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Abstract:

 Using torus gauge fixing, Hahn in 2008 wrote down an expression for a Chern-Simons path integral to compute the Wilson Loop observable, using the Chern-Simons action [image: there is no content], κ is some parameter. Instead of making sense of the path integral over the space of [image: there is no content]-valued smooth 1-forms on [image: there is no content], we use the Segal Bargmann transform to define the path integral over [image: there is no content], the space of [image: there is no content]-valued holomorphic functions over [image: there is no content]. This approach was first used by us in 2011. The main tool used is Abstract Wiener measure and applying analytic continuation to the Wiener integral. Using the above approach, we will show that the Chern-Simons path integral can be written as a linear functional defined on [image: there is no content] and this linear functional is similar to the Chern-Simons linear functional defined by us in 2011, for the Chern-Simons path integral in the case of [image: there is no content]. We will define the Wilson Loop observable using this linear functional and explicitly compute it, and the expression is dependent on the parameter κ. The second half of the article concentrates on taking κ goes to infinity for the Wilson Loop observable, to obtain link invariants. As an application, we will compute the Wilson Loop observable in the case of [image: there is no content] and [image: there is no content]. In these cases, the Wilson Loop observable reduces to a state model. We will show that the state models satisfy a Jones type skein relation in the case of [image: there is no content] and a Conway type skein relation in the case of [image: there is no content]. By imposing quantization condition on the charge of the link L, we will show that the state models are invariant under the Reidemeister Moves and hence the Wilson Loop observables indeed define a framed link invariant. This approach follows that used in an article written by us in 2012, for the case of [image: there is no content].
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1. Introduction

This is an unplanned sequel to [1,2]. Let M be a 3-manifold and G be a compact connected semisimple Lie group. Without loss of generality we will assume that G is a Lie subgroup of [image: there is no content], [image: there is no content]. We will identify the Lie algebra [image: there is no content] of G with a Lie subalgebra of the Lie algebra [image: there is no content] of [image: there is no content] throughout this article. Suppose we write [image: there is no content]. Then we can define a positive, non-degenerate bilinear form by [image: there is no content] for A,B∈[image: there is no content].

Let [image: there is no content]⊆[image: there is no content] be a subspace. The vector space of all smooth [image: there is no content]-valued 1-forms on a manifold Σ (need not be a 3-manifold) will be denoted by [image: there is no content]Σ,[image: there is no content]. We will identify the space of connection 1-forms on the trivial principal fiber bundle [image: there is no content] with group G and base manifold M with [image: there is no content]M,[image: there is no content]≡[image: there is no content].

Denote the group of all smooth G-valued mappings on M by [image: there is no content], called the gauge group. The gauge group induces a gauge transformation on [image: there is no content], [image: there is no content]×[image: there is no content]→[image: there is no content] given by



[image: there is no content]








for A∈[image: there is no content], Ω∈[image: there is no content]. The orbit of an element A∈[image: there is no content] under this operation will be denoted by [image: there is no content] and the set of all orbits by [image: there is no content]/[image: there is no content].
For A∈[image: there is no content], the Chern-Simons action is given by



[image: there is no content](A)=κ4π∫MTr[image: there is no content]A∧dA+23A∧A∧A,κ≠0.



(1)




Note that [image: there is no content] so that exp(i[image: there is no content]([image: there is no content])) is invariant under gauge transformation even though [image: there is no content]([image: there is no content]) is not.

The interest in Chern-Simons path integrals is the evaluation of Wilson Loop observables, that is we want to compute



Z(M,κ,q;li,ρi):=1ZCS∫[A]∈[image: there is no content]/[image: there is no content]∏k=1nW([image: there is no content];q)([image: there is no content])ei[image: there is no content]([image: there is no content])D[image: there is no content],



(2)




where


ZCS=∫[A]∈[image: there is no content]/[image: there is no content]ei[image: there is no content]([image: there is no content])D[image: there is no content],








is a normalising constant.
Here, [image: there is no content] is a link in M with non-intersecting (closed) curves [image: there is no content] and



W([image: there is no content];q)(A):=[image: there is no content][image: there is no content]expq∫[image: there is no content]A



(3)




is the Wilson loop associated to [image: there is no content]. And, [image: there is no content] is some heuristic Lebesgue measure on [image: there is no content]/[image: there is no content], [image: there is no content] is the matrix trace for some representation [image: there is no content]:[image: there is no content]→u(Nk), [image: there is no content], and [image: there is no content] is the time ordering operator.
Note that W([image: there is no content];q)(A) is the holonomy operator of A, computed along the loop [image: there is no content]. The integral in Equation (2) will be known as the Wilson Loop observable associated to the link L and q will be called the charge of the link. When L consists of only one curve, the link is termed as a knot.

It was argued in [3] that if one can make sense of the RHS of Equation (2), then one can define a suitable generalization of the Jones polynomial of the link L in M. The objective of this article is to compute the right hand side of Equation (2) for the case of [image: there is no content] in the non-abelian case. The case when the manifold is [image: there is no content] is also singled out in [3] and is the next simple case to consider after M=[image: there is no content].

The main purpose of this article is to define a Chern-Simons path integral in [image: there is no content] using torus gauge fixing and non-abelian gauge group. We will further show how link invariants appear from these path integrals in the second half of this article.

The case [image: there is no content] was worked out by [1,2] for the abelian and non-abelian gauge group G respectively. Using axial gauge fixing, it suffices to only consider connections which are zero in the z-direction.

Unfortunately, in the case of [image: there is no content], it is not possible to make the connection disappear in the [image: there is no content] direction. On our compact Lie group, fix a maximal torus T and let [image: there is no content] be the Lie algebra of T. Under torus gauge fixing, we can choose the connection such that it takes values in [image: there is no content] in the [image: there is no content] direction. This was accomplished by Hahn in [4] and he wrote down an expression for the Chern-Simons path integral in Expression 6. We will try to make sense of this expression instead.

Using local coordinates, we will work on [image: there is no content], which we will call it the classical space. The link L is mapped inside [image: there is no content], called a truncated link. Now, consider [image: there is no content], whereby [image: there is no content] is a complexification of [image: there is no content]. We will refer [image: there is no content] as a quantum space. After `scaling’ the truncated link and embed it inside [image: there is no content], the Wilson Loop observable will then be defined on this quantum space. Details to be given later.

Over this quantum space, we will explain how to construct two Wiener spaces. The first Wiener space will be the space of analytic 2-tuple [image: there is no content]-valued functions over the quantum space. The second Wiener space will be space of analytic 4-tuple [image: there is no content]-valued functions over the quantum space. The Chern-Simons path integral is defined as an integral over the product space of these 2 Wiener spaces. For the Wilson Loop observable, we will explicitly work out this integral for the truncated link embedded inside the quantum space.

The link invariants that we are interested in will only appear when we take the limit of the Wilson Loop observable as κ goes to infinity. This limit can be computed easily from a truncated link diagram, by projecting L on [image: there is no content]. By assigning [image: there is no content] to crossings on this link diagram, we can write down a formula for the Wilson Loop observable directly from this link diagram. Furthermore, we will show that the Wilson Loop observable is equal to a state model for links when the representation is the same for all curves in L.

Two diagrams represent the same link up to ambient isotopy if the 2 diagrams can be obtained from each other by applying Reidemeister moves. It is not true that the state model defines a link invariant. The state model for links has to satisfy certain algebraic equations to be a link invariant, including the Yang Baxter Equation (34). This will impose quantization conditions on the charge q of the link.

As an application, we will work out explicitly for the gauge groups [image: there is no content] and [image: there is no content]. We will show that using gauge group [image: there is no content], the Wilson Loop observable will satisfy a Homfly skein relation Equation (38), with [image: there is no content] and [image: there is no content]. For gauge group [image: there is no content], the Wilson Loop observable will satisfy a Conway-type skein relation, with [image: there is no content]. For both cases, [image: there is no content] is quantized to take only a discrete number of values.

This article is organized as follows. In Section 2, we will explain Hahn’s heuristic expression for the Chern-Simons path integral using torus gauge fixing. This section will contain mainly definitions. In Section 3, we will give a heuristic but equivalent definition, whereby the path integral will be defined on. In Section 4, we will compute some simple functional integrals, which motivates the definition of the Chern-Simons path integral. This is an extension to the path integral considered in [1]. In Section 5, we need to introduce some important linear operators which are necessary in defining the Chern-Simons path integral. In Section 6, we will give our definition of the Chern-Simons path integral. As an application, we will define the Wilson Loop observable given in Equation (2) and compute it.

The second half of this article concentrates on taking the limit as κ goes to infinity of the Wilson Loop observable. In Section 7, we will define a link diagram for a framed link L. In Section 8, we will compute the limit of the Wilson Loop observable. In Section 9, we will obtain framed link invariants in the case of gauge group [image: there is no content] and [image: there is no content]. We will make some ending remarks in Section 10.

We end this section by stating some notations which will be assumed throughout this article.

Notation 1. Suppose we have two Hilbert spaces, [image: there is no content]and [image: there is no content]. We consider the tensor product [image: there is no content]⊗[image: there is no content]. The inner product on the tensor product [image: there is no content]⊗[image: there is no content]is given by



⟨u1⊗u2,v1⊗v2⟩[image: there is no content]⊗[image: there is no content]=⟨u1,v1⟩[image: there is no content]⟨u2,v2⟩[image: there is no content].








This definition of the inner product on the tensor product of Hilbert spaces will be assumed throughout this article.

Now consider the direct product [image: there is no content]×[image: there is no content]. The inner product on [image: there is no content]×[image: there is no content]is defined by



⟨(u1,u2),(v1,v2)⟩[image: there is no content]×[image: there is no content]:=∑i=12⟨ui,vi⟩[image: there is no content].








This definition of the inner product on the direct product of Hilbert spaces will also be assumed throughout this article.

If [image: there is no content]=[image: there is no content]=H, we abbreviate by writing [image: there is no content].

Finally, we always use [image: there is no content]to denote an inner product.



2. Some Definitions and Notations

From this point onwards, we only consider the 3-manifold [image: there is no content]. On [image: there is no content], fix a north pole [image: there is no content] and let the south pole [image: there is no content] sit on the origin of [image: there is no content]. We use the stereographic projection X:[image: there is no content]→[image: there is no content] as local coordinates. Let [image: there is no content] be local coordinates on [image: there is no content].

On [image: there is no content], let i[image: there is no content] denote the mapping u∈[image: there is no content]↦exp(2πiu)∈{z∈[image: there is no content]||z|=1}≅[image: there is no content] and we set [image: there is no content]:=i[image: there is no content](0)∈[image: there is no content]. The restriction of i[image: there is no content] onto [image: there is no content], which is a bijective mapping [image: there is no content]→[image: there is no content], will also be denoted by i[image: there is no content] and its inverse will be denoted by i[image: there is no content]-1. The tangent vector of [image: there is no content] at the point i[image: there is no content](u), induced by the curve i[image: there is no content], will be denoted by i[image: there is no content]′(u), for [image: there is no content]. Finally, [image: there is no content] will denote the vector field on [image: there is no content] given by [image: there is no content](i[image: there is no content](t))=i[image: there is no content]′(t) for [image: there is no content] and [image: there is no content], the real-valued 1-form on [image: there is no content] is dual to [image: there is no content].

For the rest of this article, instead of working in [image: there is no content], we work in local coordinates (X,i[image: there is no content]-1). All the formulas in the sequel will be written using these local coordinates.


2.1. Quasi-Axial and Torus Gauge Fixing

Let [image: there is no content] be the vector space of (smooth) [image: there is no content]-valued 1-forms on [image: there is no content]. We further impose the condition that it vanishes at infinity. Now, we write [image: there is no content]=[image: there is no content]⊥⊕[image: there is no content]||, where



[image: there is no content]⊥:=A∈[image: there is no content]|A∂∂t=0,[image: there is no content]||:={B⊗dt|B∈[image: there is no content]([image: there is no content]×[image: there is no content],[image: there is no content])}.








For every A∈[image: there is no content], [image: there is no content] and [image: there is no content] will denote the unique elements of [image: there is no content]⊥, respectively [image: there is no content]|| such that A=[image: there is no content]+[image: there is no content] holds. For a given A∈[image: there is no content], we set [image: there is no content]:=A[image: there is no content]∈[image: there is no content]([image: there is no content]×[image: there is no content],[image: there is no content]), i.e., [image: there is no content] is the element of [image: there is no content]([image: there is no content]×[image: there is no content],[image: there is no content]) given by [image: there is no content]=[image: there is no content]⊗dt.

Let T be a maximal torus of G and denote the Lie algebra of T by [image: there is no content]. An element A∈[image: there is no content] will be called “quasi-axial” (respectively “in the T-torus gauge”) if the functions [image: there is no content]((σ,·)), σ∈[image: there is no content] are constant (respectively constant and [image: there is no content]-valued). We will denote the set of all quasi-axial elements (respectively all elements in the T-torus gauge) of [image: there is no content] by [image: there is no content]qax (respectively [image: there is no content]qax(T)). Thus, we have



[image: there is no content]qax=[image: there is no content]⊥⊕{B⊗dt|B∈[image: there is no content]([image: there is no content],[image: there is no content])},[image: there is no content]qax(T)=[image: there is no content]⊥⊕{B⊗dt|B∈[image: there is no content]([image: there is no content],[image: there is no content])}.








