part of this multivector is a complex scalar and
odd part is a vector and the geometric algebra G(2) can be split into even and odd parts.

G(2) = G+(2) + G−(2) (40)
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A multivector in G(2) is then split into even and odd parts represented by

M+ = α + i δ, (41)

M− = d. (42)

Because of the property i2 = −1, the even multivectors in G+(2) are complex scalars and and
isomorphic to complex numbers. Then the even multivectors can be expressed in an exponential form
by setting α = ρ cos θ and δ = ρ sin θ.

M+ = ρ(cos θ + i sin θ) = ρei θ (43)

This is a rotor and the pseudoscalar is visualized as the generator of rotations in the bivector plane
σ1σ2. The product of two even multivectors gives another even multivector. Thus, G+(2) is closed under
multiplication and hence it forms subalgebra of G(2) and when ρ = 1, they form a group called rotation
group SO(2). The unit complex numbers form a group called unitary group U(1) which is isomorphic
to SO(2). A complex vector in G(2) can be defined as a combination of a vector and a bivector.

CV = d + i δ (44)

The square of complex vector C2
V = d2 − δ2. When, |d| = δ the complex vector is a null complex

vector. The product CV C̄V = d2 + δ2 + 2δid. Thus the product CV C̄V is a multivector in G(2).

2.1.2. Geometric Algebra of Euclidean Space

The unit vector σ3 is defined from a bivector product of complex vectors Z and Z̄ in Equation (34).
The pseudoscalar in Euclidean space can be defined as i = σ1σ2σ3. The geometric algebra G(3) can be
generated from the complexification of the two dimensional geometric algebra G(2) [11].

G(3) = G(2) + iG(2) (45)

The unit vector σ3 can also be defined as σ3 = iσ2σ1. The vectors {σk; k = 1, 2, 3} are basis
unit right handed orthonormal vectors in three dimensional space. The pseudoscalar i represents a unit
oriented volume. The square of a pseudoscalar is equal to minus one, i2 = −1. Multiplying vectors σk
by pseudoscalar form unit bivectors.

Bk = iσk = σiσj (i, j, k = 1, 2, 3) (46)

Each unit bivector represents an oriented plane and the bivectors {Bk; k = 1, 2, 3} form basis unit
right handed orthonormal bivector oriented planes in the Euclidian space. The square of a unit bivector
is equal to square root of minus one, B2

k = −1. Then the unit imaginary or root minus one can be defined
in two different ways by identifying either with pseudoscalar or unit bivector. Since the unit imaginary is
associated with some physical plane, the correspondence with unit bivector is of particular importance.
The product of all the basis bivectors is equal to positive unit scalar +1.

B1B2B3 = +1 (47)
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The set of elements {1,σk, Bk, i; k = 1, 2, 3} form geometric algebra G(3) of Euclidean space and
the number of elements are 23. The geometric center is defined as that it consists of those elements of the
algebra which commute with every element of the algebra [14]. As the pseudoscalar i commutes with
all the elements of the algebra, it is called the geometric center of the algebra. However, algebraically
the geometric center of G(3) is (1, i) [14]. A general multivector in three dimensions can be expressed
as a combination of scalar, vector, bivector and trivector parts

M = α + d + i g + i δ, (48)

where d and g are vectors, and α and δ are scalars and the last term i δ is a trivector. Depending on the
grade of elements, the geometric algebra can be expressed as a sum of even and odd parts.

G(3) = G+(3) + iG−(3) (49)

Then the multivector can be written as a sum of even and odd parts M = M+ +M−.

M+ = α + i g (50)

M− = d + i δ (51)

A product of two even multivectors gives another even multivector. Thus G+(3) is closed under
multiplication and hence it forms a subalgebra of G(3). In Equation (50), if we set α = ρ cos (θ/2), and
i g = Bρ sin (θ/2), with a unit bivector B along the orientation of i g, the even multivector M+ can be
expressed as

M+ = ρ exp (Bθ/2) = ρR. (52)

The magnitude or the norm of an even multivector is

|M+|2 = M+M̄+ = M̄+M+ = ρ2R̄R = ρ2RR̄ = ρ2. (53)

Thus we have |M+| = ρ and R̄R = RR̄ = 1. When ρ = 1, the magnitude of an even multivector
equals one and they form a rotation group SO(3). A vector x can be rotated by an angle θ in a plane B
by using the following transformation.

x′ = RxR̄ (54)

If we replace the rotor R by the even multivector we have

x′ = M+xM̄+ = ρ2RxR̄. (55)

Therefore, the even multivector represents rotation followed by dilation. In particular the rotor in
the plane σ1σ2 takes the form R3 = exp(−B3θ/2). The even subalgebra G(3) is also known as
spinor algebra, because it represents rotation followed by dilation and the geometric product of any
two vectors, sum of a scalar and a bivector, in Euclidian space has an improved interpretation as
a spinor. The algebra of spinors was invented by Hamilton and he called the algebra by the name
quaternion algebra. A quaternion is in general known as a spinor because of its similarity with geometric
product [15]. The even subalgebra is not commutative and it is isomorphic to quaternion algebra. If we
represent the rotor by R, any vector can be rotated by the transformation ek = RσkR̄ such that the
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rotor satisfies the condition RR̄ = 1 . Then the rotor R is an element of spin group which is a twofold
covering group of the rotation group SO(3) and the spin group has an isomorphic image, in the matrix
formulation of Pauli matrices, the special unitary group SU(2). The spinor algebra is very much useful
for the formulation of Dirac theory and rigid body dynamics in classical mechanics. However, it can be
verified that the odd part M− is not a subalgebra of G(3). In geometric algebra G(3), a multivector can
also be expressed as a sum of complex scalar and a complex vector parts M = CS +CV and the physical
interpretation of the structure is completely related to the pseudoscalar. The combination of scalar and
trivector is called a complex scalar CS and the combination of vector and bivector is called a complex
vector CV .

CS = α + i δ (56)

CV = d + i g (57)

In a complex scalar, the pseudoscalar replaces the function of unit imaginary such that CS has
correspondence with normal complex numbers. The product of two complex scalars form another
complex scalar, the algebra is closed under multiplication and forms a subalgebra of G(3). The geometric
product of two complex vectors is a multivector. Thus the complex vector algebra is not closed and does
not form subalgebra of geometric algebra G(3). From the complex null vector, we define a unit complex
null vector in the form

Dk =
1

2
(σi + iσj), (58)

D̄k =
1

2
(σi − iσj). (59)

These unit complex null vectors satisfy the property D2
k = D̄2

k = 0 and the products

DkD̄k =
1

2
(1 + σk), (60)

D̄kDk =
1

2
(1− σk). (61)

Thus these products are identified with self annihilating idempotents of the algebra. In particular,
the products D3D̄3 and D̄3D3 correspond to the spinors J+ and J− respectively and defined as

J+ =
1

2
(1 + σ3), (62)

J− =
1

2
(1− σ3). (63)

The idempotents J+ and J− satisfy the following relations.

J±J± = J±; J+J− = J−J+ = 0 (64)

One can easily find that these idempotents swallow the unit vector σ3 when multiplied.

σ3J± = λJ± (65)

Thus the unit vector σ3 acts as an operator to yield the eigen values λ = ±1. In conventional
quantum mechanics these idempotents corresponds to the helicity states. Similarly one can easily verify
the following relations.

σ1J± = J∓σ1 (66)
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σ2J± = J∓σ2 (67)

Another important relations connected with idempotents is obtained by multiplying them by B2

and B1.
−B2J+ = σ1J+ = J−σ1 and B2J− = σ1J− = J+σ1 (68)

B1J+ = σ2J+ = J−σ2 and −B1J− = σ2J− = J+σ2 (69)

These relations are specifically used in the correspondence of spinor form of wavefunction.
Geometrically one can visualize null complex vectors as points in space with zero magnitude, the scalars
represent the magnitude of geometric elements. Normally the points are considered as scalars in
geometric algebra [16]. However, it is more appropriate to treat scalars as the objects of magnitude as
in conventional vector algebra. The vectors as usual are oriented line segments, the bivectors represent
oriented planes and pseudoscalar represents an oriented unit volume in space.

2.1.3. Generation of Higher Dimensional Space

The four dimentional space can be generated from G(3) by defining i4 = σ1σ2σ3σ4 and the vector
σ4 = i4i. The geometric algebra of four dimensional space can be expressed as

G(4) = G(3) + i4 G(3). (70)

The set of elements {1,σi,σiσj,σiσjσk, i4; i, j, k = 1, 2, 3, 4} form geometric algebra G(4) of
four space dimensions and the number of elements are 24. The vectors of n-dimensional vector space
generate geometric algebra G(n). The geometric algebra of higher dimensional space can be generated
in a similar manner as above by defining a pseudoscalar.

G(n) = G(n− 1) + in G(n− 1) (71)

The geometric algebra G(n) of n-dimensions contains a total number of elements 2n. A general
multivector in n-dimensional space can be expressed as

M = a0 + a1 + a2 + a3 + · · ·+ an, (72)

where the subscript represents the grade of a vector. The geometric algebra G(n) can be split into even
and odd parts.

G(n) = G+(n) + G−(n) (73)

Employing the procedure as above, the even multivectors of geoemetric algebra G(n) can be shown
to represent rotations and dilations of n-dimensional vector space.

2.1.4. Quaternion Algebra

Since the basis bivectors of Euclidean space follow the same rules as those of unit imaginaries of
quaternion algebra, a quaternion can be defined from the basis bivectors and such quaternions form four
dimensional algebra with the basis {1, Bk; k = 1, 2, 3}. A quaternion in geometric algebra is an even
multivector and can be expressed in the form

Q = q0 + qkBk, (74)
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where qµ(µ = 0, 1, 2, 3) are real numbers and a summation convention on repeated indices is considered.
A reversion operation on Q changes the sign of bivectors.

Q̄ = q0 − qkBk (75)

And the product
Q̄Q = (q2

0 + q2
1 + q2

2 + q2
3) = ρ2. (76)

If we set q2
0 = dx2

0 = −c2dt2 and q2
k = dx2

k , then the quaternion represents invariant length
in spacetime.

Q̄Q = dx2
k − c2dt2 = ds2 = −c2dτ 2 (77)

The proper length identified from the generalization of quaternion is in fact a two dimensional
representation of Poincare group. The product of two quaternions Q = q0 − qkBk and P = p0 − pkBk

can be expressed as
Q̄P = α0 + αkBk. (78)

Thus the quaternions satisfy the multiplication rule and hence form subalgebra of geometric algebra.
A quaternion can be normalized by choosing its length equal to one. Then a normalized quaternion
represents spatial rotation.

Q = cos
θ

2
+ (a1B1 + a2B2 + a3B3) sin

θ

2
= e−Bθ/2 (79)

Thus a normalized quaternion represents a rotor and satisfy the relation QQ̄ = 1. In Equation (79),
B = akBk is a bivector. A rotation transformation of a vector x in the plane B by an angle α is
represented by

x′ = QxQ̄. (80)

The transformation represents the counterclockwise rotation in the bivector plane B. The rotations in
three dimensional space form the group representation SO(3). In general, the same rotation in SO(3) is
represented by two unit quaternionsQ and−Q becauseQxQ̄ = (−Q)x(−Q̄). Therefore the quaternions
realize a double covering, i.e., 2:1 mapping of ordinary rotations. In other words the sphere of unit
quaternions is a twofold covering group SO(3) and hence the unit quaternions represent special unitary
group SU(2). A quaternion can also be expressed in a spinorial form.

Q = (q0 − q3B3)−B2(q2 − q1B3) (81)

The even multivectors in the brackets of above Equation (81) can be parameterized in the form
of rotors.

q0 − q3B3 = ρ1R1 (82)

q2 − q1B3 = ρ2R2 (83)

The quaternion Q is now written as

Q = ρ1R1 −B2ρ2R2 (84)
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This form of quaternion is called a spinor. In the Pauli two component spinning electron theory,
one considers the column matrices or the spinors. The rotors R1 and R2 represent rotations in the B3

plane. Without loss of generality, the rotors in Equation (84) can be replaced by a single rotor R in the
spin plane B3 with the condition that ρ1 and ρ2 are complex. This does not change the spinorial form of
the quaternion.

Q = (ρ1 −B2ρ2)R (85)

The above analysis gives a complimentary description of the spin wave function for fermions, like
electrons and quarks, with the half angle rotor form satisfying the well known 4π symmetry of the
particles. The physical interpretation of the wave function requires normalization and can be achieved
by redefining the quaternion as unitary and Equation (85) furnishes a most general two component spinor.

2.2. Spacetime Algebra

The complexification process in the complex space considered above, the geometric algebra G(3) is
generated from G(2) and G(2) from G(1) by considering unit pseudoscalar identification with square root
of minus one. The spacetime algebra of four dimensional space can be generated from the geometric
algebra by considering square root of plus one with the identification of vector σ0 =

√
+1 or σ2

0 = +1.
The unit vector σ0 is identified with the unit vector along the future light cone. The set of othonormal
right handed unit vectors {γµ;µ = 0, 1, 2, 3} form Minkowski spacetime.

γ2
0 = 1 and γ2

k = σkγ0σkγ0 = −1 (86)

Normally, the vector σ0 is denoted by γ0 in spacetime. The vectors γµ are in general known as
covariant vectors. The contravariant vectors are expressed in the form

γ0 = γ0 and γk = γk
−1 = −γk. (87)

The set of unit vectors γµ satisfy anticommutation relations

γµγν + γνγµ = 2ηµν , (88)

where ηµν is the flat spacetime metric with signature (1,−1,−1,−1). It is well known that such
anticommutation relations are satisfied by Dirac gamma matrices in relativistic quantum mechanics.
Therefore the vectors γµ are isomorphic to Dirac gamma matrices. The unit vector σ0 is identified with
the unit vector along the future light cone and hence the vectors σ0 and γ0 are equal. The set of basis
vectors {σk} forms algebra for rest frame relative to the time like vector γ0 and the vectors σk are
interpreted as relative vectors.

σk = γkγ0 (89)

The set of relative vectors {σk} form a subalgebra of spacetime algebra. The products of these relative
vectors represent spatial bivectors γiγj in spacetime.

Bk = iσk = σiσj = γjγi (90)
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Thus σk in spacetime represent relative vector planes and iσk are purely spatial bivector planes.
The productB1B2B3 = +1 represents three dimensional hyperplane in spacetime. The unit pseudoscalar
I in spacetime is a product of vectors γ0γ1γ2γ3 and it is related to i by the equation

i = σ1σ2σ3 = γ0γ1γ2γ3 = I. (91)

The pseudoscalar I is a 4-vector and represents relative oriented volume in spacetime. The
spacetime algebra is generated from G(3) by considering a space relative to the unit vector γ0 but not
by complexification.

