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1. Introduction: Motivation

In public health, policies are defined in order to decrease the number of infected or infectious
individuals. In that process it is sometimes useful to build mathematical models [1] with compartments
and use them to get some information on disease parameters or qualitative dynamics of the epidemics.
In most infectious diseases, age is an important variable at least due to the immune reaction (depending
on age) to infection [2]. We model here a disease with relative immunization (like hepatitis B [3]),
without vaccination [4] (since several like diseases exist) and two infectious states in compartments i
and e (respectively acute infectious and chronic infected for hepatitis B disease). We present in this note
the necessary optimality conditions inspired by (Feichtinger et al. [5], pp. 57) for our model. Hence
we characterize the optimal control for our model. Since few works in mathematical biology study the
control of both horizontal and vertical transmissions[6] of age-structured models, we will stress on this
feature. Our presentation is organized as follows. Section two formulates the model while section three
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presents the conditions for optimal control with an adjoint system, and a characterization of the optimal
control whenever it exists. A discussion in section four concludes the paper.

2. Formulation of the Model with Test/Detection, Containment Stage (Identification of Cases,
Prophylaxis of Their Close Contacts, Promotion of Hygiene Rules and Protective Actions) and
Vertical Transmission in a Closed Population

2.1. The age-structured model with horizontal and perinatal control

The model in a closed population includes: (i) vertical and perinatal transmissions
(mother-to-child transmission); (ii) horizontal transmission amongst the whole
population [4]. S(t, a), i(t, a), e(t, a) and r(t, a) denotes respectively the densities of susceptible
individuals, two different states of infectious individuals and retired/removed individuals.
In addition p0 ∈ L∞+ (0,∞) is a given function such that 0 ≤ p0(a) ≤ 1 a.e. while q0(a) ≡ 1− p0(a) =: ε(a)p0(a).

Function q0 represents the age-specific probability to enter in state e when becoming infected at age a.
Function p0 denotes the probability to develop state i of infection when getting the infection at age a.
We refer for application to Nokes et al. [3] for more explanation on the age-dependence susceptibility
to the infection in the case of hepatitis B virus (HBV). According to Nokes et al. in [3] function q0 takes
the form q0(a) = κe−ra

s for some suitable (positive) parameter set for (κ, r, s). In order to take into
account this age-specific susceptibility dependence, Ducrot et al. [7] consider the simplest prototypical
shape curve of the form

q0(a) = κe−ra (1)

for some κ ∈ [0, 1] and r > 0. This differential susceptibility is a very important aspect of HBV
infection: according to CDC (Centers for Disease Control and Prevention, USA: www.cdc.gov.) about
90% of children will remain chronically infected with HBV while 95% of adults will develop acute
infection and will completely recover from HBV infection. We consider an age-dependent test/detection
and cure/containment rate Ψ(t, a) (with 0 ≤ Ψ(t, a) ≤ 1 for a.e. t and a) in our age-structured
model: we will use it to partially control the evolution of the disease in horizontal transmission, while
vertical transmission will be controlled through birth(s) coming from infectious individuals with a term
v(t) (with 0 ≤ v(t) ≤ 1) where t ∈ [0;T ) and a ∈ [0;A) lower than fixed values A ∈ (0; +∞) and
T ∈ (0; +∞) respectively seen as (maximal) lifespan and horizon time. 0 ≤ δ ≤ 1 is the reduction
in risk due to prior exposure to containment stage (identification of cases , prophylaxis of their close
contacts, promotion of hygiene rules and protective actions). That means: δ = 0 corresponds to a perfect
detection/containment and δ = 1 corresponds to a totally imperfect strategy of medical test/detection
and containment/quarantine. µ(a) ≥ 0 denotes the natural death rate. µI(a) ≥ 0 and µE(a) ≥ 0 are
respectively the additional death rates for i−state and e−state. εx is the retired rate from the x−state,
x ∈ {i, e}. The term λ (t, a) corresponds to the age-specific force of infection and follows the usual law
of mass-action, that reads as

λ(t, a) =

∫ ∞
0

βi(a, a
′)i(t, a′)da′ +

∫ ∞
0

βe(a, a
′)e(t, a′)da′



Mathematics 2015, 3 882

Here, βi(a, a′) and βe(a, a′) denote the (finite essential supremum and compact supported) contact
transmission rates between acute infected individuals (i) or chronic carriers (e) of chronological age a′

with susceptible of chronological age a respectively.

Remark 1. In fact we can consider a ∈ (0,∞) instead of a ∈ (0, A). All the supports of the coefficients
(seen as functions of a) are included in (0, A). We set a compartmentQ of contained individuals (isolated
and spreading no more the disease) and neglect births coming from this compartment.

In this section we will consider the following (chronological “a”) age-structured model with
a test/containment strategy Ψ and vertical transmission

(∂t + ∂a + µ(a))S(t, a) = −λ(t, a) [1− (1− δ) Ψ(t, a)]S(t, a),

(∂t + ∂a + (µI(a) + µ(a) + εi(a))) i(t, a) = λ(t, a)p0(a) [1− (1− δ) Ψ(t, a)]S(t, a),

(∂t + ∂a + (µE(a) + µ(a) + εe(a))) e(t, a) = λ(t, a)q0(a) [1− (1− δ) Ψ(t, a)]S(t, a),

(∂t + ∂a + µ(a) + ε(a))Q(t, a) = λ(t, a) (1− δ) Ψ(t, a)S(t, a)− π(a)Q(t, a)

(∂t + ∂a + µ(a)) r(t, a) = εi1(a)i(t, a) + εe1(a)e(t, a) + π(a)Q(t, a)