The following proposition is Proposition 5.2 taken from [4], the proof is omitted. We present the proposition using local coordinates X.

Proposition 1. Let A∈[image: there is no content]qaxand let [image: there is no content]∈[image: there is no content]⊥and B∈[image: there is no content]([image: there is no content],[image: there is no content])be given by A=[image: there is no content]+B⊗dt. Then we have



[image: there is no content](A)=[image: there is no content]([image: there is no content]+B⊗dt)=-κ4π∫01dt∫[image: there is no content]Tr[image: there is no content](t)∧∂∂t+ad(B)·[image: there is no content](t)-2∫[image: there is no content]Tr[image: there is no content](t)∧dB.








Definition 1. (Regular elements) Let [image: there is no content]denote the set of regular elements of G, i.e., the set of all [image: there is no content]which are contained in a unique maximal torus of G. Similarly, let [image: there is no content]regdenote the set of regular elements of [image: there is no content], i.e., the set of all B∈[image: there is no content]which are contained in a unique maximal Abelian Lie subalgebra of [image: there is no content]. We set [image: there is no content]reg′:=exp-1([image: there is no content]).

It is not difficult to see that g∈[image: there is no content] (resp. B∈[image: there is no content]reg) if and only if the set of fixed points of [image: there is no content] (resp. the kernel of [image: there is no content]) is a maximal Abelian Lie subalgebra of [image: there is no content]. Thus, [image: there is no content]reg′⊂[image: there is no content]reg.

Hahn in [4] was able to write 2 expressions for Expression 2 on the subspace [image: there is no content]qax and [image: there is no content]qax(T). Let [image: there is no content] be a link. Using quasi-axial gauge fixing, we have the following expression taken from Equation (6.3) in [4], (∼ means up to a constant.)



Z(M,κ,q;li,ρi)=∫∏k=1nW([image: there is no content];q)(A)1Zexp(i[image: there is no content](A))DA










∼∫[image: there is no content]([image: there is no content],[image: there is no content]reg′)∫[image: there is no content]⊥∏k=1nW([image: there is no content];q)([image: there is no content]+B⊗dt)exp(i[image: there is no content]([image: there is no content]+B⊗dt))D[image: there is no content]Δ˜[B]D˜B










=∫[image: there is no content]([image: there is no content],[image: there is no content]reg′)∫[image: there is no content]⊥∏k=1nW([image: there is no content];q)([image: there is no content]+B⊗dt)dμB⊥([image: there is no content])Δ˜[B]D˜B,



(4)




where D[image: there is no content] is the informal “Lebesgue measure” on [image: there is no content]⊥ and


[image: there is no content]








[image: there is no content] is the informal Lebesgue measure on [image: there is no content]([image: there is no content],[image: there is no content]). For B∈[image: there is no content]([image: there is no content],[image: there is no content]reg′),


dμB⊥([image: there is no content]):=expi[image: there is no content]([image: there is no content]+B⊗dt)D[image: there is no content],








and from Proposition 1, we will write


[image: there is no content](A)=[image: there is no content]([image: there is no content]+B⊗dt),A∈[image: there is no content]qax










=-∫01dt12[image: there is no content](t),∂∂t+ad(B)·[image: there is no content](t)[image: there is no content],[image: there is no content]-[image: there is no content](t),dB[image: there is no content],[image: there is no content],



(5)




with [image: there is no content][image: there is no content],[image: there is no content] denotes the bilinear form on the vector space of smooth [image: there is no content]-valued 1-forms on [image: there is no content], [image: there is no content][image: there is no content],[image: there is no content], given by


⟨A,A′⟩[image: there is no content],[image: there is no content]:=κ2π∫[image: there is no content]Tr(A∧A′)








for A, A′∈[image: there is no content][image: there is no content],[image: there is no content]⊂[image: there is no content][image: there is no content],Mat(N¯,[image: there is no content]). Similar definition for [image: there is no content][image: there is no content],[image: there is no content], with A, A′∈[image: there is no content][image: there is no content],[image: there is no content]. Here, [image: there is no content][image: there is no content],Mat(N¯,[image: there is no content]) is the vector space of [image: there is no content]-valued 1-forms on [image: there is no content]. Finally, for A=[image: there is no content]+B⊗dt∈[image: there is no content]qax, we have


[image: there is no content]








Here, [image: there is no content]+ad(B) is viewed as an operator on [image: there is no content]([image: there is no content]×[image: there is no content],[image: there is no content]).

Definition 2. (Maximal Torus)


	Let T be a fixed maximal torus of G. The Lie algebra of T will be denoted by [image: there is no content]. Moreover, we set Treg:=T∩[image: there is no content]and treg′:=[image: there is no content]∩[image: there is no content]reg′. Note that exp-1([image: there is no content])⊂[image: there is no content].


	Let [image: there is no content][image: there is no content]denote the scalar product (A,B)∈[image: there is no content]×[image: there is no content]↦-Tr(AB)∈[image: there is no content]on [image: there is no content]and let [image: there is no content]be the Lie algebra of T. Let [image: there is no content]0be the [image: there is no content][image: there is no content]orthogonal complement of [image: there is no content]in [image: there is no content].




Suppose we write [image: there is no content]⊥=[image: there is no content]^⊥⊕[image: there is no content]c⊥, whereby



[image: there is no content]^⊥:={[image: there is no content]∈[image: there is no content]⊥|π[image: there is no content][image: there is no content],[image: there is no content]([image: there is no content])(0)=0},










[image: there is no content]c⊥:={[image: there is no content]∈[image: there is no content]⊥|[image: there is no content](t)=[image: there is no content](0)∈[image: there is no content][image: there is no content],[image: there is no content],∀t∈[image: there is no content]}≅[image: there is no content][image: there is no content],[image: there is no content].








Here, π[image: there is no content][image: there is no content],[image: there is no content] is the projection operator onto the second term in the direct sum [image: there is no content][image: there is no content],[image: there is no content]≅[image: there is no content][image: there is no content],[image: there is no content]0⊕[image: there is no content][image: there is no content],[image: there is no content]. And, [image: there is no content][image: there is no content],[image: there is no content] (respectively [image: there is no content][image: there is no content],[image: there is no content]0)denotes the vector space of [image: there is no content]-valued ([image: there is no content]0-valued) smooth 1-forms on [image: there is no content].

Let A^⊥∈[image: there is no content]^⊥, [image: there is no content]∈[image: there is no content]c⊥. Note that [image: there is no content]. For A^⊥+[image: there is no content]+B⊗dt∈[image: there is no content]qax(T), we have the following torus gauge analogue of Equation (4), taken from Equation (6.6) in [4],



Z(M,κ,q;li,ρi)=1Z∫[image: there is no content]([image: there is no content],[image: there is no content]reg′)[∫[image: there is no content]c⊥∫[image: there is no content]^⊥∏k=1nW([image: there is no content];q)(A^⊥+[image: there is no content]+B⊗dt)dμB⊥(A^⊥)










×expi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]D[image: there is no content]]Δ˜[B]D^B,



(6)




where


Z=∫[image: there is no content]([image: there is no content],[image: there is no content]reg′)∫[image: there is no content]c⊥∫[image: there is no content]^⊥dμB⊥(A^⊥)expi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]Δ˜[B]D[image: there is no content]D^B



(7)




and [image: there is no content] is a link. In this case, do note that


D^B=det∑n=0∞(ad(B))n(n+1)!det-ad(B)|[image: there is no content]0DB










=detid[image: there is no content]0-expad(B)|[image: there is no content]0DB:=Y(B)DB,








with [image: there is no content] denoting the “Lebesgue measure" on [image: there is no content]([image: there is no content],[image: there is no content]). Now, [image: there is no content] is dense in T and since exp:[image: there is no content]→T is a local homeomorphism, we can conclude immediately that treg′=exp-1([image: there is no content]) is dense in the vector space, [image: there is no content]. Thus, we will in the rest of the article, replace [image: there is no content]([image: there is no content],[image: there is no content]reg′) with [image: there is no content]([image: there is no content],[image: there is no content]) in Equations (6) and (7).
And with ∼ denoting equality up to a multiplicative constant independent of B,



[image: there is no content]








where the operator [image: there is no content]+ad(B) in the numerator is defined on [image: there is no content]([image: there is no content]×[image: there is no content],[image: there is no content]). For B∈[image: there is no content]([image: there is no content],[image: there is no content]),


dμB⊥(A^⊥):=expi[image: there is no content](A^⊥+B⊗dt)DA^⊥,



(8)




whereby a direct calculation using Equation (5) gives


[image: there is no content](A)=[image: there is no content](A^⊥+B⊗dt)










=-12∫01dtA^⊥(t),∂∂t+ad(B)·A^⊥(t)[image: there is no content],[image: there is no content].








We refer the reader to [4] for the derivation of these expressions as our main focus in this article is to make sense of Expression 6. For ease of notations, we omit κ on the RHS of Expression Equation (6), but the reader should note its dependence on κ.



2.2. Infinite Dimensional Determinant

Let us first digress a little and discuss the function Y, which is defined as



Y(B)=det∑n=0∞(ad(B))n(n+1)!det-ad(B)|[image: there is no content]0DB










=detid[image: there is no content]0-expad(B)|[image: there is no content]0.








Note that [image: there is no content] is skew symmetric and thus the operator [image: there is no content] is unitary on [image: there is no content]([image: there is no content])⊗[image: there is no content]0, thus it is not a compact operator and hence [image: there is no content] is not trace class. Therefore we cannot define [image: there is no content] as a Fredholm determinant.

Alternatively, we can interpret [image: there is no content] as a product form, i.e.,



D^B=⨂[image: there is no content]([image: there is no content],[image: there is no content])μ[image: there is no content],








where μ[image: there is no content] is a suitable measure on [image: there is no content]. More precisely, we should have μ[image: there is no content](v)=det[I|[image: there is no content]0-exp[ad(v)]|[image: there is no content]0], where v∈[image: there is no content]. This suggests the following heuristic formula


D^B=∏k=1∞detI|[image: there is no content]0-exp[ad([image: there is no content])]|[image: there is no content]0DBk,








whereby [image: there is no content] is some orthonormal basis in [image: there is no content]([image: there is no content])⊗[image: there is no content] and [image: there is no content] is Lebesgue measure on the subspace spanned by [image: there is no content]. However, the term detI|[image: there is no content]0-exp[ad([image: there is no content])]|[image: there is no content]0 is still ill-defined and we need to resolve this.
Note that [image: there is no content] is a skew symmetric operator, i.e., [image: there is no content]. Let N be the dimension of [image: there is no content] and [image: there is no content] be an orthonormal basis in [image: there is no content], and ad(Ei):[image: there is no content]0↦[image: there is no content]0 is simultaneously diagonalizable. Suppose that [image: there is no content] are the complex eigenvalues of ad(Ei)|[image: there is no content]0 and let [image: there is no content] be an orthonormal basis in [image: there is no content]([image: there is no content]). Then we write for B∈[image: there is no content]([image: there is no content])⊗[image: there is no content],



det[I|[image: there is no content]0-exp(ad(B))|[image: there is no content]0]










=∏k=1∞∏l=1N-R1-exp∑j=1Rλlj⟨B,[image: there is no content]⊗Ej⟩⊗Ej|[image: there is no content]0,



(9)




where ⟨B,[image: there is no content]⊗Ej⟩=-κ2πTr∫[image: there is no content][image: there is no content](x)[B(x)Ej]dx, [image: there is no content] is Lebesgue measure. That is, we interpret the determinant as an infinite product.
Unfortunately, the infinite product given in Equation (9) converges to 0. Furthermore, if we use Definition 8, we observe that the normalizing constant in Equation (6) can be shown to be 0. See Remark 4.

As such, we will drop the term [image: there is no content] in future for reasons cited above. Another reason for dropping this term is that we really do not need this term to define the link invariants in the second half of this article.




3. Heuristic Argument

Notation 2. Throughout the rest of this article, we adopt the following notation. For x∈[image: there is no content], we let [image: there is no content], which is a Gaussian measure with variance [image: there is no content]. And let [image: there is no content].

We let [image: there is no content]denote the 2-tuple [image: there is no content], [image: there is no content]are integers with [image: there is no content]. And we write [image: there is no content]!:=m1!m2!. For [image: there is no content], z[image: there is no content]:=z1m1z2m2. Let [image: there is no content]denote the set of all such 2-tuples, i.e.,



[image: there is no content]=[image: there is no content]|∑j=12mj=r.








Let P=⋃r=0∞[image: there is no content].