G(1, 3) = G(3) + γ0 G(3) (92)

Here, we introduced the square root of +1 to achieve the four dimensional spacetime generated from
G(3). The set of elements {1, γµ, γµγν , γµ I, I} form the geometric algebra of spacetime known as
spacetime algebra developed by Hestenes [5]. The number of elements in this algebra is 24 = 16.
A general element in the algebra G(1, 3) is represented by a multivector

M = α + d+ F + gI + Iδ, (93)

where α and δ are scalars, d and g are spacetime vectors and F = c + i d is a complex vector and the
last term Iδ is a four-vector. The spacetime vectors can be decomposed by a spacetime split. For any
spacetime vector p we use

p = pµγµ = p0γ0 − pkγk. (94)

And multiplying by γ0 gives the so called spacetime split through the products

pγ0 = p0 − pkσk = p0 − p, (95)

γ0p = p0 + pkσk = p0 + p, (96)

p2 = pγ0γ0p = p2
0 + p2. (97)

The vector p is said to be time-like, space-like and light-like when p2 > 0, p2 < 0 and p2 = 0

respectively. In the case if the spacetime vector p represents the proper momentum vector, then
Equation (95) represents the spacetime split with energy p0 and momentum p. Using the decomposition
of a spacetime vector, the scalar product of spacetime vectors p and q can be expressed as

p.q = pγ0γ0q = (p0 − p).(q0 + q) = p0.q0 − p.q. (98)

This is the required scalar product in the spacetime. The complex vector F in spacetime is a
combination of a relative vector and a spatial bivector and these are elements of subalgebra of spacetime
algebra. Therefore, F is called a complex vector in spacetime. A reversion operation on complex vector
gives negative sign before both relative vector and spatial bivector.

F̄ = −c− i d (99)

The vector γ0 anticommutes with relative vectors and on the other hand it commutes with spatial
bivectors. That is γ0σkγ0 = −σk and γ0iσkγ0 = iσk. Multiplying F̄ on both sides by γ0 gives an
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operation known as relative reversion which is similar to the Hermitian operation in Dirac algebra and
hence relative reversion is denoted by a dagger as super script. Relative reversion changes the sign of
spatial bivectors but not the relative vectors.

F † = γ0F̄ γ0 = c− i d (100)

The relative vector and spatial bivector parts of a complex vector in spacetime are known as
commuting and anticommuting parts with respect to γ0 and these are expressed in the following form.

c =
1

2
(F + F †) (101)

i d =
1

2
(F − F †) (102)

Thus the complex vectors in spacetime can be decomposed by spacetime split into relative vectors
and spatial bivectors and this is a γ0 dependent operation. A unit complex vector Dk in spacetime is a
combination of unit relative vector and a unit spatial bivector.

Dk =
1

2
(σi + iσj) (103)

The operation of relative reversion on Dk gives

D†k = γ0D̄kγ0 =
1

2
(σi − iσj). (104)

The unit bivectors σi and iσj are commuting and anti commuting parts of complex vector Dk

with respect to the vector γ0. The product of unit complex vector with its Hermitian conjugate gives
the idempotents.

DkD
†
k =

1

2
(1 + σk). (105)

D†kDk =
1

2
(1− σk). (106)

These products are similar to the products in Equations (60) and (61) except for the relative vector
nature of σk. The unit trivectors are obtained by multiplying the pseudoscalr and the spacetime
vectors γµ.

d0 = γ0i = γ1γ2γ3 and dk = γki = γ0γiγj (107)

d2
0 = +1 and d2

k = −1 (108)

The trivector d0 is purely spatial and represents a three dimensional volume in spacetime and the
trivectors dk may be called as relative bivectors just like relative vectors. Depending on the grade of
elements, the spacetime algebra can be split into even and odd parts.

G(1, 3) = G+(1, 3) + G−(1, 3) (109)

Then the multivectors in spacetime can be decomposed into even part and odd part, M = M+ +M−.

M+ = α + F + Iδ (110)
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M− = d+ gI (111)

Even multivectors can be represented as a product of complex scalar and a quaternion.

M+ = (α + Iδ)(q0 − qkBk) = CSQ (112)

After parameterization, an even multivector can be expressed as

M+ = ρ1/2ei ε/2R. (113)

Further, multiplying an even multivectorM+ by a boost L = e−v̂φ/2 does not change its form. Where,
v̂ is the unit relative velocity vector and φ is the rapidity factor.

M
′+ = LM+ (114)

This is the representation of a spinor and along with Lorentz boost we express the even multivector
as [17]

ψ = ρ1/2ei ε/2LR = ρ1/2ei ε/2Λ, (115)

where Λ = LR represents Lorentz boost followed by rotation or simply Lorentz rotation and the spinor
ψ is called the Hestenes spinor. The Lorentz rotor satisfies the relation ΛΛ̄ = 1 and the set of all rotors
form spin group of spacetime. The angle ε is known as the Takabayasi-Hestens angle and gives a better
interpretation for the passage of electron to positron.

2.2.1. Three Dimensional Spacetime

The space spanned by the unit vectors σ1 and σ2 is a flat space. Considering a unit vector γ0 normal
to the flat space forms a three dimensional spacetime. The idea of flat spacetime or spacetime in
three dimensions was indeed introduced recently by Chappel et al. [18]. However, they considered
the pseudoscalar i = σ1σ2 as a vector normal to the flat space instead of introducing a unit vector
whose square root is equal to +1. This method has some added advantage which can be examined
below. The three dimensional spacetime can be generated from G(2) by considering a relative space
with respect to the unit vector γ0 along the direction of future light cone.

G(1, 2) = G(2) + γ0G(2) (116)

The set of othonormal right handed unit vectors {γµ;µ = 0, 1, 2} form three dimensional spacetime.
As usual we define spacetime vectors as

γ1 = σ1γ0 ; γ2 = σ2γ0. (117)

γ2
0 = 1 ; γ2

k = σkγ0σkγ0 = −1 (118)

The set of basis vectors {σk; k = 1, 2} form algebra for rest frame relative to the time like vector γ0

and the vectors σk are interpreted as relative vectors. The products of these relative vectors represent
spatial bivector γ2γ1.

B = σ1σ2 = γ2γ1 (119)
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The unit pseudoscalar I3 is a three vector and defined as

I3 = γ0γ1γ2. (120)

And the square of pseudoscalar is equal to minus one.

I2
3 = γ0γ1γ2γ0γ1γ2 = −1 (121)

The pseudoscalar I3 commutes with all elements of the three dimensional spacetime and hence it
is the geometric center of the algebra. The set of elements {1, γ0, γk, γkγ0, B, I3} form the geometric
algebra of three dimensional spacetime. The number of elements in this algebra is 23 = 8. A general
element in the algebra G(1, 2) is represented by a multivector

M = α + d+ g + βB + I3δ, (122)

where, α, β and δ are scalars, d spacetime vector, g relative bivector, B spatial unit bivector and the last
term I3δ is a trivector. The three dimensional spacetime can also be split into even and odd parts.

G(1, 2) = G+(1, 2) + G−(1, 2) (123)

Now, the multivectors can be decomposed into even and odd parts.

M+ = α + g + βB (124)

M− = d+ I3δ (125)

The odd multivectors are similar to complex numbers because of the property I2
3 = −1. Since

B2 = −1, the complex scalar in three dimensional spacetime may also be defined as a sum of a scalar
and a bivector just like in G(2).

CS = α + βB (126)

This complex scalar represents spatial rotations in a plane and as usual unit bivector B is a generator
of rotations in the planar space. A complex vector in three dimensional spacetime is defined as a sum of
relative vector and a spatial bivector.

CV = g + βB (127)

In this algebra, the spacetime events can be described by a complex vector written in the
following form.

TV = x + T (128)

Here, T is a bivector time defined as T = γ2γ1ct. Thus time is treated as a plane in the local
planar space. The geometrical concept of proper time as a plane defined by the angular momentum
has been considered recently by Machicote [19]. The idea of proper time as a rotational entity or a
bivector contradicts the steady flow of time. However, recent experiments use the rotating electric field
in circularly polarized light as an ottosecond clock to probe atomic processes [20]. Such that proper time
may be treated as plane of rotation. In the rest frame of the particle dτ = dt. Taking reversion of the
complex vector gives

T̄V = −(x + T ). (129)
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Since, xT = −Tx one can find the product

TV T̄V = c2t2 − x2. (130)

Identifying the product TV T̄V = c2τ 2, the metric in the three dimensional spacetime can be obtained.

c2τ 2 = c2t2 − x2 (131)

This is exactly the required form of the Minkowski metric and the method is quite straight forward.
Taking the differential of complex vector TV , dTV = dx+cdT , the spacetime interval can be expressed as

c2dτ 2 = c2dt2 − dx2. (132)

The proper velocity complex bivector in three dimensional spacetime is defined as

U = γ(v + cB). (133)

Taking a reversion operation on U and finding the product UŪ gives

u2 = UŪ = c2, (134)

where γ is the Lorenz factor and u is the proper velocity vector. The product of proper velocity complex
vector with mass of the particle gives the proper momentum complex vector.

P = mU = p+
E

c
B (135)

p2 = PP̄ =
E2

c2
− p2 = m2c2 (136)

The even mulitivectors in three dimensional spacetime may be expressed to represent Lorentz
transformations in three dimensional spacetime. Now, we express the even multivector in the
following form

M+ = a0 − a1σ1 − a2σ2 − a3B. (137)

Here, ak are scalars. To write this in an exponential form to represent both boost and rotation in
three dimensional spacetime, we introduce the condition (a2

0 + a2
3) − (a2

1 + a2
2) = 1 and then allow the

following parameterization.

a0 = cosh (φ/2) cos (θ/2)

a1 = v1
|v| sinh (φ/2) cos (θ/2)− v2

|v| sinh (φ/2) sin (θ/2)

a2 = v1
|v| sinh (φ/2) cos (θ/2) + v2

|v| sinh (φ/2) sin (θ/2)

a3 = cosh (φ/2) sin (θ/2)

In these equations, v = v1σ1 + v2σ2 is the relative velocity vector, φ the rapidity factor and θ is the
angle of rotation in the spatial plane B. The even multivector is then expressed as

M+ = ev̂φ/2e−Bθ/2 = LR = Λ, (138)
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where, v̂ is the unit vector along velocity vector v, L represents the boost and R is the rotor in the
bivector plane B. Thus, an even multivector M+ represents the Lorentz rotation in three dimensional
spacetime. A general Lorentz transformation of a vector v is then expressed as

x′ = ΛxΛ̄. (139)

Thus, the three dimensional spacetime gives a natural alternative to Minkowskii spacetime.

2.2.2. Two Dimensional Spacetime

Further reduction of space dimension gives two dimensional space time. Considering a unit vector γ0

normal to the space vectorσ1, the two dimensional spacetime can be generated from G(1) by considering
a relative space with respect to the unit vector γ0 .

G(1, 1) = G(1) + γ0G(1) (140)

As usual we define spacetime vectors as

γ1 = σ1γ0, γ2
0 = 1 and γ2

1 = σ1γ0σ1γ0 = −1 (141)

The vectors σ1 is interpreted as relative vector σ1 = γ1γ0. The set of elements {1, γ0, γ1, γ1γ0} form
the geometric algebra of two dimensional spacetime. The number of elements in this algebra is 22 = 4.
A general element in the algebra G(1, 1) is represented by a multivector

M = α + d+ g, (142)

where α is a scalar, d spacetime vector and g relative vector. Multivectors can be decomposed into even
part and odd part.

M+ = α + g and M− = d (143)

The odd multivector contains only one element. Multivector of even grade is a combination of a
scalar and a relative vector. The spacetime events can be described by the even multivector written in the
following form.

T = ct+ x (144)

Here, ct is a scalar, x = σ1x and T is the relative vector. One can find the product

T̄ T = (ct− x)(ct+ x) = c2t2 − x2. (145)

Identifying the product T̄ T = c2τ 2, the metric in the two dimensional spacetime is obtained.

c2τ 2 = c2t2 − x2 (146)

Thus obtained metric is quite useful in the geometric representation of spacetime, where one space
axis is considered and the other dimensions are suppressed.
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2.2.3. Paravector Space

The unit positive scalar in Equations (35) and (47) may geometrically be represented by a hyper
surface in four dimensional space. Thus the fourth dimension time may be purely obtained from the
scalar product of complex vectors or from the product of basis bivectors and can be represented by a
vector σ0 = 1. This identification cuts the geometric algebra G(3) into half such that the set of elements
{σµ;µ = 0, 1, 2, 3} represent the four dimentional physical space [21] if its natural complex structure is
recognized. The canonical element i squares to minus one and commutes with all other elements and its
function is exactly similar to the unit imaginary and hence it may be identified with the field of complex
numbers. In such a complex structure, every element can be expressed as a complex linear combination
of basis elements {σµ}. The geometric algebra generated by real three dimensional Euclidean space thus
operates in a complex four dimensional vector space which contains both the complex field and three
dimensional space as subspace. A general element p in complex structure of Cl3 is called as a paravector
and equal to the sum of a scalar p0 and a vector p.

p = p0 + p (147)

Since the product of a complex vector with its conjugate is equal to the sum of a scalar and a vector,
a paravector can also be defined from the product of a complex vector with its conjugate. The spatial
reversal of a paravector p reverses the sign of vector part.

p∗ = p0 − p (148)

The paravector p∗ is also known as Clifford conjugate of p. Then the product

pp∗ = p2
0 − p2. (149)

If p0 and p represent the components of four momentum, the paravector p then represents proper
momentum. The paravector can be expressed in terms of basis elements as

p = pµσµ (150)

The paravector space provides the required representation for four dimensional spacetime only with
the consideration of some additional set of rules.

2.2.4. Generation of Higher Dimensional Complex Spacetime

The method followed in the generation of G(3) can be extended in the same manner to generate
higher space dimensions. Higher dimensional spacetime can be generated from spacetime by defining
pseudoscalar I4 with additional spatial vector γ4.

I4 = γ0γ1γ2γ3γ4 (151)

Then we have γ4 = II4 and γ2
4 = −1. The set of unit orthonormal vectors{γµ;µ = 0, 1, 2, 3, 4} form

a five dimensional spacetime. The pseudoscalar squares to plus one, I2
4 = +1. The geometric algebra
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G(1, 4) with its geometric centre I4 contains 25 = 32 number of elements and can be represented by
the equation

G(1, 4) = G(1, 3) + I4G(1, 3). (152)

And in general this is expressed as

G(1, n+ 1) = G(1, n) + In+1G(1, n). (153)

Thus the geometric algebra of higher dimensional space is generated from the identification of the
corresponding pseudoscalar to the square root of minus one in the case of odd spatial dimensions and to
the square root of plus one in the case of even spatial dimensions (n > 2) which gives the underlying
complex nature of the algebra.

2.2.5. Matrix Representation

The basis vectors {σk; k = 1, 2, 3} in G(3) satisfy the following commutation rules.

[σi,σj] = 2δij + 2εijkσk (154)

The set of Lie bracket commutation relations in the Equation (154) is a local expression for group
multiplication law. The coefficients εijk are called structure coefficients of the Lie algebra and δij are
neutral elements and the factor 2 represents the 2 : 1 homomorphism between SU(2) and O(3) groups.
It is well known fact that the basis vectors are isomorphic to Pauli matrices in general.

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0

0 −1

)
(155)

Thus the basis vectors play the role of spin operators and at the same time these represent the Pauli
matrices without any ambiguity as normally encountered in quantum physics. The basis bivectors
{Bk; k = 1, 2, 3} in G(3) satisfy the commutation relations given by

[Bi, Bj] = −2δij + 2εijkBk. (156)

It is trivial to see that the basis bivectors are isomorphic to the matrices of the type

B1 = iσ1 =

(
0 i

i 0

)
; B2 = iσ2 =

(
0 1

−1 0

)
; B3 = iσ3 =

(
i 0

0 −i

)
. (157)

Thus these matrices form a basis for the algebra of SU(2) group. Any arbitrary complex vector
in G(3) is then be represented in matrix form using Equations (155) and (157). The complex vector
CV = a + i b can be represented in the matrix form as

CV =

(
a3 + ib3 (a1 + b2)− i(a2 − b1)

(a1 − b2) + i(a2 + b1) −(a3 + ib3)

)
. (158)

If we choose the vectors a and b along σ1and σ2, the above matrix representation is simplified.

CV =

(
0 a+ b

a− b 0

)
(159)
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The unit complex vector D3 = (1/2)(σ1 + iσ2) and its conjugate D̄3 are now expressed in the matrix
form as

D3 =

(
0 1

0 0

)
; D̄3 =

(
0 0

1 0

)
. (160)

With this correspondence the idempotents J+ and J− can be represented as a basis column spinors.

J+ =
1

2
(1 + σ3) =

(
1

0

)
(161)

J− =
1

2
(1− σ3) =

(
0

1

)
(162)

Sometimes, it is quite useful to identify the following correspondence for idempotents. When
multiplied with a unit matrix the idempotents do not change.

1.J± = J± (163)

The matrix form of −B2 multiplied with the idempotents gives the following relations.

−B2J+ =

(
0 −1

1 0

)(
1

0

)
=

(
0

1

)
(164)

−B2J− =

(
0 −1

1 0

)(
0

1

)
= −

(
1

0

)
(165)

In view of the above relations, the idempotents can also be represented in the following form [8].

1→

(
1

0

)
; −B2 →

(
0

1

)
(166)

Since, the basis bivectors are having one to one correspondence with the unit imaginaries of the
Hamilton quaternion algebra, a quaternion Q can be represented by a matrix

Q =

(
q0 − iq3 −q2 − iq1

q2 − iq1 q0 + iq3

)
. (167)

For a unit quaternion this matrix is unitary as well as unimodular, that is the determinant of Q equals
one. The four components of a unit quaternion matrix are called Caley-Klein parameters and in this
context the unit quaternions form the group SU(2). The spinor form of the quaternionQ = (ρ1−B2ρ2)R

can be expressed as a column matrix by identifying 1 and −B2 as basis column spinors.

Q =

(
ρ1R

ρ2R

)
(168)

The spacetime vectors {γµ} in G(1, 3) satisfy the anti-commutation relations given by the
Equation (88). In the Dirac-Pauli representation the spacetime vectors are represented in the matrix
form as

γ0 =

(
1 0

0 −1

)
; γk =

(
0 σk

−σk 0

)
, (169)

where 1 is the 2 × 2 unit matrix. It should be noted that the matrix representation of complex vectors
does not contain any geometrical interpretation and may be useful to compare with matrix algebra.
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3. Applications of Complex Vector Algebra

For historical reasons we shall start our applications of complex vectors with the elliptic harmonic
motion. It is well known that the complex vector algebra can be incorporated into several applications in
the theory of electromagnetism, particularly in the propagation of electromagnetic waves. We introduce
here, the photon energy multivector and photon oscillator in complex vector space. A general view of
space is that it is empty and featureless. However, it is actually filled with fluctuating electromagnetic
zeropoint field. Such field causes the particle to oscillate. Because of these oscillations particles in
their motion deviate from their mean path. The internal oscillatory and translation motion of particles
can be expressed by complex vectors. We shall discuss the elementary particle dynamics at length in
this section.

3.1. Elliptic Harmonic Motion

The harmonic motion can be defined by an equation

ẍ− ω2x = 0. (170)

Here, ω is the frequency of oscillation and an over dot denotes the time derivative. Let ξ be the
displacement of the oscillating point at a position x. A general solution of the above equation represents
a wave of elliptic harmonic motion advancing in the direction of wave vector k and is giveny by

ξ = a cos (k.x− ωt)− b sin (k.x− ωt). (171)

The velocity of the displaced point at any given moment is

u = ξ̇ = ω[a sin (k.x− ωt) + b cos (k.x− ωt)]. (172)

A complex vector is defined from the Equations (171) and (172) as

C = ξ + i uω−1 = (a + i b)ei(k.x−ωt). (173)

Thus any undamped elliptic harmonic wave may be represented by a product of a complex vector and
an exponential factor. The harmonic vibrations takes place in the plane of the bivector i b and the wave
advances in the direction of k. Thus the complex vector in this case represents a train of plane waves of
elliptic harmonic motion.

3.2. Electromagnetic Theory

In the electromagnetic theory, we study the propagation of electromagnetic waves in the realm of
Maxwell’s equations. The electromagnetic field in vacuum is determined by a set of four Maxwell’s
equations. In the complex vector formalism in three dimensional space, we express the electric field
as a vector E and the magnetic field as a bivector i B and in this notation the Maxwell’s equations are
expressed in the following form.

∇∧ E = −1

c

di B

dt
; ∇∧ (i B) = 0; ∇.E = 0; ∇.(i B) = −1

c

dE

dt
(174)
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Here, the identities ∇ ∧ (i B) = i (∇.B) and ∇.(i B) = i (∇ ∧ B) are used and these dualities of
inner and outer products can be found from Equations (9) and (10). These equations can be combined
into a simple and single equation by expressing the the electromagnetic field F as a complex vector.

F =
1

2
(E + i B) (175)

Now, the set of Maxwell’s equations are written in a single equation.(
1

c

d

dt
+∇

)
F = 0 (176)

Multiplying the above equation by the operator
(

1
c
d
dt
−∇

)
gives the d’Alembert equation or the wave

equation of the electromagnetic field
∂2F = 0, (177)

where the operator ∂2 = 1
c2

( d
2

dt2
−∇2) is the d’Alembertian operator. The product F̄F is now written as

F̄F =
1

4
(E2 + B2) +

1

2
i (E ∧B). (178)

Similarly, we find

FF̄ =
1

4
(E2 + B2)− 1

2
i (E ∧B). (179)

The energy density of electromagnetic field can be obtained from the scalar product

2F̄ .F =
1

2
(E2 + B2). (180)

The energy of electromagnetic field per unit volume is then expressed as

W =
1

4π

∫
d3r(FF̄ + F̄F ). (181)

The product F̄ ∧ F gives a vector of the form

2F̄ ∧ F = i (E ∧B). (182)

The energy flux per unit volume is expressed as

S =
c

4π

∫
d3r(F̄F − FF̄ ), (183)

where c is the magnitude of velocity of the electromagnetic wave. In the case of monochromatic waves,
the electromagnetic fields are periodic functions of time. The solution of the d’Alembert equation,
specifically for electric field can be expressed as

E = E0e
i(k.r−ωt+α). (184)

In this equation the quantity E0 is a complex vector [22] and it can be expressed as E0 = a+ i b with
a and b real vectors satisfying the orthogonality condition a.b = 0. We choose the vector a along x-axis
and b along y-axis such that the wave will be propagating along z-direction and then

E = (a + i b)[cos (k.r− ωt+ α) + i sin (k.r− ωt+ α)]. (185)
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Comparing the vector parts, we find the components of electric field vector along x and y directions.

Ex = a cos (k.r− ωt+ α) (186)

Ey = −b sin (k.r− ωt+ α) (187)

Thus we see that the electric field vector rotates in an elliptic plane normal to the direction of
propagation of the wave and the electromagnetic wave is said to be elliptically polarized. The rotation
is counterclockwise for E0 = a + i b and clockwise for Ē0 = a − i b. In the case a2 = b2, the electric
field vector rotates in a circular plane normal to the direction of propagation of the wave and the wave
is said to be circularly polarized. The electric field vector can be expressed in terms of unit complex
vector Dk = 1√

2
(σi + iσj).

E = aDke
(k.r−ωt+α) (188)

The complex vectors Dk then describe a general state of polarization [23]. In the case either a or b
equals zero, the wave is said to be linearly or plane polarized.

In the presence of sources, electromagnetic fields interact with charges and a continuum of charge
distribution is characterized by a charge density ρ(r) and the velocities of the charges is characterized
by a vector current density J. In the Euclidian space, the Maxwell’s equations in the presence of sources
can be expressed as (

1

c

∂

∂t
+∇

)
2F = J. (189)

In the relativistic mechanics, the electromagnetic field is expressed as a combination of relative
electric field E and spatial bivector magnetic field IB.

F =
1

2
(E + IB) (190)

From Equations (101) and (102), we see that the relative electric and spatial bivector fields represent
commuting and anticommuting parts of the complex electromagnetic field.

E = F + γ0F̄ γ0 (191)

IB = F − γ0F̄ γ0 (192)

Further, we express charge density and current density as a combined quantity denoted by a source
field Q.

Q = ρ− J (193)

The negative sign in the above equation is associated with the signature of spacetime. Now,
the Maxwell’s equations take the form (

1

c

∂

∂t
+∇

)
2F = Q. (194)

A general solution of this equation can be obtained by using Green function method [24]. Let φ and A

be the scalar vector potentials of the electromagnetic field. Then we define electric and magnetic fields
in terms of scalar and vector potentials as

E = ∇φ− 1

c

∂A

∂t
, (195)
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IB = ∇∧A. (196)

Using the Lorentz gauge condition ∇.A + 1
c
∂φ
∂t

= 0, one can express the electromagnetic field in
terms of scalar and vector potentials as

2F =

(
1

c

∂

∂t
+∇

)
φ−

(
1

c

∂

∂t
+∇

)
A. (197)

In the absence of sources, the electromagnetic field complex vector is a function of vector potential
only. For the applications of complex vector method in the electromagnetic theory, the electromagnetic
complex vector may be defined without the factor 1/2 in the Equation (175). However, this particular
definition of F in the Equation (175) is quite useful in the following subsections.

3.2.1. Photon Energy Multivector and Angular Momentum

The concept of photon, the energy quanta of electromagnetic radiation, was introduced by Planck in
the blackbody radiation formula and by Einstein in the explanation of photoelectric effect. We know that
the photon is a massless bundle of electromagnetic energy and because it imparts momentum we define
the momentum of photon as the ratio between energy and velocity of photon. Belinfante established
the fact that the photon spin could be regarded as the angular momentum due to circulating flow of
energy and this idea was well explained by Ohanian [25]. In an infinite plane wave, the electric and
magnetic field vectors are perpendicular to the propagation direction. In a finite transverse extent, the
field lines are closed loops and represent circulating energy flow and imply the existence of angular
momentum whose orientation is in the plane of circulation and this angular momentum is the spin angular
momentum of photon. Further, as the electromagnetic waves propagate, the energy also flows along the
direction of propagation. Thus the photon energy may be a combination of kinetic energy and rotational
energy. The electromagnetic energy density obtained from the product F̄ .F in Equation (180) represents
the energy density of photon as it propagates and thus it may be treated as the kinetic energy density
of photon.

F̄ .F =
1

4
(E2 +B2) (198)

From the product F̄ ∧ F , one can express the energy of internal electromagnetic flux flow in the
bivector plane normal to the propagation direction.

− i F̄ ∧ F =
1

2
(E ∧B) (199)

This energy density of the photon may be identified as the rotational energy density. The energy terms
in Equations (198) and (199) combine to give the total energy density of photon.

ε =
1

4
(E2 +B2) +

1

2
(E ∧B) = F̄ .F − i F̄ ∧ F (200)

Thus, the total energy density of photon is a sum of a scalar and a bivector components. We identify
the scalar part as the kinetic part which shows the flow of energy in the direction of propagation and
bivector part as the rotational energy flow in the plane normal to the direction of propagation over a finite
extent. Thus the total energy of a photon contains kinetic energy and rotational energy components.

Ekin =
1

4π

∫
d3rF̄ .F (201)
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Erot = −i 1

4π

∫
d3rF̄ ∧ F (202)

In general, twice the kinetic energy is treated as the electromagnetic energy per unit volume and it is
the energy of photon. Since the energy of a photon is expressed as momentum times its velocity, one can
define kinetic momentum of a photon from Equation (201) as

pk =
Ekin
v
, (203)

where the velocity v = nc and n is the unit vector along the direction of propagation. The internal
momentum vector π representing the rotational flux flow may be defined from the Equation (202) as

π =
Erot
u
, (204)

where the velocity u represents the internal velocity of flux flow and satisfies the condition u.π = 0 and
|u| = c. Then the total energy is expressed as an even multivector.

E = pk.v + π ∧ u (205)

This definition allows us to construct photon momentum complex vector and photon velocity complex
vector in the following form.

P = pk + iπ (206)

U = v + i u (207)

A reversion operation on P gives P̄ = pk − iπ. Since the magnitudes |pk| and |π| are equal, we
have P 2 = P̄ 2 = 0. Therefore, the complex vector P is a complex null vector which represents the light
like nature of photon. Similarly the complex velocity vector is also a complex null vector. Now, the total
energy of photon is expressed as

E = PŪ. (208)

The multivector form given in the Equation (205) can be compared to the symmetric energy
momentum tensor θµν with the identification of the scalar part with θ00 and bivector part with θij . Thus
the even multivector E may be called as the energy momentum multivector.

The property of even multivector is that it represents rotations in the bivector plane. Then, the photon
energy even multivector represents a rotor. To see this we need to consider that the energy depends on
some phase factor.

pk.v = E0 cosωt. (209)

The bivector part can be expressed as

π ∧ u = ĴE0 cosωt, (210)

where Ĵ is a unit bivector along the orientation of angular momentum. The phase angle is then defined as

ωt = tan−1

(
|π ∧ u|
pk.v

)
(211)
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Then, we express the multivector energy as the product of E0 times a rotor.