Consider the Schwartz space [image: there is no content], with the Gaussian function [image: there is no content], [image: there is no content](x)=κe-κ2|x|2/4/(2π)[image: there is no content]. The inner product [image: there is no content] is given by ⟨f,g⟩=κ∫[image: there is no content]f·gdλ/2π, λ is Lebesgue measure on [image: there is no content]. Let S¯κ([image: there is no content]) be the smallest Hilbert space containing [image: there is no content], using this inner product.

The Hermite polynomials [image: there is no content] form an orthogonal set on [image: there is no content] with the Gaussian measure [image: there is no content]. Let H[image: there is no content](x):=hi(x+)hj(x-), [image: there is no content]=(i,j) with [image: there is no content], be a product of Hermite polynomials and H[image: there is no content]κ=H[image: there is no content](κ·).

We have the normalized Hermite polynomials H[image: there is no content]/[image: there is no content]! with respect to the Gaussian measure [image: there is no content]. Then



⋃r=0∞ςH[image: there is no content](κx+,κx-)[image: there is no content]/[image: there is no content]!:[image: there is no content]∈[image: there is no content]








is an orthonormal basis for S¯κ([image: there is no content]).
Definition 3. Define a transformation [image: there is no content], [image: there is no content]and [image: there is no content]. Thus [image: there is no content]and [image: there is no content]. Observe that [image: there is no content]for any κ and that [image: there is no content].

For each Hermite polynomial [image: there is no content], we will define a function [image: there is no content] on [image: there is no content]. Define



[image: there is no content](t)=[image: there is no content]κηκ(t)κ2πe-κ2ηκ(t)2/4ηκ′(t),[image: there is no content](0):=0.








Note that [image: there is no content] approaches 0 as [image: there is no content] or [image: there is no content].

Now define a real subspace [image: there is no content]⊂[image: there is no content]([image: there is no content]), spanned by [image: there is no content]. We make [image: there is no content] into an inner product space by defining an inner product,



fκηκκ2πe-κ2ηκ2/4ηκ′,gκηκκ2πe-κ2ηκ2/4ηκ′










:=∫01fκηκ(t)gκηκ(t)κ2πe-κ2ηκ(t)2/2ηκ′(t)dt=∫-∞∞f(κt)g(κt)κ2πe-κ2t2/2dt,








whereby f and g are polynomials. Complete the inner product space [image: there is no content] into a Hilbert space, denoted by S¯κ([image: there is no content]). Clearly, {[image: there is no content]/n!}n≥0 is an orthonormal basis.
Remark 1. We remark that the constant function 1 is not inside S¯κ([image: there is no content]). Furthermore, it is not necessary to consider all the [image: there is no content]functions on [image: there is no content]. To obtain the link invariants later, S¯κ([image: there is no content])is good enough for our consideration.

Definition 4. Let S¯κ([image: there is no content]×[image: there is no content])be the smallest Hilbert space containing S¯κ([image: there is no content])⊗S¯κ([image: there is no content]). We define



A^⊥=A^⊥=α+⊥⊗dx++α-⊥⊗dx-:α±⊥∈S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content],










[image: there is no content]=[image: there is no content]=b+⊗dx++b-⊗dx-:b±∈S¯κ([image: there is no content])⊗[image: there is no content],








and


[image: there is no content]:=B⊗dt:b∈S¯κ([image: there is no content])⊗[image: there is no content].








We will write [image: there is no content]and [image: there is no content]. Observe that [image: there is no content].
With this definitions, we are going replace Equation (6) with



Z(M,κ,q;li,ρi)=1Z∫[image: there is no content][∫[image: there is no content]∫A^⊥∏k=1nW([image: there is no content];q)(A^⊥+[image: there is no content]+Bdt)dμB⊥(A^⊥)










×expi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]D[image: there is no content]]Δ˜[B]Y(B)DB.
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Henceforth, we will try to make sense of the RHS of Equation (10).

Remark 2. Note that we replace [image: there is no content]and [image: there is no content]to be [image: there is no content]-valued forms instead of [image: there is no content]-valued forms.

Let Λq(T*[image: there is no content]) be the q exterior power of the cotangent bundle over [image: there is no content]. Let Γq([image: there is no content]) denote the space of [image: there is no content] sections in Λq(T*[image: there is no content]). We use local coordinates [image: there is no content]. To define an [image: there is no content] space on the space of q-forms, we have to introduce a metric g on T[image: there is no content]. We pick the standard metric [image: there is no content]. This metric defines an inner product on Λq(T*[image: there is no content]) which we denote by [image: there is no content]q and we can define a volume form [image: there is no content]. (See [5] for details.) Therefore, we can define a Hodge star operator * acting on k-forms, *:Λk(T*[image: there is no content])→Λ2-k(T*[image: there is no content]), such that for u,v∈Λk(T*[image: there is no content]),



[image: there is no content]








Note that because dim[image: there is no content]=2, we have that [image: there is no content] if v∈Λ1(T*[image: there is no content]); [image: there is no content] if v∈Λ0(T*[image: there is no content]). We define an [image: there is no content] inner product on sections of real-valued q-forms, Γq([image: there is no content]) by



⟨u,v⟩g:=κ2π∫[image: there is no content]u∧*v,u,v∈Γq([image: there is no content]).








By the choice of the metric, note that S¯κ([image: there is no content]) is a sub Hilbert space inside Γ0([image: there is no content]). Let



Ω1([image: there is no content]):={u+⊗dx++u-⊗dx-:u±∈S¯κ([image: there is no content])}.








Then, Ω1([image: there is no content])≅S¯κ([image: there is no content])×2 is a Hilbert space.

We will also write



⟨u,v⟩g,[image: there is no content]:=-κ2π∫[image: there is no content]Tr[u∧*v],u,v∈S¯κ([image: there is no content])⊗[image: there is no content]⊕Ω1([image: there is no content])⊗[image: there is no content].
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Now, there are 2 Hilbert spaces [image: there is no content] and [image: there is no content] that we need to consider for the Chern-Simons integral, which we will each make [image: there is no content] into a direct product [image: there is no content], for [image: there is no content].

The first Hilbert space [image: there is no content] is S¯κ([image: there is no content])⊗S¯κ([image: there is no content])⊗[image: there is no content]. Take the direct product [image: there is no content]. This is similar to the construction used in [1].

The second Hilbert space [image: there is no content] that we need to consider is [image: there is no content]=[image: there is no content]=Ω1([image: there is no content])⊗[image: there is no content]≅(S¯κ([image: there is no content])⊗[image: there is no content])×2. Now we need to take the direct product [image: there is no content], which is isomorphic to the direct product of 4 copies of S¯κ([image: there is no content])⊗[image: there is no content].


3.1. Heuristic Argument

Lemma 1. Now write A^⊥=A^+⊥⊗dx++A^-⊥⊗dx-∈[image: there is no content]^⊥. Then,



∫01A^⊥(t),∂∂t+ad(B)·A^⊥(t)[image: there is no content],[image: there is no content]dt










=κπ∫01∫[image: there is no content]TrA^+⊥(t)·∂∂t+ad(B)A^-⊥(t)dx+dx-dt.








Proof. Because [image: there is no content] is an anti-symmetric operator, we have



∫01A^⊥(t)),m(B)·A^⊥(t)[image: there is no content],[image: there is no content]dt










=κ2π∫01∫[image: there is no content]TrA^+⊥·m(B)A^-⊥dx+∧dx-+A^-⊥·m(B)A^+⊥dx-∧dx+(t)dt










=κ2πTr∫01∫[image: there is no content]A^+⊥·m(B)A^-⊥dx+∧dx-+A^+⊥·m(B)A^-⊥(t)dx+∧dx-dt










=κπ∫01∫[image: there is no content]TrA^+⊥·∂∂t+ad(B)A^-⊥(t)dx+∧dx-dt.








☐
Thus, from Equation (8), we can write



dμB⊥(A^⊥)=e-i2∫01⟨A^+⊥,m(B)A^-⊥⟩g,[image: there is no content](t)dtDA^+⊥DA^-⊥≡ei⟨A^+⊥,m(B)A^-⊥⟩DA^+⊥DA^-⊥.
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Here and what follows, [image: there is no content] will always denote an inner product in a Hilbert space.

Definition 5. (Orthonormal basis [image: there is no content])

The orthonormal basis in [image: there is no content], [image: there is no content]will be fixed throughout this article. Let ∑i=1Nγi⊗Ei∈H⊗[image: there is no content], ∑i=1Nδi⊗Ei∈H⊗[image: there is no content]and ∑i=1Nui⊗Ei∈H⊗[image: there is no content]. We let [image: there is no content]♭denote a [image: there is no content]-valued inner product, i.e.,



[image: there is no content]








Refer to Definition 4. We will now give a heuristic argument for Expression 10. Let δ denote the Dirac delta function and for E,F∈[image: there is no content], we write



⟨δ(x)⊗E,f⊗F⟩=f(x)Tr[-EF],⟨δ(x)⊗δ(t)⊗E,g⊗F⟩=g(x,t)Tr[-EF].








Let xi∈[image: there is no content], ti∈[image: there is no content] and [image: there is no content], with [image: there is no content]. Define



αi,±=∑j=1Nc±iδxi⊗δti⊗Ej,βi,±=∑j=1Nd±iδxi⊗Ej,βi,0=∑j=1Nδxi⊗Ej.








We will also write [image: there is no content]. Denote



[image: there is no content]










[image: there is no content]([image: there is no content],B)=exp∑i=1R⟨Ac,+⊥,βi,+⊗dx+⟩+⟨Ac,-⊥,βi,-⊗dx-⟩+⟨B,d0iβi,0⟩










[image: there is no content]








For simplicity, we want to make sense of



1Z∫[image: there is no content]∫[image: there is no content]∫A^⊥[image: there is no content](A^⊥)[image: there is no content]([image: there is no content],B)dμB⊥(A^⊥)expi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]D[image: there is no content]Δ˜[B]DB,
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with Z is a normalizing constant. Note that [image: there is no content] is defined by Equation (12). As discussed in Subsection 2.2, we drop the term Y in Equation (10).
Write m(B)=[image: there is no content]+ad(B). Then [image: there is no content], so



[image: there is no content]










[image: there is no content]








Note that we make use of the fact that [image: there is no content] is a skew symmetric operator, so [image: there is no content].

Now we make the following substitution [image: there is no content]. The Jacobian factor is [image: there is no content], thus Expression 13 becomes,



1Z¯∫[image: there is no content]||[∫[image: there is no content]c⊥[∫[image: there is no content]^⊥exp∑i=1RA^+⊥,αi,++A^-⊥,-m(B(xi))-1αi,-










×ei⟨A^+⊥,A^-⊥⟩DA^+⊥DA^-⊥][image: there is no content]expi⟨[image: there is no content],dB⟩D[image: there is no content]]DB,








where


Z¯:=∫[image: there is no content]^⊥ei⟨A^+⊥,A^-⊥⟩DA^+⊥DA^-⊥·∫[image: there is no content]||∫[image: there is no content]c⊥expi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]D[image: there is no content]DB










[image: there is no content]








Now, B∈S([image: there is no content]) and [image: there is no content]∈Ω1([image: there is no content]). With this new notation, we can write



⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]=-⟨[image: there is no content],**dB⟩[image: there is no content],[image: there is no content]=⟨[image: there is no content],*dB⟩g,[image: there is no content],










⟨ξ,B⟩g,[image: there is no content]=-κ2πTr∫[image: there is no content]B∧dd-1*ξ










=κ2πTr∫[image: there is no content]dB∧d-1*ξ=-⟨d-1*ξ,*dB⟩g,[image: there is no content],
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using Stokes’ Theorem and Equation (11). So if we make the substitution [image: there is no content], then


[image: there is no content]








and


exp∑i=1RB,∑j=1Nδxi⊗Ejd0iexpi⟨[image: there is no content],dB⟩[image: there is no content],[image: there is no content]D[image: there is no content]DB










∼exp-∑i=1R⟨A˜c⊥,d0id-1*βi,0⟩expi⟨[image: there is no content],A˜c⊥⟩g,[image: there is no content]D[image: there is no content]DA˜c⊥,








up to some constant.
Thus, the path integral, up to a constant, can written in the form



1Z¯∫[image: there is no content]c⊥×[image: there is no content]˜c⊥exp∑i=1R⟨Ac⊥,βi⟩exp-∑i=1RA˜c⊥,d0id-1*βi,0










{∫[image: there is no content]^⊥exp∑i=1RA^+⊥,αi,++A^-⊥,-mA˜c⊥,-d-1*βi,0♭-1αi,-










×expi⟨A^+⊥,A^-⊥⟩DA^+⊥DA^-⊥}expi⟨[image: there is no content],A˜c⊥⟩D[image: there is no content]DA˜c⊥.
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We wish to point out that this integral in Expression 15 is of the form



∫[image: there is no content]e⟨v+,β⟩e⟨v-,β^0⟩∫H1×2e⟨u+,α+⟩+⟨u-,∑iT(⟨v-,[image: there is no content]⟩♭)αi,-⟩ei⟨u+,u-⟩Du+Du-ei⟨v+,v-⟩Dv+Dv-,



(16)




where [image: there is no content] is a linear operator that maps [image: there is no content]→[image: there is no content],


α±=∑iαi,±,β±=∑iβi,±,β0=∑id0iβi,0,β^0=∑id0i[image: there is no content],








and [image: there is no content], [image: there is no content].
Thus, our goal is to give a sensible definition for Expression 16. From Expression 15, we also need to define



∂∂t+adλ-1δy⊗δs⊗Ej,d-1*δw,λ∈[image: there is no content].