E = E0e
Ĵωt (212)

This relation shows that photon contains internal complex rotations of the electromagnetic field and
these rotations are analogous to the internal complex rotations or zitterbewegung of electron. The cause
of these internal rotations may be attributed to the fluctuations of the zeropoint field. In Equation (212),
the internal rotation is the clockwise or right-handed rotation. A reversion operation on E gives
counterclockwise or left handed rotation.

Ē = E0e
−Ĵωt (213)

Normally, in the symmetric conditions the kinetic and rotational energies are equal in magnitude and
the phase angle equals π/4. The frequency of internal rotation is the rate per unit energy flux flow within
the photon.

Ω = −Ĵω = − 1

E
dE
dt

(214)

Here, the frequency of internal rotation represents the counterclockwise direction and it is a bivector
quantity and the magnitude of internal frequency of rotation is ω. Since the frequency of internal
rotation is ω, the particles involved are bosons with spin magnitude h̄. However, we shall see in
the following section that the internal frequency of rotation is 2ω for fermions with spin magnitude
h̄/2. Thus the photon consists of an internal harmonic oscillator which represents the complex internal
rotations. The internal complex rotations suggest that there exists internal complex spin structure of
photon. The linear momentum density of the electromagnetic field is given by the Pointing vector E×B

and the angular momentum is the cross product with position r×E×B. The magnetic field vector can
be expressed as curl of a vector potential A and the angular momentum density becomes E×A. A close
inspection shows that the total angular momentum has two components; one the spin angular momentum
associated with the polarization and the other the orbital angular momentum associated with the spatial
distribution [23]. The total angular momentum J can be split into spin angular momentum S and orbital
angular momentum L [26].

J =
1

4π

∫
E×A d3x+

1

4π

∫
En(r×∇)An d3x = S + L (215)

It has been shown explicitly in the reference [27] that in the case of photon propagating in an arbitrary
direction, say n, the spin angular momentum and orbital angular momentum are expressed as

S = inh̄, (216)

L = imh̄. (217)

The unit vectors n and m satisfy the orthogonality condition n.m = 0 and the vector m lies in the
plane of the unit bivector in. The spin angular momentum causes the complex vector field F to rotate
in the E∧B plane without changing the direction of propagation vector k. Whereas, the orbital angular
momentum causes the plane having orientation defined by the bivector r ∧ k to rotate without changing
the direction of the vector k and the orientation of the plane E ∧B.
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3.2.2. The Photon Harmonic Oscillator in Complex Vector Space

In the absence of sources, the field complex vector F can be expressed only in terms of a vector
potential. First, we consider the Fourier transform of vector potential A(r, t).

A(r, t) =
1

2π

∫
A(k, t)e−ik.rd3k (218)

The unit imaginary in the above equation is normally replaced by a bivector ik̂, where k̂ is a unit
vector along k. To find∇∧A we need to evaluate the term∇∧ e−ik.r.
∇∧ e−ik.r = −ik̂(∇∧ k.r)e−ik.r = − iω

c
e−ik.r.

Now, the magnetic field bivector in terms of vector potential is expressed as

iB = ∇∧A = −ikA = −iω
(
A

c

)
, (219)

where kc = ω. The electric field vector in terms of vector potential is defined as

E = − ∂

∂t

(
A

c

)
. (220)

Then the electromagnetic field complex vector F is expressed as

F = −1

2

[
∂

∂t

(
A

c

)
+ iω

(
A

c

)]
. (221)

Now, consider the canonical position and momentum coordinates ξ =
(
A
c

)
and π = ξ̇ = ∂

∂t

(
A
c

)
.

The canonical position and momentum coordinates of this form were introduced by Kobe [28] and
Cohen-Tanoudji et al. [26]. The Hamiltonian representing the energy of photon is then expressed as

H =
1

2
(π2 + ω2ξ2). (222)

In the above expression, the integral 1
4π

∫
d3r is supressed. However, in all the expressions in this

section we implicitly consider this integral wherever required but not shown explicitly. The canonical
position and momentum vectors are regarded as internal coordinates of the photon and these are
analogous to the internal position and momentum coordinates of an electron oscillator [12]. To analyze
these internal oscillations, consider the vectors a = ω1/2ξ and b = π/ω1/2 and define the complex
vector Z in the following form

Z = k(a + i b), (223)

where the constant k2 = 1/2h̄. A reversion operation on Z gives

Z̄ = k(a− i b) (224)

When a2 = b2, the internal complex rotations are circular and Z̄2 = Z2 = 0. In this special case,
for example in circularly polarized light, the complex vectors are complex null vectors. However, it is
not necessary that the magnitudes a and b be equal and in the general case the complex vectors are not
complex null vectors. The photon structure is characterized by the complex vectors which represent the
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internal complex rotations in complex vector space. From the Equations (223) and (224), the products
ZZ̄ and Z̄Z can be obtained as

ZZ̄ = k2(a2 + b2)− 2i k2(a ∧ b), (225)

Z̄Z = k2(a2 + b2) + 2i k2(a ∧ b). (226)

From these products ZZ̄ and Z̄Z, the scalar and bivector products can be expressed in the following
form.

Z.Z̄ =
1

2
(ZZ̄ + Z̄Z) = k2(a2 + b2) =

H

h̄ω
(227)

Z̄ ∧ Z =
1

2
(Z̄Z − ZZ̄) = 2i k2(a ∧ b) = i

E ∧B

h̄ω
=

i

h̄
(S + L) (228)

In the above equation, the term E ∧ B is equal to the energy of rotation Erot, and the total angular
momentum J = Erot/ω. Using the relations for S and L given by the Equations (216) and (217),
the above Equation (228) is expressed as

(ZZ̄ − Z̄Z) = 2(n + m). (229)

Introducing idempotents in the form Jn± = (1/2)(1 ± n) and multiplying the above equation from
right gives the relation

(ZZ̄ − Z̄Z)Jn± = ±2Jn±. (230)

The property of the idempotent is that it absorbs the unit vector n, i.e., nJn+ = +Jn+ and in the
above Equation (230) we have used the orthogonality condition n.m = 0. The Equation (230) shows
that a photon has two helicity states depending on the rotation in the spin plane. Similarly introducing
the idempotent in the form Jm± = (1/2)(1±m) and multiplying the Equation (229) from right gives

(ZZ̄ − Z̄Z)Jm± = ±2Jm±. (231)

This relation shows that the orbital angular momentum bivector has two different orientations.
Further, Equations (230) and (231) show that both spin and orbital angular momentum are separately
conserved and the photon spin and orbital angular momenta are separately observable. In Beth’s
experiment [29], with circularly polarised light, only spin was measured from the rotational motion
of quarter wave plate and in most of the experiments using Laguerre-Gaussian mode laser beams [30],
the orbital angular momentum was measured and not along with spin. Hence spin and orbital angular
momenta are separately conserved in the case of photons. Combining Equations (230) and (231) gives

(ZZ̄ − Z̄Z)(Jn+ + Jm+) = +2(Jn+ + Jm+). (232)

The complex vectors ZZ̄ and Z̄Z represent transverse complex vector fields and are analogous
to the vector fields introduced by Cohen-Tanoudgi et al. [26] in the reciprocal space. Multiplying
Equations (225) and (226) from right by the idempotent Jn+, we find the following relations.

ZZ̄Jn+ =

(
H

h̄ω
+ 1

)
Jn+ (233)
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Z̄ZJn+ =

(
H

h̄ω
− 1

)
Jn+ (234)

These two equations satisfy Equation (230). Since the product Z.Z̄ is a scalar product,
the Equation (227) shows that the energy of the oscillator is a linear function of h̄ω. Suppose that
the energy of the oscillator is expressed as H = H ′ + h̄ω, and when substituted into Equations (233)
and (234) gives

ZZ̄Jn+ =

(
H ′

h̄ω
+ 2

)
Jn+, (235)

Z̄ZJn+ =

(
H ′

h̄ω

)
Jn+. (236)

These relations again satisfy the condition given by Equation (230). Similarly, if the energy is
expressed as H = H ′′ + 2h̄ω and substituted into Equations (233) and (234) and the resulting equations
again satisfy the condition given by Equation (230). The argument can be continued and finally we arrive
at a conclusion that Equations (233) and (234) can be expressed as

ZZ̄Jn+ = (n+ 2)Jn+, (237)

Z̄ZJn+ = nJn+, (238)

where n = 0, 1, 2, · · · is an integer. Now, the energy of the oscillator can be obtained from
Equation (227).

HJn+ = Z.Z̄h̄ωJn+ = (n+ 1)h̄ωJn+ (239)

Thus the energy of the photon harmonic oscillator becomes

En = (n+ 1)h̄ω. (240)

The ground state energy of the oscillator corresponds to circular complex rotations which satisfy the
condition a2 = b2. In this case Equations (237) and (238) can be expressed as

ZZ̄Jn+ = 2Jn+ and Z̄ZJn+ = 0. (241)

The ground state energy of the oscillator is then equal to

E0 = h̄ω. (242)

Thus the zeropoint energy of photon is h̄ω and the spin frequency of photon is ω. However, if the
zeropoint radiation field containsN number of photons in a unit volume, each photon has its polarization
in an arbitrary direction and to find the average energy of zeropoint radiation, one must consider a
stochastic average of all the orientations in space. Such an average simply gives a factor 1/2 and
the zeropoint radiation per mode becomes h̄ω/2. Higher energies of the oscillator correspond to the
harmonic frequencies and the photon energy becomes 2h̄ω , 3h̄ω · · · etc. To find more insight into
the problem, let us consider a set of orthonormal unit vectors {σa,σb,n} along a, b and propagation
direction respectively. Then, the complex vectors Z̄ and Z are expressed as

Z̄ = kσa(a+ bn) and Z = kσa(a− bn). (243)
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Now, it is easy to show the following relations.

ZZ̄Jn+ = k2(a+ b)2Jn+. (244)

Z̄ZJn+ = k2(a− b)2Jn+. (245)

Comparing Equations (244) and (245) with Equations (237) and (238), we find

2ka =
√

(n+ 2) +
√
n, 2kb =

√
(n+ 2)−

√
n and 4k2ab = 2. (246)

Since 4k2ab = 2, the photon spin remains constant with its magnitude ab = h̄. Multiplying the
complex vectors in Equation (243) with the idempotent Jn+ gives

Z̄Jn+ =
√

(n+ 2)σaJn+ and ZJn+ =
√
nσaJn+ (247)

If we define a multivector N = ZZ̄ analogous to the number operator, it satisfies the relation
NJn+ = nJn+ and we have

NZ̄Jn+ = Z̄(n+ 2)Jn+, (248)

NZJn+ = (ZZ̄ − 2)ZJn+ = Z(n− 2)Jn+. (249)

From the above relations we find the following commutation relations.

[N, Z̄]Jn+ = 2Z̄Jn+ and [N,Z]Jn+ = −2ZJn+ (250)

In the case of ground state of the oscillator, the above equations reduce to

NZ̄Jn+ = (+2)Z̄Jn+ and NZJn+ = (−2)ZJn+. (251)

These equations indicate the fact that when one photon is created or destroyed always two modes of
zeropoint field are involved and gives further implication that when one photon is created there may be
a particle pair (electron and positron) annihilated and similarly when one photon is destroyed there may
be a particle pair created in the zeropoint fields. The transverse quantum fields defined by creation
and annihilation operators a† and a satisfy the commutation relation of the same type given in the
Equation (251) and therefore the complex vectors Z̄ and Z resemble the operators a† and a respectively.
The consequence of zeropoint fluctuations leads to internal complex rotations and in turn we define the
angular momentum of photon as the angular momentum of zeropoint field. In the above treatment we
have analyzed the complex rotations of photon in terms of the oscillations of the harmonic oscillator
in the complex vector formalism pertaining to internal spin rotations. However, the internal complex
rotations are not only limited to the rotations pertaining to the plane of spin angular momentum but
also exists in the plane of orbital angular momentum. Starting from Equation (231), it is trivial to
show that the corresponding equations representing complex rotations of photon pertaining to the orbital
angular momentum. In the Laguerre-Gaussian modes of laser beams it has been shown explicitly in the
quantum mechanical approach that the orbital angular momentum of light beams resembles the angular
momentum of harmonic oscillator [31].
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3.3. Elementary Particle Dynamics

In the Dirac relativistic theory, electron executes rapid oscillations superimposed on its translational
motion. Schrödinger examined the behavior of Dirac electron and discovered the so called
zitterbewegung motion or the trembling motion of electron. In the Schrödinger’s zitterbewegung
derivation [32,33], the Dirac Hamiltonian for a free electron can be expressed as

H = cα.p +mc2α0, (252)

where the set of matrices {αµ;µ = 0, 1, 2, 3} are known as Dirac matrices and are given by

α0 =

(
1 0

0 −1

)
and αk =

(
0 σk

−σk 0

)
. (253)

The matrices {σk; k = 1, 2, 3} are the usual Pauli spin matrices. These matrices are related to
the γ-matrices by the relations α0 = γ0 and αk = γ0γk. The Dirac matrices satisfy the following
anti-commutation relations.

{αi, αj} = αi, αj + αj, αi = 2δij1; {αi, α0} = 0 and α2
0 = 1 (254)

The position x̂ and momentum p̂ operators of the electron satisfy the quantum commutation relation.

[x̂, p̂] = ih̄ (255)

In the Heisenberg picture all these relations hold at any time and the time derivative of an operator â
is given by

dâ

dt
=
i

h̄
[H, â]. (256)

When we replace the operator â in the above equation with the position operator x̂ and using the
operator form of the Hamiltonian given in Equation (252), we find ẋ = cα and similarly one can find

− ih̄α̇ = 2H(α− cH−1p) = 2Hη. (257)

Here, η = α− cH−1p. Since, the time derivative η̇ = α̇ the above equation can be expressed as

η̇ =
i2H

h̄
η. (258)

The solution for this first order differential equation is

η = η(0) exp

(
i2H

h̄

)
, (259)

where η(0) = α(0)− cH−1p. Now, combining the above equation with ẋ = cα gives

ẋ = c2H−1p+ [cα(0)− c2H−1p] exp

(
i2H

h̄

)
. (260)

Upon integration of this equation one finds

x = (x(0) + ẋt) +
1

2
ih̄[cα(0)− c2H−1p]H−1 exp

(
i2H

h̄

)
. (261)
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The first term represents the position of the particle and the second term represents the internal
oscillations of the particle. The cause of these oscillations has been attributed to the presence of
electromagnetic fluctuating zeropoint field throughout space. Hence the particle charge oscillates from
the mean position of the particle. The frequency of internal oscillations is 2ω = 2mc2h̄−1. Replacing
the unit imaginary in Equation (261) by pseudoscalar the position coordinate can be expressed as a
complex vector

X = x(t) + i ξ(t), (262)

where, x(t) represents the average position of the electron or the center of mass point and ξ(t) the center
of oscillating charge point. This form is similar to the coordinate considered by Barut and Zanghi [34]
with the exception that i ξ is a bivector. Thus the structure of an elementary charged particle is not
definitely a point particle with charge and mass or a spherical rigid body with charge distribution.
The structure of electron is visualized as the point charge in a circular motion, the frequency of rotation
is equal to the zitterbewegung frequency and the average radius of rotation is equal to half the Compton
wavelength. The angular momentum of this internal rotation represents the electron spin. The circular
motion is observed from the rest frame positioned at the centre of rotation which is also the centre of
mass point. Thus the centre of mass point and the centre of charge point are separated by the radius of
rotation. Differentiating Equation (262) with respect to time gives

U = v(t) + i u(t), (263)

where, U = dX/dt, u = dξ/dt is the internal instantaneous velocity whose magnitude is equal to the
velocity of light and v is the velocity of the center of mass point.