Unfortunately, the Dirac delta function δ is not inside S¯κ([image: there is no content]×[image: there is no content]). Therefore, the term [image: there is no content] is ill defined. Furthermore, the operators [image: there is no content]+λ-1 and [image: there is no content] will be shown later, to be only defined on a dense subspace of S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content] and S¯κ([image: there is no content]) respectively. Hence these operators do not operate on the Dirac delta function.

We would like to end this section by saying that to define the path integral, we will need the following inputs, namely αi,±∈[image: there is no content], βi,+⊗dx++βi,-⊗dx-∈[image: there is no content] and βi,0∈S¯κ([image: there is no content])⊗[image: there is no content]. And [image: there is no content] in Expression refe.x.1 is given by -d-1*βi,0∈Ω1([image: there is no content])⊗[image: there is no content], which will be defined later.

The reader should think of [image: there is no content], and similarly,



ββ^0≡β+⊗dx++β-⊗dx--d-1*β0∈Ω1([image: there is no content])⊗[image: there is no content]×2=[image: there is no content].








The path integral is simply an integral over the product space H1×2×[image: there is no content], which we will define in the next section.




4. Functional Integral

Consider the real Hilbert space spanned by {zn:z∈[image: there is no content]}n=0∞, integrable with respect to the Gaussian measure, equipped with a sesquilinear complex inner product, given by



⟨zr,zr′⟩=1π∫[image: there is no content]zr·zr′¯e-|z2|dxdp,z=x+-1p.
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Note that [image: there is no content] means complex conjugate. Denote this Hilbert space over [image: there is no content], by [image: there is no content]. An orthonormal basis is given by



znn!:n≥0.








Let H2([image: there is no content]) be the smallest Hilbert space containing [image: there is no content].

It is well-known that there is no sensible notion of Lebesgue measure on an infinite dimensional space. Our next strategy will be to define a Gaussian type of measure on H2([image: there is no content]). Unfortunately, this space is too small to support a Gaussian measure.

Let x∈H2([image: there is no content]), [image: there is no content]. Introduce a norm by setting



[image: there is no content]
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Here, [image: there is no content] is the ball with radius [image: there is no content], center 0 in [image: there is no content]. Note this norm is weaker than the [image: there is no content] norm in H2([image: there is no content]).

Using this weaker norm, complete H2([image: there is no content]) into a Banach space B. In [1], it was shown that one can equip B with a Gauss measure [image: there is no content], with variance [image: there is no content]. Identify y∈B*⊂H2([image: there is no content])⊂B and denote the pairing [image: there is no content].

The space B can be described explicitly. Let H2([image: there is no content])[image: there is no content]=H2([image: there is no content])⊗[image: there is no content][image: there is no content] and B[image: there is no content]*=B*⊗[image: there is no content][image: there is no content]. In [1], it was shown that

Proposition 2.


	The support of [image: there is no content]in the Banach space B is the space of holomorphic [image: there is no content]-valued functions on [image: there is no content].


	Let w∈[image: there is no content]and define an evaluation map, [image: there is no content]. Then [image: there is no content]is in B[image: there is no content]*.




Remark 3. Note that χ will play the role of the Dirac delta function discussed earlier. The advantage of this is that now χ∈B*⊂H2([image: there is no content]).

Notation 3. We denote the Abstract Wiener space containing H by B, with Gauss measure [image: there is no content], variance [image: there is no content]. If [image: there is no content]is an Abstract Wiener space, then [image: there is no content]=[image: there is no content]×[image: there is no content].

Definition 6. Recall in Section 3, we said that there are 2 Hilbert spaces that need to be considered for the path integral. Instead of considering the space of Schwartz functions, we will replace it by considering the Hilbert space H2([image: there is no content])and complete it into an Abstract Wiener space, denoted by B([image: there is no content]×[image: there is no content]), with Wiener measure [image: there is no content]. Consider the Hilbert space H2([image: there is no content]2), which is the smallest Hilbert space containing H2([image: there is no content])⊗H2([image: there is no content]). In a similar way, we can construct an Abstract Wiener space containing it, denoted by B([image: there is no content]), with Wiener measure [image: there is no content]. There are two Abstract Wiener spaces that we will consider in this article, necessary for the definition of the path integral;


	Consider the tensor product H2([image: there is no content])⊗[image: there is no content]and complete it into an Abstract Wiener space, denoted by B([image: there is no content]×[image: there is no content])⊗[image: there is no content]. The Abstract Wiener measure will be the product measure [image: there is no content]×⋯×[image: there is no content], N copies in total, N is the dimension of [image: there is no content].


	Consider the direct product (H2([image: there is no content]2)⊗[image: there is no content])×2, and complete it into an Abstract Wiener space, denoted by (B([image: there is no content])⊗[image: there is no content])×2. The Abstract Wiener measure will be the product measure [image: there is no content]×⋯×[image: there is no content], [image: there is no content]copies in total.




Let H be any Hilbert space and u=(u+,u-),α=(α+,α-)∈H×2. The following expression,



[image: there is no content]



(19)




with


[image: there is no content]








is the basis whereby the Chern-Simons path integral is build upon. We define Expression 19 as


[image: there is no content]








with


[image: there is no content]








Suppose B is an Abstract Wiener space containing H. Now, one can show that there exists a complex measure [image: there is no content] on [image: there is no content], such that |[image: there is no content]| is a probability measure on [image: there is no content] and we can define for [image: there is no content],



∫u∈H×2e⟨u,α⟩ei⟨u+,u-⟩ei|u|2/2e-θ|u|2/2Du+Du-:=∫u∈[image: there is no content]e(u,α)♯d[image: there is no content](u).








Furthermore, it can be shown directly that



∫u∈[image: there is no content]e(u,α)♯d[image: there is no content](u)=expi(|α+|2+|α-|2+2⟨α+,α-⟩)/2θ21-(2i/θ)e12θ(|α+|2+|α-|2).








Thus, using analytic continuation, we will define



[image: there is no content]










:=limθ→iexpi(|α+|2+|α-|2+2⟨α+,α-⟩)/2θ21-(2i/θ)e12θ(|α+|2+|α-|2)










=ei⟨α+,α-⟩.








The reader may refer to [1] for details.

We can now give a definition to the heuristic Expression 19.

Definition 7. Let α=(α+,α-)∈B×2,*⊂H×2⊂[image: there is no content]and [image: there is no content]. Then we define



1Z1∫H×2e⟨u,α⟩ei⟨u+,u-⟩Du+Du-:=E[image: there is no content]e(·,α)♯=ei⟨α+,α-⟩.








We remark that E[image: there is no content] is not taking expectation, but rather it should be viewed as a linear functional acting on functions of the form [image: there is no content].

Let [image: there is no content]. One can show that for any polynomials [image: there is no content], we have



limθ→i∫[image: there is no content]∏i=1mp((u,(0,αi))♯)e(u,(β,0))♯d[image: there is no content](u)










=limθ→i∫[image: there is no content]∏i=1mpi(d/dsi)e(u,(β,∑i=1msiαi))♯|si=0d[image: there is no content](u)=∏j=1mpj(i⟨β,αj⟩).








Thus, we can extend Definition 7 to include polynomials.

However, given a general (continuous and bounded) function F on one variable, then it is not clear that



∫[image: there is no content]F((u-,α-)♯)e(u+,α+)♯d[image: there is no content](u)








admits an analytic continuation. However, from the above calculations, it is possible to extend Definition 7 to include F.
Definition 8. Let [image: there is no content], [image: there is no content]with [image: there is no content]for [image: there is no content]. Let [image: there is no content]be continuous functions on [image: there is no content]and Y be continuous on [image: there is no content]⊗[image: there is no content], with [image: there is no content]for any u∈[image: there is no content], such that [image: there is no content]. Then we define



1Z1∫H×2∏j=1mFj(⟨u,αj⟩)e⟨u,β⟩ei⟨u+,u-⟩Y(u-)Du+Du-










:=1Y(0)E[image: there is no content]∏j=1mFj((·,αj)♯)e(·,β)♯Y=Y(iβ+)Y(0)∏j=1mFj(i⟨β+,α-j⟩),








if


Z1:=∫H×2ei⟨u+,u-⟩Y(u-)Du+Du-.








Remark 4. Recall that Y in Subsection 2.2 is defined as an infinite dimensional determinant. If we use Definition 8, notice that [image: there is no content]. Hence the normalizing constant is 0. As such, we have to remove the term Y in order to obtain non trivial results for the path integral.

Notation 4. Let B be an Abstract Wiener space containing the Hilbert space H, equipped with inner product [image: there is no content]. We will also write



[image: there is no content]








for [image: there is no content]and [image: there is no content]is an orthonormal basis in [image: there is no content].
Let [image: there is no content], [image: there is no content] be 2 Hilbert spaces and [image: there is no content], [image: there is no content] be Abstract Wiener spaces containing them respectively. For any λ∈[image: there is no content], let [image: there is no content] be a linear operator that maps B1*⊗[image: there is no content] to B1*⊗[image: there is no content]. Recall the path integral we want to make sense of is given by Expression 16.

Proposition 3. Refer to Notation 4. Let α+,αi,-∈([image: there is no content]⊗[image: there is no content])*, β,[image: there is no content]∈([image: there is no content]⊗[image: there is no content])×2,*. For any λ∈[image: there is no content], let T(λ):([image: there is no content]⊗[image: there is no content])*→([image: there is no content]⊗[image: there is no content])*be a bounded linear operator. Using Definition 8, we define Expression 16 as



E([image: there is no content]⊗[image: there is no content])×2e(*,(β,β^0))♯E([image: there is no content]⊗[image: there is no content])×2e(·,(α+,∑iT[(*,(0,[image: there is no content]))♭]αi,-))♯=ei⟨β,β^0⟩ei⟨α+,∑jT(i⟨β,β^j,0⟩♭)αj,-⟩,



(20)




with β^0=∑iδ0i[image: there is no content], δ0i∈[image: there is no content].
Proof. By Definition 8,



E([image: there is no content]⊗[image: there is no content])×2e(·,(α+,∑jT((*,(0,β^j,0))♭)αj,-))♯=ei⟨α+,∑jT((*,(0,β^j,0))♭)αj,-⟩.








Using the definition again, we have



E([image: there is no content]⊗[image: there is no content])×2e(*,(β,β^0))♯ei⟨α+,∑jT((*,(0,β^j,0))♭)αj,-⟩=ei⟨β,β^0⟩ei⟨α+,∑jT(i⟨β,β^j,0⟩♭)αj,-⟩.








☐
The 2 Abstract Wiener spaces, [image: there is no content] and [image: there is no content] we have in mind, are defined as follows:



[image: there is no content]=H2([image: there is no content])⊂[image: there is no content]=B([image: there is no content]×[image: there is no content]),










[image: there is no content]=H2([image: there is no content]2)×2⊂[image: there is no content]=B([image: there is no content])×2.










5. Linear Operators

Refer back to Expression 15. If we wish to apply Proposition 3, then we have to define linear operators [image: there is no content] and [image: there is no content], λ∈[image: there is no content]. But [image: there is no content] does not map S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content] into S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content]. And for any γ∈Sκ([image: there is no content])⊂Γ0([image: there is no content]), d-1*γ∉Sκ([image: there is no content]). Thus it seems that we are not able to apply Proposition 3.

However, as long as we can make sense of the RHS of Equation (20), we can define the Chern-Simons path integral. If one goes back to Expression 15 and compare with Expression 16, what we really need to define are the terms



⟨α+,∑jm(λj)-1αj,-⟩,λj=⟨β,d-1*βj,0⟩♭and⟨β,d-1*β0⟩.








Once we can define these terms, we can proceed to define our Chern-Simons path integral.

Now, we define the path integral as a linear functional, on the direct product of 2 Abstract Wiener spaces, (B([image: there is no content]×[image: there is no content])⊗[image: there is no content])×2×(B([image: there is no content])⊗[image: there is no content])×4. The operators [image: there is no content]+λ-1 and [image: there is no content] act on a dense subspace in S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content] and Sκ([image: there is no content]) respectively. We need to transfer these operators to act on H2([image: there is no content])⊗[image: there is no content] and H2([image: there is no content]2). To do this, we need to construct an isometry between these Hilbert spaces.

Fortunately, there is a natural map, the Segal Bargmann transform [image: there is no content], that sends



[image: there is no content]:1n![image: there is no content](κs)⊗κ(2π)1/4e-κ2|s|2/4⟼1n!zn.