The idea that the electron spin generated from the circular motion of zitterbewegung was advocated
by several researchers. In particular, in the Hestenes model of Dirac electron [35–37] the spin was
considered as a dynamical property of electron motion and described as circulation of electron mass
and charge. In the extensions of semiclassical theories, the spin was identified with a bivector and
point particle executes circular motion by absorbing energy from zero point field [8,38]. The angular
momentum of this internal rotation represents particle spin and it has been explicitly shown as a bivector
quantity representing the orientation of the plane of rotation [39,40]. The internal angular momentum or
the particle bivector spin is expressed as

S = ξ ∧ π, (264)

where, π = mu is the internal momentum of the particle in its rest frame. The approach of extended
particle structure was developed by Wyssenhoff and Raabe [41], Barut and Zhanghi [34], Salesi and
Recami [42] and others. The mass of the particle is seen as the energy of oscillations confined to a region
of space of dimensions of the order of Compton wavelength [33]. The local spin rotation produced by
the zeropoint field allows us to interpret the mass of the particle as the local spatial complex rotation in
the particle rest frame [12]. The local spin rotation produced by the zeropoint fields makes it to propose
the local complex rotation as the mass of the particle. This local complex rotation will be treated in a
rest frame with its origin at the center of rotation or equivalently the center of mass and may be called as
the particle rest frame. Since the deviation in position ξ is considered orthogonal to x, the velocity u of
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the particle internal motion is orthogonal to the particle translational velocity v. A reversion operation
on U gives

Ū = v − i u, (265)

and the scalar product
Ū .U = v2 + u2. (266)

In the particle rest frame v = 0 and Ū .U = u2. Since the particle internal velocity in the particle rest
frame u = c the velocity of light, |U | = u = c. However, when the particle is observed from an arbitrary
frame different from the rest frame of the particle center of mass, as the centre of mass moves with
velocity v, the particle motion contains both translational and internal rotational motion of the particle.
Then the particle internal velocity can be seen as

u2 = c2 − v2. (267)

This can be expressed as
u = c(1− β2)

1/2
= cγ−1, (268)

where β = v/c and the factor γ is the usual Lorentz factor. The angular frequency of rotation of the
particle internal motion is equal to the ratio between the velocity c and radius of rotation .

ωs =
c

ξ
(269)

When observed from an arbitrary frame, the angular frequency ω will be equal to the ratio between u
and ξ.

ω =
u

ξ
(270)

Expressing u and ξ as vectors the angular velocity is expressed as a bivector. Thus we have
−iω = u/ξ or −iωξ = u, and Equation (270) is then expressed as

Ω = Ωsγ
−1, (271)

where Ω = −iω and Ωs = −iωs. Thus the angular frequency of rotation decreases when observed
from an arbitrary frame and the decrease depends on the velocity of the center of mass. Considering the
helical motion of the particle, this method of calculation for time dilation was first shown in a simple
manner by Cavelleri [43] and also in the review by Bosi [44,45]. The above analysis shows that the
basic reason for the relativistic effects that we observe is due to the internal complex rotation which is a
consequence of fluctuating zeropoint fields. If the particle moves over a distance along the rotation path
in dt time, the proper time interval will be dτ = γ−1dt. Similarly the particle center of mass point moves
over a proper distance dx′, the distance observed in the arbitrary frame would be dx′ = γdx. These
equations are simply time dilation and length contraction relations. The relative velocity is then equal to
γv and the relativistic momentum is then expressed as p = γmv and this momentum in the rest frame
of the particle is zero. Now, the momentum complex vector can be constructed as

P = p + iπ. (272)
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From this momentum complex vector one can find the scalar product P.P̄ as

P.P̄ = p2 + π2. (273)

Multiplying throughout by c2 and noting PP̄ c2 = E2 gives the relativistic energy relation in terms
of momentum.

E2 = p2c2 +m2c4 (274)

The above analysis confirms the fact that the special theory of relativity emerges from the internal
complex rotations in the local space or in other words the relativistic effects are the manifestation of
zeropoint fields and produce those results as that of the mathematical frame work of special relativity.
However, in the presence of external electromagnetic field we normally replace the momentum by p−eA
in the minimal coupling prescription. Using p→ p−eA in Equation (274) and equating the scalar parts,
the total energy of the particle can be expressed as

E2 = p2c2 − 2ecp.A + e2A2 +m2c4, (275)

where A represents the zeropoint electromagnetic field vector potential. In the rest frame of the particle,
i.e., when the velocity of centre of mass v = 0, the above expression reduces to

E0 ∼ mc2 +
e2A2

2mc2
. (276)

In the above equation, higher order terms are neglected. Thus under the influence of zeropoint field,
the term (e2A2)/(2mc2) represents a correction to mass. The particle mass which arises due to local
complex rotations in the zeropoint field is regarded as the so called bare mass and when the particle is
observed from an arbitrary frame, the particle mass has some mass correction due to the presence of
external zeropoint field.

3.3.1. The Particle Spin in the Complex Vector Space

Spin plays an important role in particle dynamics. When we consider complex internal rotations of
the particle, we find some interesting results. The orbital angular momentum of the particle in a curved
path of the center of mass point is a bivector quantity given by L = x ∧ p. Expanding the bivector
product X ∧ P̄ gives [12]

X ∧ P̄ = x ∧ p + ξ ∧ π + i(ξ ∧ p)− i(x ∧ π). (277)

The first and second terms on right of the above equation are the orbital angular momentum and the
bivector spin. The vector term i(x ∧ π) represents a phase factor and the term i(ξ ∧ p) represents an
additional vector term. The last two terms in Equation (277) can be expressed as a complex vector

St = S + iSL, (278)

where SL = ξ ∧ p represents an oriented plane perpendicular to spin plane. The bivector SL can
be expressed using the magnitude of average radius of rotation, which is equal to half the Comptopn
wavelength h̄(2mc)−1 .

SL = iσ2γβ
h̄

2
(279)
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The scalar product St.S̄t is then expressed as

St.S̄t = S2 + S2
L = −γ2S2. (280)

Considering St.S̄t = −S2
0 , we have

|S0| = γ|S|. (281)

Multiplying this equation throughout by iσ3 gives

S0 = iσ3|S0| = γS. (282)

This shows that as the particle moves with velocity v, the magnitude of spin appears to increase by a
Lorentz factor. A relation between particle mass and spin has been derived by the author [12] recently.

mc2 = λΩs.S. (283)

In this equation λ = ±1 , and it shows the two fold nature of the equation and represents particle and
antiparticle conjugation. From Equations (271) and (282) one can arrive at the relation

Ω.S0 = Ωs.S. (284)

It means that the particle mass remains unchanged even if the particle center of mass is in motion or
in other words Equation (284) leads to the nonexistence of the so called relativistic mass. Thus a general
point of view, that either in Newtonian or relativistic theories the particle mass m is independent of a
reference frame [46]. Thus the property of material particle mass is a conserved quantity. The bivector
spin rate can be obtained by differentiating S = ξ ∧ π with respect to time t [12]

Ṡ =
dS

dt
= u ∧ π + ξ ∧ π̇ = −Ωs × S, (285)

where π̇ is replaced by −iωsπ = Ωs.π and u ∧ π = 0. The solution of this Equation (285) can be
expressed as

S(t) = S(0)eΩst, (286)

where S(0) is a constant spin bivector at time t = 0. The above Equation (286) shows that the internal
spin rotation has U(1) group symmetry in the rest frame of the particle. It is quite interesting to see that
when the particle moves with velocity v the internal spin rotation rate of the particle remains constant
which is a consequence of invariance of particle mass with velocity.

dS0

dτ
= −Ωs × S (287)

Since Ṡ is equal to the constant internal energy of rotation, the spin is not a constant of motion.
However, as the product SṠ = 0 , the differential of square of spin bivector is zero and S2 = S.S =

−|S2| is a constant of motion. For an electron with charge e and mass m, in the present complex vector
treatment and in the rest frame of the particle, the charge rotation produces a current equal to eωs and
the oriented area of rotation is (ξ ∧ u)/ωs. Then the intrinsic bivector magnetic moment M0 lies in the
same orientation of spin S,

M0 =
e

mc
S, (288)
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and there appears to be an instantaneous dipole moment d = eξ associated with the particle. The total
of electric and magnetic moments can be written as a complex vector.

MV = d+M0 =
e

mc
(mcξ + S). (289)

The electromagnetic field in the rest frame of the particle center of mass can be expressed as a complex
vector F = E + i B. The interaction of MV with the electromagnetic field gives the interaction energy
and can be expressed as

Em = MV .F = eξ.E +
e

mc
S.i B. (290)

The average of electric dipole interaction energy term over one complete internal rotation goes to
zero. The last term in Equation (290) is a constant and represents magnetic dipole interaction energy
term and gives the gyromagnetic ratio of electron g = 2. From Equation (290), it is possible to express
the spin precession in the magnetic field. (

dS

dt

)
m

= Ωm.S (291)

The angular frequency bivector Ωm = (e/mc)i B is connected to the spin precession in the
rest frame of the particle due to constant magnetic field. Then, in the presence of magnetic field,
Equation (286) becomes

S(t) = S(0)eΩtt. (292)

Here, Ωt = Ωs + Ωm. Thus an external electromagnetic field leads to an additional phase in the
internal spin rotation of the particle. In these equations the magnetic and electric field vectors are taken
with respect to the rest frame. These fields do change for an arbitrary frame of reference and the spin
equation changes accordingly.

3.3.2. Particle Motion in Spacetime

When the particle is in motion, the direction of internal velocity u is no more in the same direction
as that in the rest frame of the particle. Let the new direction of u be denoted by a unit vector σ0.
To study particle dynamics in spacetime, it is required to find the Lorentz rotation of the vector σ0 and
spinbivector S. Since both vectors are invariant under special rotation, in this section we find Lorentz
boost of these vectors. In general, the Lorentz boost can be expressed in terms of rapidity factor ϕ and a
unit vector v̂ along particle velocity.

L = exp

(
−v̂ϕ

2

)
and L̄ = exp

(
v̂ϕ

2

)
(293)

Here, L̄ is the inverse of L. Then the active Lorentz rotation of vector σ0 gives a unit complex vector
along the direction of proper velocity complex vector [47].

û0 = exp

(
−v̂ϕ

2

)
σ0 exp

(
v̂ϕ

2

)
= σ0 coshϕ+ (σ0 ∧ v̂) sinhϕ (294)

This is simply the active boost of σ0 through the rapidity factor in the direction of particle velocity
and generates a new complex unit vector û0. The bivector σ0 ∧ v̂ represents spacetime plane of rotation.
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The unit vectorσ0 represents the fourth dimension in spacetime and it is same as the vector γ0 considered
in spacetime algebra. Multiplying the unit vector û0 with velocity of light c gives the proper velocity
complex vector u0 of the particle. The proper velocity vector is then expressed as

u0 = cγ(σ0 + σ0 ∧ β). (295)

Multiplying Equation (295) from left by the unit vector σ0 gives the velocity four vector.

uµ = σ0u0 = cγ(1 + β) (296)

This type of split is called spacetime split described in Equation (95). The square of proper velocity
vector is obtained as

u2
0 = u0σ0σ0u0 = cγ(1− β)cγ(1 + β) = c2. (297)

Then the square of proper velocity u2
0 represents the time-like case. However, the product ū0u0 is not

a scalar but ū0u0 = (1 + β2)c2γ2 + 2βc2γ2. From the definition of spin bivector one can easily find the
product of spin bivector with the proper velocity u0 turns out to be zero.

S.u0 = ξ ∧mu.u0 = 0 (298)

This condition is an important property of an elementary particle and responsible for the intrinsic
magnetic moment. Multiplying Equation (295) throughout by dt gives

dtu0 = γ(cdtσ0 + σ0 ∧ dx). (299)

Using the relation dτγ = dt, we have

dτu0 = cdtσ0 − σk ∧ σ0dxk. (300)

In terms of spacetime basis vectors γµ defined in Equation (86), one can express the above equation as

dτu0 = γµdx
µ. (301)

Then the square of proper length is

c2dτ 2 = γµdx
µγνdx

ν = ηµνdx
µdxν , (302)

where γµγν = ηµν is the flat spacetime metric. In a similar manner the proper momentum vector can be
expressed as

p = γmc(σ0 + σ0 ∧ β). (303)

Multiplying Equation (303) from right by the unit vector σ0 gives four-vector momentum.

pµ = pσ0 = p0 − p (304)

And the product pµpµ is expressed as

pµpµ = pσ0σ0p = (p0 − p)(p0 + p) = m2c2. (305)
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Thus p2 is a constant of motion. In the quantum notation, this is stated as the eigen state of matter p2

has an eigen value m2c2.
To find the Lorentz rotation of spin bivector, first let us decompose the unit velocity vector v̂ into

parallel and normal components with respect to the spin plane, v̂ = vp + vn. The vectorer vn is along
the direction of proper velocity û0 and it commutes with S, Sû0 = û0S. According to Equation (266),
we discern that the unit vector vp is along the direction of internal velocity u, vp = û = u/|u|, and it
anticommutes with S, Sû = −ûS. This decomposition gives LSL̄ = S exp ûϕ . Then, the Lorentz
boost of spin bivetor is given by

S ′ = S(γ + ûγβ) = Sγ + S.ûγβ. (306)

The last term in the above equation is a vector and it is equal to a constant times radius of rotation.
On physical grounds this term does not contribute to particle spin. In fact, when we take an average of
Equation (306) over a complete rotation S.û vanishes. Now, without loss of generality, the proper spin
bivector is then expressed as

S0 = γS. (307)

Equation (298) shows that the scalar product of bivector spin and proper momentum vanishes.