In the sequel, we will extend this definition [image: there is no content] to tensor products or direct products of hermite polynomials.

For example, on the tensor product space S¯κ([image: there is no content])⊗S¯κ([image: there is no content]), we have [image: there is no content]:S¯κ([image: there is no content])⊗S¯κ([image: there is no content])→H2([image: there is no content]), by



[image: there is no content]:κ2π-1/2H[image: there is no content](κ·)[image: there is no content][image: there is no content]!⊗1n![image: there is no content]⟼z[image: there is no content][image: there is no content]!⊗wnn!,(z,w)∈[image: there is no content].








Similarly,



[image: there is no content]:κ2π-1/2H[image: there is no content](κ·)[image: there is no content][image: there is no content]!⟼z[image: there is no content][image: there is no content]!,z∈[image: there is no content]2.








Recall Ω1([image: there is no content])≅S¯κ([image: there is no content])×2, so we have [image: there is no content](β+,β-)=[image: there is no content](β+)⊗dx++[image: there is no content](β-)⊗dx-∈Ω1([image: there is no content]) for β±∈H2([image: there is no content]2).

Definition 9.


	Let λ∈[image: there is no content]. We define an operator m(λ)-1=∂λ-1≡[image: there is no content]+ad(λ)acting on S¯κ([image: there is no content]×[image: there is no content])⊗[image: there is no content]by



(∂λ-1h)(x,u):=12∫0u-∫u1e(s-u)ad(λ)h(x,s)ds,u∈[image: there is no content],x∈[image: there is no content].








We leave to the reader to check that



[image: there is no content]









	For α∈B([image: there is no content]×[image: there is no content])⊗[image: there is no content], we define an operator [image: there is no content]˜by



[image: there is no content]˜α=m(λ)-1[image: there is no content]α.









	Recall we have the exterior derivative d and the Hodge star operator acting on Γ0([image: there is no content])⊕Γ1([image: there is no content])⊕Γ2([image: there is no content]). We define a linear operator d-1*:Sκ([image: there is no content])→Γ1([image: there is no content])by



[image: there is no content]










[image: there is no content]










[image: there is no content]









	For β0∈B([image: there is no content])*, we define an operator [image: there is no content]˜by



[image: there is no content]











Remark 5.

When [image: there is no content], then [image: there is no content]=[image: there is no content]-1≡∂t-1. The operator [image: there is no content]and the operator [image: there is no content]which appeared in [1] differs by a factor 2, i.e., [image: there is no content]=2∂t-1.

By their definitions, it is clear that [image: there is no content]˜αj,-∉Sκ([image: there is no content]×[image: there is no content])⊗[image: there is no content] and (d-1*)˜βj,0∉Ω1([image: there is no content])⊗[image: there is no content]. However, to define the path integral in Proposition 3, what we really need to define is



⟨α+,[image: there is no content]˜αj,-⟩and⟨β,(d-1*)˜βj,0⟩,








where [image: there is no content].
Definition 10. We define for α±∈H2([image: there is no content])⊗[image: there is no content]and β±,β0∈H2([image: there is no content]2)⊗[image: there is no content],



⟨α+,[image: there is no content]˜α-⟩:=-κ2π∫01dt∫[image: there is no content]Tr([image: there is no content]α+)·∂λ-1([image: there is no content]α-)dx+dx-










⟨(β+,β-),(d-1*)˜β0⟩:=-κ2πTr∫[image: there is no content][image: there is no content](β+)⊗dx++[image: there is no content](β-)⊗dx-∧*d-1*[image: there is no content](β0).








Remark 6. It is possible that the integrals might not be defined. However, as we will show later, for our choice of α and β, the integrals are well-defined.

Recall we define the evaluation map [image: there is no content] in Proposition 2. The linear functionals [image: there is no content], [image: there is no content] and [image: there is no content], we have in mind are of the form



[image: there is no content]










βs,±=∑jχasΔs,±j⊗Ej,βs,0=∑jχas⊗Ej,








where Δs,±j,Δs,0j,Δs,0∈[image: there is no content], as∈[image: there is no content]⊂[image: there is no content]2 and ts∈[image: there is no content]∈[image: there is no content]. Next, we need to know how to compute [image: there is no content].
Proposition 4. For each ([image: there is no content],s)∈[image: there is no content]×[image: there is no content]⊆[image: there is no content],



[image: there is no content]:ς[image: there is no content](·-[image: there is no content])eκ2([image: there is no content]2)/8⊗κ(2π)1/4e-κ2(ηκ-s)2/4eκ2s2/8ηκ′










⟼∑n=0∞∑r=0∞∑[image: there is no content]z[image: there is no content]wnκr[image: there is no content][image: there is no content]2r·[image: there is no content]!κnsn2n·n!=[image: there is no content]∈B([image: there is no content]×[image: there is no content])*.








Proof. We will leave to the reader to check that



[image: there is no content](z,w)=∑n=0∞∑r∑[image: there is no content](κ[image: there is no content]/2)[image: there is no content][image: there is no content]!(κs/2)nn!z[image: there is no content][image: there is no content]!wnn!,z∈[image: there is no content]2,w∈[image: there is no content].








Now [image: there is no content] maps [image: there is no content] to



ς[image: there is no content](x)∑r=0∞∑[image: there is no content]H[image: there is no content](κx)(κ[image: there is no content]/2)[image: there is no content][image: there is no content]!⊗∑n=0∞(κs/2)nn![image: there is no content](t)










=ς[image: there is no content](x)eκ2(2x·[image: there is no content]-|[image: there is no content]|2)/4eκ2|[image: there is no content]|2/8⊗eκ2(2sηκ(t)-s2)/4κ(2π)1/4e-κ2ηκ(t)2/4eκ2s2/8ηκ′(t),








for [image: there is no content], s real, which upon simplification gives


ς[image: there is no content](·-[image: there is no content])eκ2|[image: there is no content]|2/8⊗κ(2π)1/4e-κ2(ηκ(t)-s)2/4eκ2s2/8ηκ′(t).








☐
Here, x·[image: there is no content] is the usual scalar product in [image: there is no content].

Notation 5. Define for [image: there is no content],



[image: there is no content]



(21)




Note that [image: there is no content]and [image: there is no content], so we define [image: there is no content]. We will also write



pκa=ςκ2πe-κ2|·-a|2/4,ς=(κ/2π)-1/2.








Finally, for x∈[image: there is no content], y∈[image: there is no content], define



ψ(x)=e-|x|2/2,ψ^(y)=e-y2/2.








Corollary 1. Under the isometry [image: there is no content],



[image: there is no content]:pκx⊗[image: there is no content]⟼ψ(κx/2)χκx/2⊗ψ^(κs/2)χκs/2,








and


[image: there is no content]:pκx⟼ψ(κx/2)χκx/2,








whereby x∈[image: there is no content]and [image: there is no content].
Lemma 2. Suppose



α^±⊥=∑iχκa±/2ψ(κa±/2)⊗χκt±/2ψ^(κt±/2)Δ±i⊗Ei∈(B([image: there is no content]×[image: there is no content])⊗[image: there is no content])*,








whereby a±∈[image: there is no content]⊂[image: there is no content]2, t±∈[image: there is no content]⊂[image: there is no content]and Δ±i∈[image: there is no content]. For λ∈[image: there is no content], we have


α^+⊥,[image: there is no content]˜α^-⊥=∑i,j=1Npκa+,pκa-q˜κt+⊗Ei,∂λ-1q˜κt-⊗EjΔ+iΔ-j.



(22)




Proof. Using Definition 10 and Corollary 1,



α^+⊥,[image: there is no content]˜α^-⊥










=-12Tr∑i,j∫01[∫0τdspκa+⊗q˜κt+(s)Δ+i⊗Ei,e(s-τ)ad(λ)pκa-⊗q˜κt-((τ))Δ-j⊗Ej










-∫τ1dspκa+⊗q˜κt+(s)Δ+i⊗Ei,e(s-τ)ad(λ)pκa-q˜κt-(τ)Δ-j⊗Ej]dτ










=-12Tr∑i,j=1Npκa+,pκa-∫01∫0τq˜κt+(s)⊗Ei·e(s-τ)ad(λ)q˜κt-(τ)⊗Ejdsdτ·Δ+iΔ-j










+12Tr∑i,j=1Npκa+,pκa-∫01∫τ1q˜κt+(s)⊗Ei·e(s-τ)ad(λ)q˜κt-(τ)⊗Ejdsdτ·Δ+iΔ-j










[image: there is no content]








☐
Lemma 3. Suppose for [image: there is no content],



βr=∑iχκar/2ψ(κar/2)Δri⊗Ei∈(B([image: there is no content])⊗[image: there is no content])*,








whereby a±∈[image: there is no content]⊂[image: there is no content]2and Δri∈[image: there is no content]. Then, we have for [image: there is no content],


[image: there is no content]



(23)




Remark 7. We also have



[image: there is no content]








Proof. Using Definition 10 and Corollary 1,



β,(d-1*)˜β0










[image: there is no content]










[image: there is no content]










:=∑iκ2π∫[image: there is no content]pκa+Δ+i⊗dx++pκa-Δ-i⊗dx-∧*d-1*pκa0Δ0i.








☐


6. Definition of the Chern-Simons Path Integral

Consider



[image: there is no content]










[image: there is no content]([image: there is no content],B)=exp⟨[image: there is no content],Ψκ-1β⟩+⟨B,Ψκ-1β0⟩.








Here, we have [image: there is no content], [image: there is no content], [image: there is no content], where



[image: there is no content]










βs,±=∑iχκas,±/2ψ(κas,±/2)Δs,±i⊗Ei,βs,0=∑iχκas,0/2ψ(κas,0/2)⊗Ei,








for as,±,as,0∈[image: there is no content], ts,±∈[image: there is no content]. We want to give a definition for Expression 13, with [image: there is no content] and [image: there is no content] defined above. In Subsection 3.1, we also showed that Expression 13 can be written heuristically as Expression 15. By replacing the Dirac delta function [image: there is no content] by [image: there is no content] in Expression 15 and applying Proposition 3, we have the following definition.
Definition 11. (Chern-Simons Path Integral)

Refer to Definition 10. Write [image: there is no content]. Applying Proposition 3 to Expression 15, we define Expression 13, with [image: there is no content]and [image: there is no content]defined as above, as



[image: there is no content]










[image: there is no content]








Using Lemmas 2 and 3, the exponent can be explicitly computed as



[image: there is no content]










-i∑s,r∑i=1Npκas,+Δs,+i⊗dx++pκas,-Δs,-i⊗dx-,d-1*pκar,0Δr,0,








with


λr=iβ,-(d-1*)˜βr,0♭










[image: there is no content]








Definition 12. (Time ordering operator)

For any permutation [image: there is no content],



[image: there is no content](A(sσ(1))⋯A(sσ(r)))=A(s1)⋯A(sr),s1>s2>…>sr.








Suppose now our matrices [image: there is no content]are indexed by the curves k and time s. Extend the definition of the time ordering operator, first ordering in decreasing values of k, followed by the time s.

Definition 13. ([image: there is no content])

Define a linear functional [image: there is no content]as follows. Suppose a matrix A is index by time s and representation [image: there is no content], [image: there is no content]. In other words, [image: there is no content]. Let [image: there is no content]be a finite set of matrices. Let [image: there is no content]and write [image: there is no content]. For any [image: there is no content], define a linear operator,



[image: there is no content]:A(π1,s1)⊗⋯⊗A(πn,sn)










[image: there is no content]








such that for each [image: there is no content], [image: there is no content]and [image: there is no content]for [image: there is no content].
Let us apply Definition 11 to the Wilson Loop observable, given by Equation (2).

Notation 6. Suppose [image: there is no content]is a link in [image: there is no content]such that the projected link on [image: there is no content]does not pass through [image: there is no content]. Using local coordinates [image: there is no content]≡(X,i[image: there is no content]-1), we map L into [image: there is no content]. Let [image: there is no content]:[image: there is no content]→[image: there is no content]×[image: there is no content]be a parametrization for (X,i[image: there is no content]-1)∘[image: there is no content]≡l˜k, such that [image: there is no content], hence giving an orientation to each curve. In components with respect to the local coordinates [image: there is no content], we have [image: there is no content]. We will also write [image: there is no content]. Without loss of generality, we also assume that [image: there is no content]for only finite number of points s in [image: there is no content].

Next, we map [image: there is no content]inside [image: there is no content], by



(x,s)⟼κ2x,s∈[image: there is no content]⊂[image: there is no content].








As a result of this scaling, we represent our original link L⊂[image: there is no content]×[image: there is no content]as a set of (possibly open ended) curves.

For each curve [image: there is no content], let [image: there is no content]be a representation for [image: there is no content].

Remark 8. The scaling of the curves by [image: there is no content]was carried out in [1].

We will now define the Wilson Loop observable on the set of curves [image: there is no content], in [image: there is no content]. We will scale the integrand by [image: there is no content], which was also carried out in the case of [image: there is no content] and hence interpret the line integral in Equation (3) as (See also Subsection 10.1.)



[image: there is no content]










=ℏ(8π)1/4∑k∫01dsψ(ℏysk)ψ^(ℏy0,sk)A^+⊥(ℏysk,ℏy0,sk)y+,sk,′+A^-⊥(ℏysk,ℏy0,sk)y-,sk,′










+ψ(ℏysk)Ac,+⊥(ℏysk)y+,sk,′+Ac,-⊥(ℏysk)y-,sk,′+B(ℏysk)y0,sk,′










=A^⊥,κℏ(8π)1/4∑k=1n∫01dsα^k,s⊥♭+[image: there is no content],ℏ(8π)1/4∑k=1n∫01dsβk,s⊥♭










+B,ℏ(8π)1/4∑k=1n∫01dsβk,s,0y0,sk,′♭,








whereby [image: there is no content], [image: there is no content], and


α^k,s,±⊥=∑iχℏyskψ(ℏysk)⊗χℏy0,skψ^(ℏy0,sk)y±,sk,′⊗[image: there is no content](Eis),










βk,s,±⊥=∑iχℏyskψ(ℏysk)y±,sk,′⊗[image: there is no content](Eis),βk,s,0=∑iχℏyskψ(ℏysk)⊗[image: there is no content](Eis).








Note that k tracks the representation used and s tracks the ordering of [image: there is no content](Eis).

Corollary 2. Refer to Notation 6. Consider the 3 manifold [image: there is no content]. Let In={1,2,…,n}×[image: there is no content], In2=({1,2,…,n}×[image: there is no content])×2and denote



∫In2≡∑j,k=1n∫∫[image: there is no content]2.








Also denote


y±,sj,′=y±j,′(s),y0,sj,′=y0j,′(s).








Apply Definition 11, the Wilson Loop observable, with a charge q, is defined as



[image: there is no content]










:=[image: there is no content][image: there is no content]expq(8π)1/4∑k=1n∫κy^k/2ψκψ^A^+⊥⊗dx++κψ^A^-⊥⊗dx-+Ac,+⊥⊗dx++Ac,-⊥⊗dx-+B⊗dt










=[image: there is no content][exp-i[image: there is no content]κ24κ2[image: there is no content]∫In2∑i,l=1Npκysjq˜κy0,sj⊗Ei,pκytk∂[image: there is no content]-1q˜κy0,tk⊗Ely+,sj,′y-,tk,′dsdt⊗ρj(Eis)⊗[image: there is no content](Elt)⊗










exp-i[image: there is no content]κ24[image: there is no content]∑i=1N∫In2pκysjy+,sj,′⊗dx++pκysjy-,sj,′⊗dx-,d-1*pκytky0,tk,′dsdt⊗ρj(Eis)⊗[image: there is no content](Eit)].



(24)




where


[image: there is no content]=-i∑i=1N∑j=1n∫01κ2(8π)1/4pκysjy+,sj,′⊗dx++pκysjy-,sj,′⊗dx-,d-1*pκytkds⊗Ei.



(25)




Note that [image: there is no content]is dependent on κ, but we omit κ to ease the notation.

Proof. Observe that we can commute [image: there is no content] and [image: there is no content] because the time ordering only acts on the matrices [image: there is no content] and [image: there is no content]. Note that the time ordering operator [image: there is no content] arranges the matrices according to j, followed by s. Now apply Definition 11, by replacing the finite sum in the definition by an integral, using a Riemannian sum type of argument. See [1] for such an argument. To obtain the RHS of Equation (24), we apply Lemmas 2 and 3. For more details, we refer the reader to [2]. ☐

Equation (24) will not give us the link invariants we desire, as the path integral depends on the parametrization used. And the path integral depends on the parameter κ as we used the parameter κ in constructing the isometry [image: there is no content].

To obtain the link invariants, the rest of this article will focus on computing the limit as κ goes to infinity, of the RHS of Equation (24). It is only by taking the limit as κ goes to infinity that we will obtain the desired link invariants, independent of the parametrization used.



7. Planar Diagrams

Definition 14. (Framed link)

Let [image: there is no content]be a link in [image: there is no content]. Define a continuous normal vector [image: there is no content]along each closed curve [image: there is no content]such that [image: there is no content]is nowhere tangent to [image: there is no content]. Let [image: there is no content]be a new closed curve obtained by shifting [image: there is no content]in the direction ϵ[image: there is no content], [image: there is no content]is some small number. Now, [image: there is no content]∪[image: there is no content]forms a closed thin band or ribbon, whereby a finite number of twists can be added. We will write [image: there is no content]to denote a framed link, [image: there is no content].

The Wilson Loop observable can be computed from a link diagram in [image: there is no content]. Up to isotopy, we insist that the truncated link, [image: there is no content] is embedded “nicely” inside [image: there is no content] and thus projected “nicely” onto [image: there is no content], so that we get a nice planar diagram . The following definition makes this `nice’ embedding and projection more precise.

Definition 15. (Planar Diagrams)

Assume that a link L={l1,l2,…ln}∈[image: there is no content]×[image: there is no content]is made up of individual closed curves that do not intersect one another, i.e., [image: there is no content]∩[image: there is no content]=∅for any j, k and when projected onto [image: there is no content], the curve does not pass through the north pole [image: there is no content]. Using local coordinates [image: there is no content]=(X,i[image: there is no content]-1), we map the link into [image: there is no content], denoted by [image: there is no content]. We will refer it as a truncated link. Project the truncated link [image: there is no content]onto the [image: there is no content]plane using the projection map P0:[image: there is no content]×[image: there is no content]→[image: there is no content].

Parametrise each curve [image: there is no content]by [image: there is no content]=(y+j,y-j,y0j):[image: there is no content]→[image: there is no content]×[image: there is no content]such that [image: there is no content], hence giving an orientation to each curve. Without loss of generality, we also assume that [image: there is no content]for only finite number of points s in [image: there is no content].

Note that in the following definitions, it applies if L is just a knot, i.e., [image: there is no content]. We define a truncated link diagram for [image: there is no content]on the plane [image: there is no content]if the following conditions are met.


	Define a standard projection of the truncated link [image: there is no content]onto [image: there is no content]if the following conditions are satisfied:


	for any p∈[image: there is no content], [image: there is no content]intersects at most 2 distinct arcs in L. We say p is called a crossing if [image: there is no content]intersects exactly 2 distinct arcs in [image: there is no content].


	at each crossing [image: there is no content], there exists an [image: there is no content]such that for all [image: there is no content]and [image: there is no content], the tangent vectors [image: there is no content]and [image: there is no content]are linearly independent at p. Furthermore, we also assume that [image: there is no content]and [image: there is no content]in a small neighborhood containing [image: there is no content]and [image: there is no content]respectively.




Denote the set of crossings between curves [image: there is no content]and [image: there is no content]by DP([image: there is no content],[image: there is no content]). And DP([image: there is no content])≡DP([image: there is no content],[image: there is no content])will denote the set of crossings in [image: there is no content]. We will write [image: there is no content]to denote the set of crossings of the standard projection of the truncated link [image: there is no content]onto [image: there is no content].


	For each curve [image: there is no content], write the interval [image: there is no content]as a union of intervals ⋃i=1n([image: there is no content])A([image: there is no content])i, where in each interval A([image: there is no content])i, s∈A([image: there is no content])i↦(y+j(s),y-j(s))is a bijection. Write C([image: there is no content])i:=(y+j(A([image: there is no content])i),y-j(A([image: there is no content])i))∈[image: there is no content]be the image of the interval A([image: there is no content])iunder [image: there is no content]. Without loss of generality, further assume the image C([image: there is no content])icontains at most one crossing which is an interior point in C([image: there is no content])i.


	Given 2 arcs C([image: there is no content])i,C([image: there is no content])i^which intersect at p, define sgn(J(C([image: there is no content])i,C([image: there is no content])i^))to be the sign of the determinant of the Jacobian J(C([image: there is no content])i,C([image: there is no content])i^)=y+j,′(s)y-k,′(t)-y+k,′(s)y-j,′(t)at the crossing [image: there is no content]. Otherwise, define it to be zero if the 2 arcs do not intersect at all. We will also write sgn(p;[image: there is no content]:[image: there is no content])≡sgn(J(C([image: there is no content])i,C([image: there is no content])i^)), p=C([image: there is no content])i∩C([image: there is no content])i^and call this the orientation of p.


	Using the same notation as the previous item, for each crossing p∈C([image: there is no content])i∩C([image: there is no content])i^, define



sgn(C([image: there is no content])i:C([image: there is no content])i^)=1,y0j>y0k;-1,y0j<y0k.








If the 2 arcs do not intersect, set it to be 0. We will also write sgn(p;y0j:y0k)≡sgn(C([image: there is no content])i:C([image: there is no content])i^)and call this the height of p.


	For each crossing p∈DP([image: there is no content],[image: there is no content]), the algebraic crossing number is defined by



ε(p)=sgn(J(C([image: there is no content])i,C([image: there is no content])i^))·sgn(C([image: there is no content])i:C([image: there is no content])i^)∈{±1}.








This is actually well defined on an oriented truncated link diagram, independent of the parametrization used.




Remark 9. The sets [image: there is no content]and [image: there is no content]only make sense for a truncated link diagram in [image: there is no content]. Different link diagrams on [image: there is no content]will give different sets of crossings.

We can also represent a truncated link diagram with a graph, which would be more convenient to use in computing the Wilson Loop observables in the next section. The vertices will represent crossings on a link diagram.

Definition 16. (Edges.)

Let [image: there is no content]be a link in [image: there is no content]. Let {[image: there is no content]}k=1nbe a parametrization for (X,i[image: there is no content]-1)∘[image: there is no content]⊂[image: there is no content]×[image: there is no content]and project it down onto [image: there is no content], forming a planar graph. Refer to Definition 15.


	The vertex set [image: there is no content]will be the set of crossings in [image: there is no content]. The terms vertices and crossings are used interchangeably. The set of edges [image: there is no content]is simply the set of lines in the planar diagram of L joining each vertex. Each edge e:[ϵ1,ϵ2]→[image: there is no content], [image: there is no content]. The end points [image: there is no content]will be a vertex or crossing in [image: there is no content]. Each vertex has 4 edges incident onto it.


	Fix a j. For each crossing p in DP([image: there is no content],[image: there is no content]), [image: there is no content], let Vj([image: there is no content])be the set of all such points p.


	Suppose [image: there is no content]. Let Vj([image: there is no content])be the set of all such p’s on a planar diagram of [image: there is no content].


	Define V([image: there is no content])=⋃kVj([image: there is no content]), which defines the vertex set of the graph [image: there is no content]. The set of edges E([image: there is no content]), is a subset of [image: there is no content], joining only vertices in V([image: there is no content]). Note that E([image: there is no content](L))=⋃kE([image: there is no content]).


	Suppose e and [image: there is no content]belong to E([image: there is no content]). We say that an edge e:[ϵ1,ϵ2]→[image: there is no content]precedes another edge [image: there is no content]:[ϵ^1,ϵ^2]→[image: there is no content]if [image: there is no content].


	Each crossing [image: there is no content]is denoted by 4 edges, labeled by [image: there is no content], whereby [image: there is no content]and [image: there is no content]are edges belonging to [image: there is no content]with the bigger index j and [image: there is no content]([image: there is no content])is the edge that precedes [image: there is no content]([image: there is no content])at the vertex p. When all 4 edges belong to the same curve, then [image: there is no content]and [image: there is no content]are the edges that precede [image: there is no content]and [image: there is no content].


	Now suppose we define a frame on [image: there is no content]and project the framed oriented truncated link onto [image: there is no content]. The crossings in the planar diagram will define the set of vertices as in the case of an oriented link. A half twist q will be represented by a vertex with only 2 edges incident onto it, labeled ([image: there is no content](q),[image: there is no content](q)). Thus, a full twist, given by 2 consecutive half twists, twisted in the same direction, will be represented in the planar graph of the curve [image: there is no content]by 2 vertices, joined together by a common edge.




Remark 10. For a half twist q, we can define an algebraic number [image: there is no content]associated to it. A positive half twist is given an algebraic number +1; a negative half twist is given an algebraic number –1. We refer the reader to [2], whereby there is a discussion on how to define the algebraic number of a half twist in a framed link.

In the next section, we will show how to calculate the Wilson Loop observable using the graph of a framed truncated link diagram.



8. Wilson Loop Observables

Let L be a link in [image: there is no content] and using local coordinates, we represent each component of the link L by [image: there is no content]≡(yj,y0j):[image: there is no content]→[image: there is no content]×[image: there is no content].