S0.p = S.p = 0 (308)

Thus the spin bivector in spacetime is purely a spatial bivector. Then the tensor components of spin
bivector can be expressed as S0 = 0 and Sij = S. The spin vector components are obviously written as
s0 = 0 and sk = s. Further, with the identification of components W0 = p.s and Wk = p0sk, a proper
complex vector which corresponds to Pauli-Lubanski four-vector can be defined as

W = σ0W0 + σ0 ∧Wk. (309)

Multiplying the above equation from right by σ0 gives the Pauli-Lubanski four-vector Wµ.

Wµ = Wσ0 = W0 −Wk (310)

Now, the product WµW
µ is expressed as

WµW
µ = Wσ0σ0W = (W0 −Wk)(W0 +Wk) = −m2s2. (311)

From Equation (308) we haveW.p = 0 and hence p2 andW 2 are two independent constants of motion
and in general known as first and second Casimir invariants.

When the particle moves with velocity v in a homogeneous and transverse magnetic field, the rate of
spin precession is not same as that obtained in the rest frame of the particle. The constant magnetic field
seen by the moving particle is obtained by taking Lorentz transofmation. The required transformation
for the magnetic field bivector is expressed as

Li BL̄ = γ

(
i B +

i B.v

c

)
. (312)

In deriving the above equation the identity (i B) ∧ v̂ = i (B.v̂) is used. In the case of transverse
magnetic field, B.v̂ = 0. The velocity of the particle in crossed electromagnetic fields satisfies the
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relation i B.v = cE. Now, using the relations d/dt = γd/dτ and S0 = γS , the spin precession in the
constant magnetic field can be expressed for g = 2 as(

dS0

dτ

)
m

=
e

mc
(E + i B).S0 =

e

mc
F.S0. (313)

The electromagnetic field F is the complex bivector in spacetime with relative vector E and spatial
bivector i B. However, when g 6= 2 Equation (313) can be expressed as(

dS0

dτ

)
m

=
e

mc

[
F +

(g
2
− 1
)
i B
]
.S0. (314)

This is simply the well known BMT equation obtained by Hestenes [48]. The above equation is
generally used to measure the anomalous magnetic moment of the particles. Thus, when the particle
moves in the external electromagnetic field, the particle experiences a very low angular frequency spin
precession in its motion in addition to its internal complex rotations.

3.4. Quantum Nature of Particles

The results obtained in the previous sections provide an evidence that quantum behavior of particle is
a consequence of the superposition of internal complex rotation on the translational motion and leads to
the celebrated de Broglie hypothesis of wave nature of particles. The difference between internal angular
frequency ωs and the angular frequency ω observed from an arbitrary frame is related to the particle
velocity. Dividing Equation (263) by ξ and using Equations (270) and (271), we find this difference
frequency [12]

ωB = βωs = γβω. (315)

Then the wavelength associated with this frequency is

λB =
2πc

γβω
=
h

p
, (316)

where h is the Planck’s constant. This gives the genesis of de Broglie relation and the quantum nature of
elementary particles in general. The wave nature of particles is therefore associated with the zeropoint
fields. Uncertainty relations are said to be a consequence of wave nature of particles. However, the
uncertainty principle is merely a consequence of more fundamental property of the particles related to
the particle spin.

3.4.1. Quantum and Classical Correspondence

The Planck’s idea of zeropoint energy was studied by Marshall [49] in terms of classical
stochastic electrodynamics and found the relation between classical and quantum oscillators. This has
inspired interesting modifications to classical electrodynamics and called as stochastic electrodynamics.
Stochastic electrodynamics deals with the movement of charged particles in the classical electromagnetic
fluctuating zeropint field. Stochastic electrodynamics was developed basically to derive quantum
mechanics from classical physics [50–52]. The oscillatory nature of the particle is attributed to the
random fluctuations defined by zeropoint field. The spectral density of stochastic zeropoint radiation
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is proportional to ω3 which leads to the Lorentz invariance and the field is identical from all inertial
frames of reference. It is therefore called classical electromagnetic zeropoint field. The electromagnetic
zeropoint field consists of fluctuating radiation that can be expressed as a superposition of polarised
plane waves. In the zeropoint field, a free particle cannot remain at rest but due to random impulses
from fluctuating zeropoint field, oscillates about its equilibrium position. In the treatment of classical
stochastic electrodynamics, the explanation of uncertainty principle and many other quantum phenomena
was shown by several authors. A complete review of stochastic electrodynamics which treats the vacuum
fluctuations of quantum electrodynamics in the ground state as a real classical electromagnetic field,
and a phenomenological stochastic approach to the fundamental aspects of quantum mechanics was
given by de La Pena et al. [52,53]. In the stochastic electrodynamics, if the upper cut-off frequency
to the spectrum of zeropoint field is not imposed, the energy of the oscillator would be divergent.
Despite of its success in explaining several quantum phenomena, the results obtained in the stochastic
electrodynamics have certain drawbacks; it neglects Lorentz force due to zeropoint magnetic field,
it fails in the case of nonlinear forces, explanation of sharp spectral lines is not possible, diffraction
of electrons cannot be explained and further the Schrödinger equation can be derived in particular cases
only. Recently Cavalleri et al. [45] introduced stochastic electrodynamics with spin and explained
several interesting phenomena for example, stability of elliptical orbits in an atom, the origin of special
relativity and the explanation for diffraction of electrons. It has been shown that the drawbacks of
stochastic electrodynamics can be removed with the introduction of spin into the problem. The particle
has a natural cut-off frequency equal to the spin frequency which is the maximum frequency of the
electron in the zitterbewegung interpretation. This eliminates the problem of divergence in stochastic
electrodynamics. These recent advancements in the field of stochastic electrodynamics fully support the
assumption that the stochastic electromagnetic field represents the zeropoint field.

In quantum mechanics we treat the particle as point particle without any structure or one may choose
the cutoff radius which tends to zero. In the complex structure of a charged particle, we consider the
centre of mass position and the centre of charge positions as separate. Denoting the centre of local
complex rotations by the position vector x and the radius of rotation by the vector ξ, a complex vector,
connected with both the motion of the centre of mass point and internal complex rotations, is given
by Equation (262). The complex spin bivector and momentum vector are given by Equations (264)
and (272) respectively. In stochastic electrodynamics approach, considering a stationary solution at
constant frequency of the charged particle oscillator in random zeropoint field, Boyer [54] showed
that an average component of adiabatic action invariant 〈J〉 was found to be equal to h̄/2 which is
in accordance with the adiabatic hypothesis of quantum theory. Then we consider the magnitude of spin
angular momentum of the particle as h̄/2. One can choose any axis as the spin direction in the rest frame.
Considering general quantization axis along z-axis, the spin orientation of bivector spin plane may be
chosen along the plane iσ3.

S = ξ ∧ π = iσ3h̄/2 (317)

The quantum condition is the fundamental idea that leads to the development of quantum mechanics.
The transition from classical to quantum mechanics can be achieved by replacing canonical conjugate
dynamical variables by Hermitian operators and the non-commutativity of these operators gives the
quantum conditions. The general quantum condition or the fundamental commutation relation between
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position and momentum linear operators [x̂, p̂] = ih̄ is the basis of the whole quantum mechanics. Dirac
has given an elegant generalisation of quantum condition from the dynamical theory of Poisson brackets
in classical mechanics. The quantum Poisson bracket of any two dynamical variables is defined as [2]

ab− ba = ik[a,b]P.B. (318)

Here, the real constant k must be a universal constant and chosen as the reduced Planck’s constant
h̄ and the unit imaginary is introduced to make the left side of Equation (318) real. In the case of
canonical coordinates and momenta, the Poisson bracket is replaced by δij . Now, we transform the
dynamical variables into linear operators to define finally the quantum condition. Dirac wrote in his
principles of quantum mechanics that if the linear operators a and b are real in general, the product ab
is not real. Further, ab + ba is real and so is i(ab − ba). This turns out to be the important difference
between classical mechanics and quantum mechanics. The analogy between quantum mechanics and
classical mechanics is obtained in the limiting case h̄ → 0. In Dirac’s opinion the quantum condition
is a more fundamental concept than classical Poisson bracket. However, the reason behind assigning
the position and momentum as operators is not exactly known, but the quantum condition is taken as a
basic condition.

To find the classical correspondence in the case of the particle with internal structure, one can observe
that the magnitude |ξ| refers to the average values of deviations in the position measurements and in the
same state |π| refers to the average values of deviations in the momentum measurement. Theoretically,
|ξ| gives the limit with which the position of a particle is predicted. Experimentally, |ξ| describes the
accuracy with which the position of the particle is controlled. The internal position and momentum may
be assumed to be equivalent to the deviations of the particle in its path and therefore we express

ξ = ∆x = n(x− x̄), (319)

π = ∆p = m(p− p̄), (320)

where, x̄ and p̄ are average values of position and momentum and n and m are unit vectors along ξ and
π vectors respectively. Now, the bivector product

ξ ∧ π = n(x− x̄) ∧m(p− p̄) = x ∧ p− n ∧m(xp̄− x̄p) + n ∧m(x̄p̄), (321)

where (n∧m)xp is written as x∧p. Taking the stochastic averages of this expression on both sides gives

〈x ∧ p〉 = 〈ξ ∧ π〉. (322)

Here, the stochastic averages 〈x̄p〉, 〈xp̄〉 and 〈x̄p̄〉 vanish. Without loss of generality, one can choose
the unit bivector n∧m equal to iσ3. Using Equation (317) and expanding the bivector product x∧p in
the above equation gives

〈xp− px〉 = iσ3h̄. (323)

Using the correspondence principle in quantum mechanics, replacing the vectors x and p by
corresponding operators and the bivector iσ3 by ordinary unit imaginary, one can arrive at the quantum
condition from the above equation. Thus the quantum condition is in fact connected with the particle
spin. Therefore, the operators correspond to the internal structure of the particle and their postulated
introduction in quantum mechanics occurs without the awareness of their existence. Then, we conclude
that the classical mechanics combined with zeropoint field leads to quantum mechanics.



Mathematics 2015, 3 825

3.4.2. The Schrödinger Equation in Complex Vector Space

The Schrödinger equation was originally derived from the modification of classical Hamilton-Jacobi
equation [55]. Wigner [56] showed the connection between classical Liouville equation for a probability
distribution in phase space and the Schrödinger equation for quadratic potentials. Considering the phase
space evolution of an ensemble of particles described by the Wigner probability density distribution
function W (x,p, t) in phase space, the Liouville equation is expressed as(

∂

∂t
+ ẋ

∂

∂x
+ ṗ

∂

∂p

)
W (x,p, t) = 0, (324)

where ẋ and ṗ are obtained from the classical Hamiltonian equations. In the presence of zeropoint
vacuum fields, Dechoum et al. [57] derived the Liouvillian form of time evolution of the ensemble of
particles. The classical probability amplitude is related to the Wigner distribution function. To introduce
the complex nature of the wave function, one can consider a Fourier transform of the functionW (x,p, t)

and using this transform in Equation (324) Dechoum et al. arrived at the Schrödinger equation. Similarly,
they also derived the Pauli- Schrödinger equation from Liouville equation and it has been shown that
the kinetic energy operator −(h̄2/2m)(∂2/∂x2) has its origin in the convective operator ẋ(∂/∂x) of
Equation (324) [58]. In this correspondence, we are implicitly considering the fluctuations of position
coordinate and through the kinetic energy operator we incorporate zeropoint field into the Schrödinger
equation [59]. In a systematic development of stochastic quantum mechanics, considering a generalized
Fokker-Planck diffusion equation, de la Peña et al. [53] derived stationary state Schrödinger equation and
proved that the quantum behaviour is in general a manifestation of zeropoint fields present throughout
space. In the non-Markovian stochastic process, Cavelleri et al. [60,61] extended the density gradient
expansion and derived a complete Schröinger equation by assuming the zitterbewegung motion of the
particle in the absence of external forces. Thus the stochastic electrodynamics with spin gives a more
refined Schrödinger equation in the point particle limit. Hestenes [62] pointed out that the appearance of
ih̄ in the Schrödinger equation is related to particle spin. Then the geometrical meaning of unit imaginary
can be elucidated by identifying it as a unit bivector in the spin plane. The basic aim of these efforts is
to evolve a physical theory that completely solves the problems of micro and macro aspects of matter.

To find Schrödinger equation in complex vector approach, first consider a free particle of mass m and
its position defined by the complex vector X = x + i ξ, and express the partial time derivative in the
following form.

∂

∂t
=
∂X

∂t

∂

∂X
= Ẋ

∂

∂X
(325)

Using X = x + i ξ, expanding the partial derivative ∂/∂X gives

∂

∂X
=

∂

∂x
+ i ξ

∂2

∂x2
−O(ξ2). (326)

Differentiating the complex vector X with respect to time gives the velocity complex vector
Ẋ = v + i u. Neglecting higher order terms in Equation (326) and substituting into Equation (325)
we find

∂

∂t
= v

∂

∂x
+ i u ∧ ∂

∂x
+ v ∧ i ξ

∂2

∂x2
− u ∧ ξ ∂

2

∂x2
. (327)
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The plane wave form of the wave function representing the state of the particle is defined by

ψ(x, t) = ρ exp [(Et− p.x)/2S], (328)

where 2S = iσ3h̄. Now, multiplying Equation (327) by the wave function ψ(x, t) from right gives

∂ψ

∂t
= v

∂ψ

∂x
+ i u ∧ ∂ψ

∂x
+ v ∧ i ξ

∂2ψ

∂x2
− u ∧ ξ∂

2ψ

∂x2
. (329)

The partial derivative ∂/∂x acting on the wave function gives the momentum vector. Then the first
term on the right hand side of Equation (329) is a scalar. The partial derivative ∂/∂t acting on the
wave function gives the spin bivector in the denominator and the second and third terms on right of
Equation (329) are vector quantities. Therefore, equating the bivector quantities of Equation (329) yields

∂ψ(x, t)

∂t
=
ξ ∧ π
m

∂2ψ(x, t)

∂x2
. (330)

Here, S = ξ ∧ π is the bivector spin of the particle. Multiplying on both sides by 2S and adding a
potential function on right of the above equation finally gives the required Schrödinger equation.

2S
∂ψ(x, t)

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) (331)

Thus the internal structure and the particle spin plays an important role in the foundations of quantum
mechanics. The above Equation (331) gives the result that the very appearance of Planck’s constant
in Schrödinger theory is directly related to the existence of spin. Interestingly in discussing the macro
to micro transition, Schrödinger [55] arrives at a finite spread to the particle represented by a group
of waves.

3.4.3. The Dirac Equation in Complex Vector Spacetime

The Dirac equation in quantum mechanics is a relativistic extension of Schrödinger equation.
The internal structure is hidden in both Schrödinger and the Dirac theories. The particle structure in
the local rest frame is because of the local internal rotations. It has been shown that the Lorenz boost
of such rotations gives the Dirac equation in complex vector spacetime [12]. In the rest frame of the
particle the rotation in spin plane can be expressed by a rotor. The frequency of rotation is the frequency
of spin rotation. The spin rotations are represented by half angle rotors of the form

R = exp

(
Ωs

2
t

)
, (332)

where Ωs = −iω. In the present context Equation (332) can also be expressed in the following form.

R = exp

(
Ωs.S

2S
t

)
(333)

Then the rotor equation in the rest frame can be obtained by differentiating above equation with
respect to time.

Ṙ = R
1

2S
Ωs.S (334)
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The over dot on R represents differentiation with respect to time. Since rotor satisfies the condition
RR̄ = 1. Using Equation (283), the rotor equation in the rest frame of the particle is now expressed as

Ṙ2S = Ωs.SR = λmc2R (335)

The value λ = ±1 gives the rotor equation for particle and antiparticle respectively.

Ṙ2S = +mc2R (336)

˙̄R2S = −mc2R̄ (337)

If the differential is expressed in the notation ∂t = ∂/∂ct , then Equation (336) can be rewritten as

∂tR2S −mcR = 0. (338)

This is the form of Dirac equation in the rest frame of the particle. Multiplying with σ0 from left gives

σ0∂tR2S − σ0mcR = 0. (339)

When the particle is in motion as observed by an orbitrary observer, the equation of motion of the
particle is obtained by applying Lorenz boost to Equation (339).

Lσ0∂tL̄LR2S − Lσ0mcR = 0. (340)

Using Equation (301), the term Lσ0∂tL̄ can be expressed as

Lσ0∂tL̄ =
∂

u0c∂τ
= γµ

∂

∂xµ
= ∂ (341)

Since, γ0 is invariant under spatial rotation, Equation (340) can be written as

∂LR2S −mcLRγ0 = 0 (342)

A homogeneous Lorentz transformation is obtained by Lorentz boost followed by rotation. Then the
Lorentz rotation is the product Λ = LR and satisfies the condition Λ̄Λ = 1. Now, the equation of motion
of the particle can be expressed in the following form.

∂Λ2S −mcΛγ0 = 0 (343)

In Equation (115), we have expressed an even multivector in complex spacetime by a general spinor

ψ = ρ1/2eiε/2Λ, (344)

where ρ is the probability density and it can be defined as ψψ̄ = ρ and the phase factor eiε is equal to +1

for ε = 0 and −1 for ε = π. Multiplying Equation (343) by the factor ρ1/2eiε/2 gives the equation

∂ψ2S −mcψγ0 = 0. (345)

This is the form of Dirac equation for spin half particles. Dirac equation for spin half antiparticles
can be obtained from Equation (337) in a similar manner.

∂ψ2S +mcψγ0 = 0. (346)
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In the presence of external electromagnetic fields, using minimal coupling prescription, we replace
the momentum by p− q

c
A, where q is the particle charge. Then Equation (345) becomes

∂ψ2S − qAψ −mcψγ0 = 0. (347)

For an electron q = −e and Equation (347) is the well known Dirac-Hestenes equation in spacetime
algebra. The geometrical interpretation of Equation (347) has been extensively discussed by Hestens in
several of his articles [17,35–37] and also by Boudet [63]. The Dirac theory is regarded as a fundamental
theory and also a general theory. Since the wave function in Equation (345) is an even multivector,
the product ψψ̄ is equal to its own inverse. Since the wave function is a solution of Dirac equation, it is
a spinor field. The wave function determines at every spacetime point a unique time like vector field and
in the Dirac theory of electron, it is the proper current density which is defined as

j = ψcγ0ψ̄. (348)

Since the pseudoscalar i anticommutes with γ0, the proper current density becomes

j = ρcΛγ0Λ̄ = ρu. (349)

Thus the above equation represents the Lorentz rotation of the vector γ0 into the direction of proper
current. From the Dirac equation, it follows that ∂ρu = 0 and hence the Dirac current is interpreted as
the probability current and ρ as the probability density in the local rest frame. Since the relative vector
σ3 = γ3γ0, the Dirac-Hestenes equation is invariant if we make simultaneous replacements

ψ′ = ψe(iσ3χ) and A′ = A− ∂χ. (350)

This gauge invariance gives the observables of the particle motion. In this symmetry the observed
proper current density is the Dirac current density.

j = ψ′cγ0ψ̄′ (351)

With the use of Equation (349), it can be shown that the Dirac current is conserved even in the presence
of electromagnetic field. The spin vector is given by s = (h̄/2)σ3 and the corresponding current is

h̄

2
ψcσ3ψ̄ =

h̄

2
ψcγ3γ0ψ̄ = ρsu. (352)

Similarly, one can express the bivector spin current as

h̄

2
ψciσ3ψ̄ =

h̄

2
ψcγ2γ1ψ̄ = ρcS. (353)

The plane wave solution of Dirac equation for a free particle can be expressed by decomposing the
spinor Λ into Λ0e

p.x/2S .
ψ = ρ1/2eiε/2Λ0e

p.x/2S (354)

Substituting this wave function in the Dirac equation for a free particle, Equation (345) gives

pψ −mcψγ0 = 0. (355)
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Multiplying the above equation from right by ψ̄ and using Equation (349), we find the
proper momentum

p = mu. (356)

This equation gives the energy of a free particle or electron. For an antiparticle or a positron the spin
is negative and the wave function in Equation (354) becomes

ψ = ρ1/2eiε/2Λ0e
−p.x/2S. (357)

Thus the wave functions for particle and antiparticle are differentiated by the orientation of spin.
In other words the electron and positron wave functions differ by ascribing the senses of local spatial
rotation and assigning a value 0 or π to the charge conjugation parameter ε .

The wave functions of mass less particles are quite important in the theory of weak interactions.
We can decompose the wave function ψ into orthogonal components by multiplying it by the idempotents
defined in Equations (62) and (63).

ψ± = ψJ± (358)

Then the wave function can be expressed as a sum of ψ+ and ψ−.

ψ = ψ+ + ψ− (359)

The bivector spin current density is defined as

h̄

2
ψ±ciσ3ψ̄± =

h̄

2
ψcγ2γ1ψ̄ = ρcS. (360)

Therefore, the spin is an independent degree of freedom. The functions ψ+ and ψ− represent the
left and right handed wave functions. The zero mass free particle Dirac equation is then given by
replacing the wave function ψ with the orthogonal components and setting m = 0 in the Dirac equation
Equation (345).

∂ψ±2S = 0 (361)

Substituting the plane wave solution of wave function in the above equation gives

pψ± = 0. (362)

Squaring pψ± gives p2ψ±ψ̄± = 0 or p2 = 0. The momentum value in the above equation corresponds
to a state with a well defined spin state. The theory is quite applicable to particles like neutrinos.

3.4.4. The Particle Oscillator in the Complex Vector Space

Complex vector approach of harmonic oscillator for spin half particles was previously developed
by the author [12]. In this section, the harmonic oscillator problem is extended to spin 0, 1 and m/2.
From the concepts discussed in the above sections, we discern that an elementary particle immersed
in zeropoint field may be considered as an oscillator and such an oscillator in complex vector space
executes complex rotations with internal radius of rotation ξ and momentum π. The average values
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of these internal parameters correspond to the deviations in the position and momentum of the particle.
Then the Hamiltonian of such the harmonic oscillator in the rest frame of the particle can be expressed as

H =
mω2

0ξ
2

2
+
π2

2m
=
ω0

2

(
mω0ξ

2 +
π2

mω0

)
, (363)

where ω0 is the characteristic angular frequency of oscillations around a center of point or center of mass
point of the particle and m is the mass of the particle. Let us consider a parameter z defined by

z2 =
H

h̄ω0

=
1

2h̄

(
mω0ξ

2 +
π2

mω0

)
= k2(a2 + b2), (364)

where, k2 = 1/2h̄ , a2 = mω0ξ
2 and b2 = π2/mω0. Now, the parameter z can be written as a

complex number.
z = k(a+ ib) (365)

The product zz∗ = z2, z∗ being the complex conjugate. The complex numbers correspond to even
multivectors in the geometric algebra of Eucledian space and in general the unit imaginary is replaced
by a bivector iσ3 = σ1σ2.

z = k(a+ iσ3b) (366)

When a and b are considered as pure scalars, the even multivecrtor z can be written in a parametric
from of a rotor representing rotation in iσ3 plane.

z = kr(cos θ + iσ3 sin θ) = kr exp (iσ3θ), (367)

where the scalars a and b are expressed as a = r cos θ and b = r sin θ. The above equation shows that the
oscillations of the particle are equivalent to local complex rotations. A reversion operation on z gives z̄.

z̄ = kr exp (−iσ3θ) (368)

The product zz̄ then gives the energy of the oscillator. However, if the constants a and b were
treated as operators just like in quantum mechanics, the product would have contained an additional term
iσ3(ab − ba) and using the commutation relation (ab − ba) = ih̄ one can easily arrive at the energy of
the harmonic oscillator. However, the connection of particle spin to the zero point fields is masked by the
quantum mechanical commutation relation. It has been shown in the previous sections that the existence
of unit imaginary corresponds to the particle spin. To reveal spin connection of the harmonic oscillator,
the particle internal harmonic oscillator is analyzed in the complex vector formalism and this method is
purely classical that is without using any quantum commutation relations. This treatment not only gives
the correct energy of the oscillator but also elucidates the connection of spin to the particle mass.

Since the internal radius of rotation and momentum of the oscillating particle are basically vectors,
one must treat the even multivector z as a complex vector rather than a simple complex number and
this can be done by utilizing the property of pseudoscalar i2 = −1 and replacing the unit imaginary in
Equation (365) by the pseudo scalar i and expressing a and b as vectors. Then the complex vector Z and
its conjugate Z̄ can be defined as

Z = k(a + i b), (369)
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Z̄ = k(a− i b), (370)

where the vectors a and b are defined as

a = (mω0)1/2ξ and b = (mω0)−1/2π. (371)

As the pseudoscalar i commutes with all vectors in three dimensional space, we have

Z̄Z = k2(a2 + b2) + 2k2i(a ∧ b). (372)

The product Z̄Z is seen to be a multivector containing scalar and vector parts. The scalar part
k2(a2 + b2) is equal to H/h̄ω0. The bivector product, a ∧ b = ξ ∧ π is the internal zeropoint angular
momentum of the particle and represents the spin bivector S. In quantum mechanics, conventionally the
quantization axis is chosen along z-axis and hence one can choose the spin vector along σ3 or the spin
bivector along iσ3 direction. The particle spin bivector is given by Equation (317) and substituting it in
Equation (372) gives

Z̄Z =
H

h̄ω0

+
1

h̄
iS =

H

h̄ω0

− 1

2
σ3. (373)

Similarly, one can express the product ZZ̄ as

ZZ̄ =
H

h̄ω0

− 1

h̄
iS =

H

h̄ω0

+
1

2
σ3. (374)

Adding Equations (373) and (374), the scalar product of the complex vectors Z and Z̄ can be
obtained as

Z.Z̄ =
1

2
(ZZ̄ + Z̄Z) =

H

h̄ω0

. (375)

Subtracting Equations (373) and (374), we find the relation

(ZZ̄ − Z̄Z) = σ3. (376)

The unit vector σ3 acts like an operator on the idempotents J+ and J− given in Equations (62)
and (63) and produces the eigen values λ = ±1 .

σ3J± = λJ± (377)

Then multiplying Equation (376) from right by the idempotent J+ yields spin-up state of the particle.

(ZZ̄ − Z̄Z)J+ = +1J+ (378)

Similarly, multiplying Equation (376) from right by the idempotent J− yields spin-down state of
the particle.

(ZZ̄ − Z̄Z)J− = −1J− (379)

Further, multiplying Equations (373) and (374) from right by the idempotent J+ gives

Z̄ZJ+ =

(
H

h̄ω0

− 1

2

)
J+, (380)
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ZZ̄J+ =

(
H

h̄ω0

+
1

2

)
J+. (381)

When the particle oscillations and the fluctuations of the zeropoint field are in equilibrium,
the oscillations are the simple harmonic oscillations at resonance. Since all these oscillations are at
random because of the random fluctuations of the zeropoint field, we consider stochastic average of all
such oscillations. In the previous sections, the internal particle structure has been considered with centre
of charge and centre of mass points separated by the average radius of rotation. This radius of rotation is
considered as a vector ξ which is perpendicular to the momentum vector π. In the ground state energy
of the particle, the motion may be considered as a circular motion with constant magnitude |ξ|. In this
special case of minimum steady state energy or ground state energy of the harmonic oscillator, the kinetic
and potential energies are equal or the total energy is twice the kinetic energy and from the definition of
constants a and b in Equation (369), we find a2 = b2. Now, it can be shown that Z2 = Z̄2 = 0. Then the
complex vectors Z and Z̄ are complex null vectors and expressed as

Z = ka(σa + iσb), (382)

Z̄ = ka(σa − iσb), (383)

where σa and σb are unit vectors along a and b. Since we have chosen the unit vector σ3 normal to the
bivector σaσb , Equations (382) and (383) can be written as

Z = kaσa(1− σ3), (384)

Z̄ = kaσa(1 + σ3). (385)

Now, the products ZZ̄ and Z̄Z are expressed as

ZZ̄ = 2k2a2(1 + σ3), (386)

Z̄Z = 2k2a2(1− σ3). (387)

Since, 4k2ab = iσ3, in the case of ground state of the oscillator, the magnitude 4k2a2 = 1.
Multiplying the products in the Equations (386) and (387) from right by the idempotent J+ gives

ZZ̄J+ = 1J+, (388)

Z̄ZJ+ = 0. (389)

These relations combined with Equations (380) and (381) directly yield the ground state energy E0

of the oscillator per mode.