Recall from Corollary 2, we have the double sum in the exponent,



∑i,l=1Npκysjq˜κy0,sj⊗Ei,pκytk∂[image: there is no content]-1q˜κy0,tk⊗El=∑i,l=1Npκysj,pκytkq˜κy0,sj⊗Ei,∂[image: there is no content]-1q˜κy0,tk⊗El,








where [image: there is no content] was defined in Equation (25).
Lemma 4. We have [image: there is no content]→0as [image: there is no content]. Furthermore,



κ2∑i,l=1Nq˜κts⊗Ei,∂[image: there is no content]-1q˜κtr⊗El-κ2∑i=1Nq˜κts⊗Ei,[image: there is no content]q˜κtr⊗Ei⟶0.








Proof. Using Item 2 from Lemma 5,



[image: there is no content]










=∑i=1N∑j=1nκ2∫01pκysj,∂x+-1pκytky-,sj,′⊗Ei-pκysj,∂x--1pκytky+,sj,′⊗Eids










⟶0








as [image: there is no content]. From Definition 9,


∑i,l=1Nq˜κts⊗Ei,[image: there is no content]q˜κtr⊗El=∑i=1Nq˜κts⊗Ei,[image: there is no content]q˜κtr⊗Ei.








By Item 1 of Lemma 5, we have



κ2∑i,l=1Nq˜κts⊗Ei,∂Γκ(r)-1q˜κtr⊗El-[image: there is no content]q˜κtr⊗El










=κ2∑i,l=1N12q˜κts⊗Ei,∫0·e(u-·)Γk(r)q˜κtr(u)⊗Eldu-∫·1e(u-·)Γk(r)q˜κtr(u)⊗Eldu-2[image: there is no content]q˜κtr(s)⊗El










=κ2∑i,l=1N12q˜κts⊗Ei,∫0·(e(u-·)Γk(r)-1)q˜κtr(u)⊗Eldu-∫·1(e(u-·)Γk(r)-1)q˜κtr(u)⊗Eldu⟶0








as [image: there is no content] and this completes the proof. ☐
As a result of Lemma 4, the limit of the RHS of Equation (24) is equivalent to compute the limit of



[image: there is no content][exp-i[image: there is no content]κ24κ2[image: there is no content]∫In2∑i=1Npκysjq˜κy0,sj,pκytk∂0-1q˜κy0,tky+,sj,′y-,tk,′dsdt⊗ρj(Eis)⊗[image: there is no content](Eit)⊗










exp-i[image: there is no content]κ24[image: there is no content]∑i=1N∫In2pκysjy+,sj,′⊗dx++pκysjy-,sj,′⊗dx-,d-1*pκytky0,tk,′dsdt⊗ρj(Eis)⊗[image: there is no content](Eit)].








Notation 7. For x=(x+,x-,x0),y=(y+,y-,y0)∈[image: there is no content], let × denote the cross product [image: there is no content]and let [image: there is no content]denote the a-th component of [image: there is no content], [image: there is no content].

Using the fact that [image: there is no content], [image: there is no content] are skew symmetric operators, it is straightforward to show that



κ24κ2[image: there is no content]∫In2⟨pκysj,pκytk⟩·⟨q˜κy0,sj,[image: there is no content]q˜κy0,tk⟩y+,sj,′y-,tk,′dsdt










=κ24κ2[image: there is no content]∑j≥k∫[image: there is no content]2δjk⟨pκysjq˜κy0,sj,pκytkq˜κy0,tk⟩0ysj×ytk0dsdt,



(26)




and


κ24[image: there is no content]∫In2pκysjy+,sj,′⊗dx++pκysjy-,sj,′⊗dx-,d-1*pκytky0,tk,′dsdt










=∑a=±∑j≥kκ24[image: there is no content]∫[image: there is no content]2δjk⟨pκysj,[image: there is no content]pκytk⟩ysj,′×ytk,′adsdt



(27)




whereby [image: there is no content], [image: there is no content] is the Kronecker delta function.
Our next task is to compute the limit of Equations (26) and (27), as κ goes to infinity. We break up the computations into 2 simple lemmas.

Lemma 5. We have


	



lim[image: there is no content]κ22π⟨[image: there is no content],[image: there is no content]q˜κt⟩=1,s>t;-1,s<t.









	Let s=(s+,s-),t=(t+,t-)∈[image: there is no content]. Then,



[image: there is no content]








and



lim[image: there is no content]κ2πe-κ2|·-s±|2/4,∂x±-1κ2πe-κ2|·-t±|2/4=1,s±>t±;-1,s±<t±.









	



[image: there is no content]









	



[image: there is no content]











Proof. We will prove (1) first. Make a substitution



y=ηκ(r)-s⇒r=ηκ-1(y+s)≡ζκ(y),










z=ηκ(r)-t⇒r=ηκ-1(z+t)≡θκ(z).








Note that for any y∈[image: there is no content],



[image: there is no content]








as [image: there is no content]. By definition of [image: there is no content] in Equation (21),


κ(2π)1/4∫01κ(2π)1/4e-κ2(ηκ(r)-s)2/4ηκ′(r)dr=κ2π∫-∞∞e-κ2y2/41η′(ζκ(y))dy










[image: there is no content]








And by definition of [image: there is no content] in Definition 9,



κ22π⟨[image: there is no content],[image: there is no content]q˜κt⟩










=κ2∫01κ2πe-κ2(ηκ(r)-s)2/4ηκ′(r)·∫0rκ2πe-κ2(ηκ(τ)-t)2/4ηκ′(τ)dτdr










-κ2∫01κ2πe-κ2(ηκ(r)-s)2/4ηκ′(r)·∫r1κ2πe-κ2(ηκ(τ)-t)2/4ηκ′(τ)dτdr










=12∫-∞∞κ2πe-κ2y2/41η′(ζκ(y))·∫-∞y+s-tκ2πe-κ2z2/41η′(θκ(z))dzdy










-12∫-∞∞κ2πe-κ2y2/41η′(ζκ(y))·∫y+s-t∞κ2πe-κ2z2/41η′(θκ(z))dzdy










[image: there is no content]








The last step requires the following explanation. Note that [image: there is no content] is bounded and there exists a small neighborhood [image: there is no content], δ small enough, such that for all [image: there is no content],



[image: there is no content]








for any given ϵ.
Using Notation 5, we have [image: there is no content]. We will only prove (2) for +, the other case is similar. Note that



[image: there is no content]










=κ24∫x∈[image: there is no content]κ2πe-κ2|x+-s+|2/4e-κ2|x--s-|2/4·κ2πe-κ2|x--t-|2/4∂x+-1e-κ2|·-t+|2/4dx+dx-










=κ24e-κ2|·-s-|2/4,e-κ2|·-t-|2/4κ2πe-κ2|·-s+|2/4,∂x+-1κ2πe-κ2|·-t+|2/4.








A direct computation will give



[image: there is no content]








and


κ2πe-κ2|·-s+|2/4,∂x+-1κ2πe-κ2|·-t+|2/4










=12∫[image: there is no content]κ2πe-κ2|x+-s+|2/4∫-∞x+κ2πe-κ2|y+-t+|2/4dy+-∫x+∞κ2πe-κ2|y+-t+|2/4dy+dx+










⟶1,s+>t+;-1,s+<t+.








To prove (3) and (4), a direct computation gives



⟨[image: there is no content],q˜κt⟩=∫01κ2πe-κ2(ηκ(r)-s)2/4e-κ2(ηκ(r)-t)2/4·ηκ′(r)dr










[image: there is no content]










[image: there is no content]








and


⟨pκy,pκz⟩=κ22π∫[image: there is no content]e-κ2|x-y|2/4e-κ2|x-z|2/4dx=e-κ2|y-z|2/8.








☐
The following lemma is is similar to Lemma 4.5 found in [1]. Note that there should not be a negative sign in Lemma 4.5.

Lemma 6. Refer to Definition 15. For [image: there is no content],



lim[image: there is no content]κ2[image: there is no content]κ24∫A([image: there is no content])ids∫A([image: there is no content])i^dt⟨pκysjq˜κy0,sj,pκytk[image: there is no content]q˜κy0,tk⟩ysj,′×ytk,′0dsdt










=π·sgn(J(C([image: there is no content])i,C([image: there is no content])i^))·sgn(C([image: there is no content])i:C([image: there is no content])i^).








The proof is similar to the proof for Lemma 4.5 in [2], so the proof is omitted.

When [image: there is no content], we have a problem with the following expression, i.e.,



lim[image: there is no content]∫[image: there is no content]2⟨pκysjq˜κy0,sj,pκytjq˜κy0,tj⟩aysj,′×ytj,′adsdt



(28)




do not exist.
The solution as explained in [3], would be to consider a framing [image: there is no content] whereby [image: there is no content](·)∈[image: there is no content]3 is a normal vector field along the curve [image: there is no content] that is nowhere tangent to [image: there is no content]. Define [image: there is no content]:=[image: there is no content]+ϵ[image: there is no content], ϵ is some small number, i.e., [image: there is no content] is a parametrization of the shifted curve [image: there is no content] in the direction [image: there is no content]. The limit in Expression 28 is now defined as



limϵ→0lim[image: there is no content]κ24κ2[image: there is no content]∫[image: there is no content]2⟨pκysjq˜κy0,sj,pκztj,ϵq˜κz0,tj,ϵ⟩aysj,′×ztj,ϵ,′0dsdt.



(29)




The framing on the curve [image: there is no content] will give rise to half twists. Using Lemma 6, one can show that the limit of Expression 29 can be written as a sum of the algebraic numbers of crossings and half twists, which form on the curve [image: there is no content]. We refer the reader to [2] for the details.

We now focus on Expression 27. Unfortunately, the limit



[image: there is no content]








is not well-defined as κ goes to infinity. The limit, if it exists, will depend on the ambient isotopy of the link. This is similar to the self-linking problem.
Definition 17. We define



lim[image: there is no content]κ24[image: there is no content]∫In2pκysjy+,sj,′⊗dx++pκysjy-,sj,′⊗dx-,d-1*pκytky0,tk,′dsdt










=lim[image: there is no content]∑a=±∑j≥kκ24[image: there is no content]∫[image: there is no content]2δjk⟨pκysj,[image: there is no content]pκytk⟩ysj,′×ytk,′adsdt










:=lim[image: there is no content]∑a=±∑j≥kκ24[image: there is no content]∫[image: there is no content]2δjk⟨pκysj,[image: there is no content]pκytk⟩ysj,′×ytk,′a·⟨q˜κy0,sj,q˜κy0,tk⟩dsdt.








Using Lemma 5, it is straightforward to show that this limit is equal to 0. Thus, the Expression 27 is defined as 0.

Definition 18. Given [image: there is no content], an oriented framed link in [image: there is no content], map it into [image: there is no content]using [image: there is no content]. Let [image: there is no content]:[image: there is no content]→[image: there is no content]×[image: there is no content]be any parametrization of [image: there is no content]([image: there is no content]), whose image is then projected down onto the plane [image: there is no content]to define a graph as in Definition 16. And let [image: there is no content]be the dimension of each representation [image: there is no content]and [image: there is no content]be the maximum of all the [image: there is no content]’s.


	Let N, [image: there is no content]be any positive integers. Define Fac∈MN([image: there is no content])with [image: there is no content], F˜ac∈M[image: there is no content]([image: there is no content])with [image: there is no content]. For A∈MN([image: there is no content])⊗M[image: there is no content]([image: there is no content]), the components are given by [image: there is no content]cdabwith respect to the basis [image: there is no content]of MN([image: there is no content])⊗M[image: there is no content]([image: there is no content]).


	Denote a map g:E(L)→{1,2,…,[image: there is no content]}such that for each k,



g|E([image: there is no content]):E([image: there is no content])→{1,2,…,[image: there is no content]}.








Let [image: there is no content]denote all such mappings.




We are now ready to state our formula for the Wilson Loop observable in Equation (24), in the limit as κ goes to infinity.

Theorem 1. Let [image: there is no content]be an oriented link in [image: there is no content]which when projected down on [image: there is no content], does not pass through [image: there is no content]. Choose a framing for L. Map it into [image: there is no content]using [image: there is no content]=(X,i[image: there is no content]-1)and project it onto [image: there is no content].

Suppose for each curve [image: there is no content], we assign a representation ρj:[image: there is no content]→End(Vj)to it. Refer to Definitions 5, 15, 16 and 18. For A,B∈Mm([image: there is no content]), [image: there is no content], the usual matrix multiplication.

Given any gauge group G with its complex Lie algebra [image: there is no content], the Wilson Loop observable in Equation (2), as κ goes to infinity, is given by



lim[image: there is no content]Z([image: there is no content]×[image: there is no content],κ,q;li,ρi)










=∑g∈S(L)∏p∈DP(L)R(p)g([image: there is no content](p)),g([image: there is no content](p))g([image: there is no content](p)),g([image: there is no content](p))∏[image: there is no content]T(p)g([image: there is no content](p))g([image: there is no content](p)).



(30)




If p≡([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]), with {[image: there is no content],[image: there is no content]}⊆E([image: there is no content])and {[image: there is no content],[image: there is no content]}⊆E([image: there is no content]), then



R(p):=exp-ε(p)πi[image: there is no content]∑i=1Nρj(Ei)⊗[image: there is no content](Ei)∈End(Vj)⊗End(Vk).








If [image: there is no content], with p≡([image: there is no content],[image: there is no content])⊆E([image: there is no content]), then



T(p):=exp-ε(p)πi[image: there is no content]2∑i=1Nμρj(Ei)⊗ρj(Ei)∈End(Vj).








Note that ε is the algebraic crossing number and was defined in Definition 15. See also Remark 10.

Notation 8. Suppose for all l, [image: there is no content]for some representation. Denote



[image: there is no content]≡Rρ±:=exp∓πi[image: there is no content]∑i=1Nρ(Ei)⊗ρ(Ei),










[image: there is no content]≡Tρ±:=exp∓πi[image: there is no content]2∑i=1Nμ(ρ(Ei)⊗ρ(Ei)).








When the representation is clear, we will drop the subscript ρ.
Proof. Because of Lemma 4 and because Expression 27 is defined as 0, it suffices to compute the limit of



exp-i[image: there is no content]κ24κ2[image: there is no content]∫In2⟨pκysjq˜κy0,sj,pκytk[image: there is no content]q˜κy0,tk⟩y+,sj,′y-,tk,′dsdt⊗ρj(Eis)⊗[image: there is no content](Eit).



(31)




To compute Expression 31, we note that it suffices to consider a framed truncated link diagram which is projected on [image: there is no content] plane. Using Lemma 6, the exponent will be given by a sum of terms, each involving a crossing or half-twists. We also note that we will have a problem when [image: there is no content], whereby we have to consider Expressions 29 instead.

The rest of the proof now follows similarly to the argument used in Section 2.1 in [2].



9. Σ-Model

Equation (30) defines a [image: there is no content]-valued map on a framed link diagram [image: there is no content]. From the definition of [image: there is no content], it is clear that it is invariant under ambient isotopies.

Notation 9. Let λ=[image: there is no content]≥0. Fix a N. Recall that given A⊗B∈MN([image: there is no content])⊗MN([image: there is no content]), the components [image: there is no content]. The upper indices a and b refer to the rows, the lower indices c and d refer to the columns.

Definition 19. (State model for framed truncated links.)

Fix a natural number N. A state model of type (N,[image: there is no content])is given by [image: there is no content], with [image: there is no content]∈⨂2MN([image: there is no content]), [image: there is no content]∈MN([image: there is no content]). For every state model [image: there is no content]of type (N,[image: there is no content]), there is a unique [image: there is no content]-valued mapping [image: there is no content]on the set of framed truncated link diagrams [image: there is no content]in [image: there is no content]for every framed link L in [image: there is no content], such that



[image: there is no content](Γ(L))










:=∑g∈S(L)∏p∈DP(L)[Rε(p)]g([image: there is no content](p)),g([image: there is no content](p))g([image: there is no content](p)),g([image: there is no content](p))∏[image: there is no content][Tε(p)]g([image: there is no content](p))g([image: there is no content](p))








holds.
When [image: there is no content] for some representation ρ, Theorem 1 says that the Wilson Loop observable defines a state model on the set of framed link diagrams.

Two framed truncated link diagrams in [image: there is no content] are equivalent if they can be obtained from the other by the Reidemeister Moves. Fortunately, there are algebraic conditions on [image: there is no content] and [image: there is no content] which tells us when [image: there is no content] is invariant under the 3 Reidemeister moves.

Proposition 5. (Reidemeister Move I’.)

[image: there is no content]is invariant under Reidemeister Move [image: there is no content]if



[image: there is no content]



(32)




for all a, c.
Proposition 6. (Reidemeister Move II.)

[image: there is no content]is invariant under Reidemeister Move II if



[image: there is no content]



(33)




for all a, b, c, d. There are 2 Reidemeister Moves II, the other obtained by reversing the orientation of one strand, keeping the orientation of the other fixed. In this case, the equation becomes [image: there is no content].
Proposition 7. (Reidemeister Move III.)

[image: there is no content]is invariant under Reidemeister Move III if



∑p,q,y[image: there is no content]ijpq[B]pkly[C]qynm=∑p,q,y[image: there is no content]pqln[B]iypm[C]jkqy,A,B,C=[image: there is no content]



(34)




for all i, j, k, l, m, n.
Finally, [image: there is no content] satisfies the skein relation with parameters α, β and γ,



α[image: there is no content](Γ([image: there is no content]))+β[image: there is no content](Γ([image: there is no content]))=γ[image: there is no content](Γ([image: there is no content]))



(35)




for all [image: there is no content], [image: there is no content] and [image: there is no content] as in [6] if


[image: there is no content]



(36)




for all a, b, c, d. Note that this is a correction to Equation 14 in [2].
Definition 20. (Special elements in ⨂2MN([image: there is no content]).) Define I, J, K in ⨂2MN([image: there is no content]),



Icdab=δcaδdb,Jcdab:=δdaδc,bKcdab=δbaδdc.



(37)




K commutes with J. Note that if [image: there is no content]is the identity matrix in MN([image: there is no content]), then I=[image: there is no content]⊗[image: there is no content]. Furthermore, [image: there is no content], [image: there is no content]and [image: there is no content].
We will now present the corrected version of 2 examples taken from [2].

Example 1 (SU(N))

Suppose our Lie group is [image: there is no content]. Considering its standard representation, one shows that [image: there is no content]. Hence,



[image: there is no content]=exp∓πi[image: there is no content]/Ncos([image: there is no content]π)I±isin([image: there is no content]π)J,[image: there is no content]=exp∓πi(1-N2)[image: there is no content]/2N.








Let λ=[image: there is no content], thus [image: there is no content] satisfy the Reidemeister Equations (33) and [image: there is no content] satisfy Reidemeister Equation (32) for any values of λ. It will satisfy Equation (34) if λ is an integer or half integer.

If we solve Equation (36), we get



β=-αexp(-2πiλ/N),2iαexp(-πiλ/N)sin(πλ)=γ








and hence


[image: there is no content](Γ([image: there is no content]))-exp(-2πiλ/N)[image: there is no content](Γ([image: there is no content]))=2iexp(-πiλ/N)sin(πλ)[image: there is no content](Γ([image: there is no content])).








Therefore, [image: there is no content] satisfy a Homfly polynomial skein relation



l-1[image: there is no content](Γ([image: there is no content]))-l[image: there is no content](Γ([image: there is no content]))-m[image: there is no content](Γ([image: there is no content]))=0,



(38)




with parameters [image: there is no content] and [image: there is no content]. Compare with the Jones polynomial skein relation, given by


l-1[image: there is no content](Γ([image: there is no content]))-l[image: there is no content](Γ([image: there is no content]))-(l[image: there is no content]-l-1/2)[image: there is no content](Γ([image: there is no content]))=0.








Let us summarize the result as a theorem.

Theorem 2. Consider the standard representation of [image: there is no content]and let q be the charge of the link. Then the Wilson Loop observable in Equation (30) can be written as a state model [image: there is no content]of a framed link. If [image: there is no content]is an integer or half integer, then [image: there is no content]defines a framed link invariant. Furthermore, [image: there is no content]satisfy a skein relation Equation (38).

Example 2 (SO(N))

Now consider [image: there is no content]. Considering its standard representation, then [image: there is no content]. Hence,



[image: there is no content]=exp(±πi[image: there is no content](J-K)/2)=cos(π[image: there is no content]/2)I±isin(π[image: there is no content]/2)J+exp(±π[image: there is no content]i/2)exp(∓πi[image: there is no content]N/2)-1NK,










[image: there is no content]=exp(±πi[image: there is no content](N-1)/4).








Write λ=[image: there is no content]. Note that [image: there is no content] satisfy the Reidemeister Equation (33) and [image: there is no content] satisfy Reidemeister Equation (32) for any values of λ . Equation (34) will be satisfied in any of the following 3 cases:



λ≡0(mod4),Nisodd;λ≡0(mod2),N/2isodd;λ∈N∪{0},N/2iseven.








Now, solve Equation (36), we get



β=-α,2iαsin(πλ/2)=γ.








Then,



[image: there is no content](Γ([image: there is no content]))-[image: there is no content](Γ([image: there is no content]))=2isin(πλ/2)[image: there is no content](Γ([image: there is no content])).








Compare this with the skein relation for the Conway polynomial,



[image: there is no content](Γ([image: there is no content]))-[image: there is no content](Γ([image: there is no content]))=z[image: there is no content](Γ([image: there is no content])).



(39)




The only interesting case would be when N is a multiple of 4 and [image: there is no content] is an odd integer. Then the state model [image: there is no content] would satisfy the skein relation Equation (39) for the Conway polynomial, with [image: there is no content].



10. Final Comments

We would like to end this article with a few comments.


10.1. Normalizing Constants

In the definition of the line integral in the Wilson Loop observable, we scale [image: there is no content] by [image: there is no content] and [image: there is no content], B with [image: there is no content]. The factor ψ is required to obtain non trivial results when we take the limit as κ goes to infinity and this scaling was also done in [1]. But in that article, we notice that the constant was [image: there is no content].

Now, the factor κ is put there for technical reasons. The thing we want to address is the discrepancy in the constants [image: there is no content] and [image: there is no content]. In fact, there is no discrepancy as the operator [image: there is no content] used in [1] is actually twice of the operator [image: there is no content] defined in this article. If we had used the operator [image: there is no content] instead in this article, then we would use the normalizing constant [image: there is no content], instead of [image: there is no content].

Finally, we would like to point out that the normalizing constants were specially chosen so that the R-matrices obtained in Theorem 1 will be consistent with the R-matrices obtained in [2].



10.2. The Solid Torus

Consider the solid torus T≅[image: there is no content]¯×[image: there is no content], where [image: there is no content] is the open disc of radius 1 in [image: there is no content]. Given any link embedded inside T or on the surface of a torus, we may as well assume that it is embedded inside [image: there is no content]×[image: there is no content]. Now the open disc is homeomorphic to [image: there is no content], so we can map the link into [image: there is no content].

However, we wish to point out that quasi axial gauge or torus gauge fixing may not apply to [image: there is no content]×[image: there is no content]. We will not address this issue here. Instead we will use the RHS of Equation (10) as the heuristic expression for the Wilson Loop observable, for a manifold of the form Σ×[image: there is no content], where Σ is any simply connected Riemann surface.

Hence we can apply the results in this article, define and compute the Wilson Loop observable and obtain link invariants for a link embedded inside Σ×[image: there is no content]. In particular, we can define the link invariants for a link embedded inside the solid torus T.



10.3. The W Polynomial

The Wilson Loop observable in the case of [image: there is no content], was meant to give us the Jones Polynomial of a link. However, the Wilson Loop observable gives us a number. So how does one even obtain a polynomial invariant out of it?

Firstly, we have shown that the Wilson Loop observable is an invariant for a framed link. Secondly, the Wilson Loop observable yields [image: there is no content] for the unlink with n number of components.

Let us go back to our [image: there is no content] example. Now, when [image: there is no content] is an integer,



[image: there is no content]=e∓πi[image: there is no content]/Ncos([image: there is no content]π)I,








and thus the state model just yield us


[image: there is no content](Γ(L))=[(-1)[image: there is no content]l](1-N2)t(L)/2l[image: there is no content]N,l=(-1)[image: there is no content]e-πi[image: there is no content]/N.








Here, [image: there is no content] is the sum of the algebraic numbers of all the crossings, and [image: there is no content] is the sum of the algebraic numbers of all the half twists in L.

The more interesting case is when [image: there is no content] is a half integer. In this case,



[image: there is no content]=±ie∓πi[image: there is no content]/Nsin([image: there is no content]π)J,








and the state model will yield a polynomial [image: there is no content], whereby


[image: there is no content](Γ(L))=WN,L(l,l-1),l=(-1)[image: there is no content]-1/2ie-πi[image: there is no content]/N.








Thus, the Wilson Loop observable defines a polynomial [image: there is no content] for a framed link L.







Conflicts of Interest

The authors declare no conflict of interest.



References


	1. 
Lim, A.P.C. Chern-Simons path integral on [image: there is no content]3 using abstract Wiener measure. Commun. Math. Anal. 2011, 11, 1–22. [Google Scholar]

	2. 
Lim, A.P.C. Non-abelian gauge theory for Chern-Simons path integral on [image: there is no content]. J. Knot Theory Ramif. 2012, 21. [Google Scholar] [CrossRef]

	3. 
Witten, E. Quantum field theory and the Jones polynomial. Commun. Math. Phys. 1989, 121, 351–399. [Google Scholar] [CrossRef]

	4. 
Hahn, A. Chern-Simons models on S2 × S1 , torus gauge fixing, and link invariants. II. J. Geom. Phys. 2008, 58, 1124–1136. [Google Scholar] [CrossRef]

	5. 
Darling, R.W.R. Differential Forms and Connections; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]

	6. 
Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millett, K.; Ocneanu, A. A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 1985, 12, 239–246. [Google Scholar] [CrossRef]





© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  mathematics-03-00843


  
    		
      mathematics-03-00843
    


  




  