E0 =
h̄ω0

2
(390)

The origin of zeropoint energy is presumed to be due to quantum mechanical effect and considered
to be uniformly present throughout space in the form of randomly fluctuating electromagnetic
zeropoint fields. In stochastic electrodynamics, Marshall [49] showed that for a harmonic oscillator,
the fluctuations produced by zeropoint fields on the particle are exactly in agreement with quantum
theory. Thus the ground state energy corresponds to the zeropoint energy of the oscillator per mode [50]
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and an average value is obtained by taking a stochastic average of all such modes. In general the
frequency of oscillations of the particle may not necessarily be at resonance with the fluctuations of the
spectrum of random zeropoint fields and in such cases one may take into account the higher energy states
of the particle oscillator. The random zeropoint field in interaction with the particle oscillator would be
expected to produce random displacements producing a shift in the average energy minimum without any
change in the particle spin. In the case of higher energy states of the oscillator, the magnitudes of vectors
a and b are not equal and there is always a possibility of frequencies ωn = nω0 with which the particle
may oscillate. The particle oscillator may acquire additional energy from the spectrum of zeropoint
fields and the Hamiltonian contains additional energy terms. Now, generalizing the Hamiltonian with
the condition (H/h̄ω0) ≥ 1/2, suppose that H = H ′ + h̄ω0. Then the Equations (380) and (381) can be
expressed as

Z̄ZJ+ =

(
H ′

h̄ω0

+
1

2

)
J+, (391)

ZZ̄J+ =

(
H ′

h̄ω0

+
3

2

)
J+. (392)

These equations satisfy the relation (ZZ̄ − Z̄Z)J+ = +1J+. Similarly this relation is satisfied in all
the cases when H = H ′′ + 2h̄ω0, H = H ′′′ + 3h̄ω0 etc. Continuing the same procedure until the energy
reaches its minimum value H = H0 +nh̄ω0 one can find that in each case the relation (ZZ̄− Z̄Z)J+ =

+1J+ is satisfied. Thus the argument yields that the terms in brackets of Equations (380) and (381) must
be integers. With this correspondence the geometric products Z̄Z and ZZ̄ are expressed as

Z̄ZJ+ = nJ+, (393)

ZZ̄J+ = (n+ 1)J+. (394)

Comparing these equations with Equations (380) and (381) and replacing H by the energy En of the
oscillator we find

n =
En
ω0

− 1

2
, (395)

n+ 1 =
En
ω0

+
1

2
. (396)

Both these equations finally give the required result for the energy of the harmonic oscillator.

En =

(
n+

1

2

)
h̄ω0 (397)

The above treatment gives the energy of the oscillator purely on classical grounds.
Choosing the unit vectors σa and σb along a and b as above and assuming the unit vector σ3 normal

to the plane σaσb, in the general case the complex vectors Z and Z̄ can be expressed as

Z = kσa(a− bσ3), (398)

Z̄ = kσa(a+ bσ3). (399)

Since the unit vector σ3 is absorbed by the idempotent J+, multiplying Z and Z̄ from right by
J+ gives

ZJ+ = k(a− b)σaJ+, (400)
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Z̄J+ = k(a+ b)σaJ+. (401)

Now, one can easily verify the following relations.

ZZ̄J+ = k2(a− b)2J+ (402)

Z̄ZJ+ = k2(a+ b)2J+ (403)

Then using Equations (393) and (394), we find

k(a− b) =
√
n, (404)

k(a+ b) =
√
n+ 1. (405)

Now, the relations in Equations (400) and (401) are written as

ZJ+ =
√
nσaJ+, (406)

Z̄J+ =
√
n+ 1σaJ+. (407)

From the relations in Equations (404) and (405) we have

2ka =
√
n+ 1 +

√
n; 2kb =

√
n+ 1−

√
n; 4k2ab = 1. (408)

Thus for higher energies of the oscillator the magnitude of a increases with corresponding decrease
in the magnitude of b. Since 4k2ab = 1, the spin remains constant with its magnitude ab = h̄/2. From
Equations (400) and (401), it is straightforward to show

Z̄2lJ+ = Z2lJ+ = [n(n+ 1)]l/2J+ for (l = 1, 2, 3...). (409)

If we represent ZZ̄ as an operator N , we have NJ+ = nJ+ , then the following relations can be
easily proved.

NZ̄J+ = Z̄(n+ 1)J+ (410)

NZJ+ = (ZZ̄ − 1)ZJ+ = Z(n− 1)J+ (411)

Then the following commutation relations are evident.

[N, Z̄]J+ = Z̄J+ (412)

[N,Z]J+ = −ZJ+ (413)

In the case of ground state of the oscillator, the commutation relations in the above equation reduce to

NZ̄J+ = (+1)J+, (414)

NZJ+ = (−1)J+. (415)

These relations and Equations (412) and (413) reveal the fact that the complex vectors Z̄ and Z

are analogous to the creation and annihilation operators in quantum mechanics and satisfy similar
commutation relations. If we work with the idempotent J− the complex vectors reverse their
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actions. The above analysis elucidates the correspondence between the complex vector formalism of
harmonic oscillator to the quantum oscillator through equivalence between commutator product and
bivector product.

For particles having spin one, like photons spin |s| = h̄ and the harmonic oscillator problem gives
the photon energy given by Equation (240). Suppose if we assume |s| = 0, we have ZZ̄ − Z̄Z = 0.
Then either a or b must be zero and the oscillator ceases to oscillate. It means the commutator relation
eliminates zeropoint energy. Further, we are free to choose any value for the magnitude of spin. Then
we finally arrive at continuous energy spectrum of the oscillator just like a classical oscillator. Thus we
find that the existence of spin transforms a classical oscillator into a quantum oscillator.

For mathematical interest, the above procedure may be generalised if we assume the magnitude of
spin |s| = mh̄/2 for m = 1, 2, .... Then by substituting s = (mh̄/2)σ3 in Equations (373) and (374)
we find

Z̄Z =

(
H

h̄ω0

− mσ3

2

)
, (416)

ZZ̄ =

(
H

h̄ω0

+
mσ3

2

)
. (417)

The scalar product of Z and Z̄ is obtained by adding Equations (416) and (417).

Z.Z̄ =
H

h̄ω0

, (418)

This gives the energy of the oscillator. Subtracting Equations (416) and (417) gives the relation

ZZ̄ − Z̄Z = mσ3. (419)

Multiplying the above equation with the idempotent J+, we have

(ZZ̄ − Z̄Z)J+ = mJ+. (420)

Considering the arguments as above, from this equation one can arrive at the following relations.

ZZ̄J+ = (n+m)J+, (421)

Z̄ZJ+ = nJ+. (422)

Substituting these relations in Equations (416) and (417) respectively gives the energy of the particle
oscillator with spin mh̄/2 .

En =
(
n+

m

2

)
h̄ω0 (423)

The ground state energy of the oscillator is obtained when a2 = b2 and in this case the Equations (421)
and (422) are expressed as

ZZ̄J+ = mJ+, (424)

Z̄ZJ+ = 0. (425)

The ground state energy or the zeropoint energy per mode of the oscillating particle with spin
magnitude |s| = mh̄/2 is then obtained as

E0 = mh̄ω0/2. (426)
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Thus for m = 1, and m = 2, this equation gives the zeropoint energy associated with fermions and
bosons respectively. As above, if we define Z̄Z as an operator N then NJ+ = nJ+ and we find

ZJ+ =
√
nσaJ+, (427)

Z̄J+ =
√
n+mσaJ+. (428)

And comparing these equations with Equations (400) and (401) gives

2ka =
√
n+m+

√
n; 2kb =

√
n+m−

√
n; 4k2ab = m. (429)

Since 4k2ab = m the spin remains constant with its magnitude ab = mh̄/2. Now, using
Equations (421) and (422) we have

NZ̄J+ = Z̄(n+m)J+ (430)

NZJ+ = (ZZ̄ −m)ZJ+ = Z(n−m)J+ (431)

And it is trivial to find the following commutator relations

[N, Z̄]J+ = +mZ̄J+ (432)

[N,Z]J+ = −mZJ+ (433)

In the case of ground state of the oscillator, the above relations reduce to

NZ̄J+ = +mZ̄J+ (434)

NZJ+ = −mZJ+ (435)

Now, it may be understood that one particle with spin mh̄/2 is created by raising m number
of spin-half particles and one particle with spin mh̄/2 is annihilated by lowering m number of
spin-half particles.

4. Summary

The complex vector is defined as a sum of a vector and a bivector, and found to be a natural
extension of a vector. These complex vectors have certain special geometric properties and considered
as algebraic entities that represent rotations in space along with specified orientation and direction
in space. The complex vectors Z and its conjugate Z̄ form a physical space. The set of elements
{1,σk; k = 1, 2, 3} defined from Z and Z̄ form a closed complex four dimensional linear space. The set
of elements {1,σ1} form geometric algebra G(1). Complexifying G(1) generates geometric algebra
in two dimensions. The set of elements {1,σ1,σ2, i} form geometric algebra G(2) and the number
of elements are 22. The elements of even subalgebra of G(2) are called complex scalars and unit
complex scalars represent rotors and they form rotation group SO(2). The geometric algebra G(3) can
be generated from complexification of G(2). The set of elements {1,σk, Bk, i} form geometric algebra
G(3) of three dimensional space and the number of elements are 23. The general elements of geometric
algebra are known as multivectors. The even multivectors represent rotation followed by dilation and
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form spinor algebra. The spinor algebra is very much useful in the formulation of Dirac theory and rigid
body dynamics in classical mechanics. A multivector can be decomposed into a complex scalar and
a complex vector. The complex scalars form subalgebra of G(3) under multiplication. The geometric
product of two complex vectors is a multivector. The product of unit complex vector with its conjugate
gives an idempotent. In conventional quantum mechanics, idempotents correspond to helicity states.
A quaternion in geometric algebra is an even multivector and a normalized quaternion represents spatial
rotation. The sphere of unit quaternions is a twofold covering group of SO(3) and hence unit quaternions
represent the group SU(2). A quaternion in its spinorial form represents a complementary description
of spin wave function for fermions. The complexification process in complex vector space allows the
generation of higher n dimensional geometric algebra G(n) from (n−1) dimensional algebra G(n−1) by
considering the unit pseudoscalar in identification with square root of minus one. The spacetime algebra
of four dimensional spacetime can be generated from the geometric algebra G(3) by considering a vector
σ0 =

√
+1. An active Lorentz transformation of this vectorσ0 gives the unit vector along the future light

cone. A complex vector in spacetime is equal to a sum of relative vector and spatial bivector. The space
spanned by σ1 and σ2 unit vectors is flat space and considering the unit vector γ0 normal to the flat space
forms a three dimensional spacetime G(1, 2). An even multivector in G(1, 2) represents Lorentz rotation.
The three dimensional spacetime gives a natural alternative to the Minkowski spacetime. Considering
the unit vector γ0 normal to the unit vector σ1 forms two dimensional spacetime. The two dimensional
spacetime is quite useful in the geometric representation of spacetime events. The fourth dimension time
may be purely obtained from the scalar product of complex vectors or from the product of basis bivectors
and can be represented by a vector σ0. A general element in Clifford algebra is called a paravector and
equal to a sum of a scalar and a vector. Since, the product of a complex vector with its conjugate contains
a scalar and vector parts, a paravector can also be defined from this product. The paravector space
provides required representation of spacetime with some additional set of rules. The geometric algebra
of higher dimensional space is generated from the identification of the corresponding pseudoscalar to the
square root of minus one in the case of odd space dimensions and to the square root of plus one in the
case of even space dimensions (n > 2).

Any undamped elliptic harmonic wave can be represented by a product of complex vector and an
exponential factor. The complex vector represents a train of plane waves of elliptic harmonic motion.
The elliptic harmonic motion can be better visualized in the complex vector approach and complex vector
methods can be easily incorporated into the electromagnetic theory. A simplified form of Maxwell’s
equations is possible with the definition of complex vector electromagnetic field. Complex vector
formalism in electromagnetic theory simplifies the expressions and elucidates geometrical understanding
of the basic concepts. In an infinite electromagnetic plane wave the electric and magnetic fields are
perpendicular and in a finite transverse extent of an electromagnetic wave, the electromagnetic field lines
are closed loops and represent circulating energy flow in addition to the energy flow in the propagation
direction. Therefore, the energy of photon contains both kinetic and rotational energy components and
which allows us to define photon momentum and velocity complex vectors and the energy is expressed as
an even multivector. The circulating energy flow represents photon angular momentum. The multivector
energy of photon can be expressed in terms of a rotor. The cause of internal complex rotations may be
attributed to the fluctuations of zeropoint field. The complex internal field rotations of photon suggest
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that there exists an internal photon harmonic oscillator and internal spin structure. It has been shown
that the spin angular momentum causes the complex vector electromagnetic field to rotate in the E ∧B

plane without changing the direction of wave vector k . Whereas, the orbital angular momentum of
photon causes the plane having the orientation defined by the bivector r ∧ k to rotate without changing
the direction of k and the orientation of the bivector E ∧ B. The complex internal rotations of photon
are analyzed in terms of an internal harmonic oscillator in complex vector formalism pertaining to the
internal spin rotations and the ground state energy or zeropoint energy of photon is found to be h̄ω.

In the zitterbeweging model of electron, the structure of electron may be visualized as a point
charge in circular motion with frequency of rotation equal to the zitterbewegung frequency and the
average radius of rotation equal to half the Compton wavelength. The cause of such rotations has been
found to be due to the very existence of zeropoint field. In this view, the structure of an elementary
particle is not definitely a point particle with charge and mass or a spherical rigid body with charge
distribution. The internal oscillations of an elementary particle like electron elucidate the fact that the
particle possesses an extended internal structure. In the complex vector space such oscillations of the
particles are considered as spatial local rotations and the angular momentum corresponding to these
rotations is the zeropoint angular momentum or particle spin. In the complex vector algebra, the analysis
of particle dynamics reveals the fact that the basic reason for relativistic effects that we observe is due to
the internal complex rotations. We have discussed the bivector spin dynamics in complex vector space
and derived an expression for proper spin and the spin equation in the presence of constant magnetic field.
In the constant magnetic field, the particle contains a very low frequency spin precession in addition to
its internal complex rotation. As the particle moves in the zeropoint field, the particle itself induces
certain modifications to the field to take place at a lower frequency and the particle motion is visualized
as a superposition of internal complex rotations on the translational motion. This gives the genesis of de
Broglie relation and the quantum nature of particles in general. The wave nature of particles is found to
be associated with the zeropoint field and further the uncertainty principle is merely a consequence of
more fundamental property of the particles related to the bivector spin. The existence of internal structure
of the particle itself suggests that there exist certain correspondence with quantum operators with the
internal parameters. The quantum condition is in fact connected with the particle spin. Considering
the internal structure of the particle we have derived the Schrödinger equation and found that the very
appearance of Planck’s constant is directly related to the particle spin. In the rest frame of the particle
the rotation in bivector spin plane is a rotor and considering the relation between particle mass and spin,
the Dirac-Hestenes equation is derived in the complex vector algebra. It is clear that the internal spin
structure of the particle is hidden in both Schrödinger and Dirac equations and the analysis shows that
the classical mechanics combined with zeropoint field leads to quantum mechanics. The particle internal
harmonic oscillator has been analyzed in the complex vector formalism. It has been shown that the
complex vector and its conjugate of the particle oscillator are analogous to the creation and annihilation
operators in quantum mechanics. We have discussed the particle oscillator in the zeropoint field for spin
half, spin one and higher order spin. The analysis shows that the existence of spin transforms a classical
oscillator into a quantum oscillator.
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