(2)

with 0 ≤ εi1 ≤ εi and 0 ≤ εe1 ≤ εe. Moreover ∂x ≡ ∂
∂x

.
This problem is supplemented together with the boundary conditions (for t ∈ [0;T )):

S(t, 0) =

∫ ∞
0

f(a) [S(t, a) + b1(a)i(t, a) + b2(a)e(t, a) + b3(a)r(t, a)] da

i(t, 0) =

∫ ∞
0

f(a)v(t)c1(a)p(t, a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)] da

e(t, 0) =

∫ ∞
0

f(a)v(t)(1− c1(a))ε(a)p(t, a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)] da

Q(t, 0) = 0

r(t, 0) = 0

and initial data (for a ∈ [0;A)): S(0, a) = S0(a), i(0, a) = i0(a), e(0, a) = e0(a), r(0, a) = r0(a),
Q(0, a) = Q0(a). f is similar to the fertility function. p(t, a) will be explicitly described in subsection
3.3. Moreover functions v, c1, b1, b2 and b3 are [0; 1]-valued. We assume here that infected offspring
come from “mixing” between infectives. It is also assumed in some diseases transmitted by genes.

We voluntary choose to skip compartment of latent individuals since its dynamic is relatively fast
(around 3 months as average time for hepatitis B). The first assumption here is to consider retired few
such as b3 = 0 a.e. Then we will note that the r component of the system is decoupled from the other
components and has therefore no impact upon the long term behaviour of the system (2).

2.2. About the Well-posedness of the Age-Structured Model

It is possible to prove (in brief) that (2) is well-posed using semigroup theory [8] in suitable Banach
or Sobolev spaces (or refer to a general context in Brokate [9]) as follows.

The system (2) can be re-written under the form of a Cauchy problem:{
dw(t)
dt

= Aw(t) + F (t, w(t)) := G(t, w(t))

w(0) = w0 ∈ D(A)
(3)
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with

w(t) ≡



0

0

0

0

0

S(t, .)

i(t, .)

e(t, .)

r(t, .)

Q(t, .)


and

D(A) = {0}5 ×
(
W 11(0; +∞)

)5

Let v ≡



α1

α2

α3

α4

α5

Ŝ

î

ê

r̂

Q̂



in the Banach space

X = R5 ×
(
L1(0; +∞)

)5

endowed with the usual norm

‖v‖X = Σi=5
i=1 |αi|+

∫ ∞
0

[∣∣∣Ŝ(a)
∣∣∣+
∣∣∣̂i(a)

∣∣∣+ |ê(a)|+ |r̂(a)|+
∣∣∣Q̂(a)

∣∣∣] da
The natural positive cone of X is

X+ = [0; +∞)5 ×
(
L1

+(0; +∞)
)5

We also define
X0 = {0}5 ×

(
L1(0; +∞)

)5

and its positive cone
X0+ = {0}5 ×

(
L1

+(0; +∞)
)5
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We set u ≡



0

0

0

0

0

Ŝ

î

ê

r̂

Q̂



and the linear and closed operator defined on D(A) by:

A : D(A) → X

u 7−→



Ŝ(0)

î(0)

ê(0)

r̂(0)

Q̂(0)

−dŜ
da
− (Ψ(.) + µ(.)) Ŝ

− d̂i
da
− (µI(.) + µ(.)) + εi(.)̂i

− dê
da
− (µE(.) + µ(.) + εe(.)) ê

− dr̂
da
− µ(.)r̂ + εi1(.)̂i+ εe1(.)ê+ π(.)Q̂

−dQ̂
da
− (µ(.) + ε(.) + π(.)) Q̂


It always exists µ̄ ∈ [0; +∞) such that: ∀a ≥ 0, µ(a) ≥ µ̄. Then we have for each λ > −µ̄

(λ− A)−1X+ ⊂ X0+ (4)

and (−µ̄,∞) ⊂ ρ(A) with

‖(λ− A)−1‖L(X) ≤
1

λ+ µ̄
, ∀λ > −µ̄ (5)

The part A0 of A defined by

A0 : D(A0) → X

u 7−→



0

0

0

0

0

−dŜ
da
− (Ψ(.) + µ(.)) Ŝ

− d̂i
da
− (µI(.) + µ(.) + εi(.)) î

− dê
da
− (µE(.) + µ(.) + εe(.)) ê

− dr̂
da
− µ(.)r̂ + εi1(a)̂i+ εe1(.)ê+ π(.)Q̂

−dQ̂
da
− (µ(.) + ε(.) + π(.)) Q̂


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with D(A0) defined by

u ≡



0

0

0

0

0

Ŝ

î

ê

r̂

Q̂



∈ D(A) : Au ∈ D(A), Ŝ(0) = î(0) = ê(0) = r̂(0) = Q̂(0) = 0


A0 verifies the Hille-Yosida property: It exists µ̄ ∈ [0; +∞) such that ∀a ≥ 0, µ(a) ≥ µ̄ and we have

for each λ > −µ̄
‖(λ− A0)−1‖L(X0) ≤

1

λ+ µ̄
, ∀λ > −µ̄ (6)

and (by lemma 2.1 of [10, Ducrot et al. 2010]): X1 := D(A0). Assumption 2.2 of [10, Ducrot et al.
2010, pp. 267] is satisfied. Then its lemma 2.3 [10, Ducrot et al. 2010, pp. 267] applies: A0 is the
infinitesimal generator of a C0-semigroup (TA0 (t))t≥0 on X1.

We define the Fréchet differentiable in the second variable u ( and then “locally” Lipschitz in u)
perturbation (for each t ≥ 0):

F (t, .) : X0 → X

u 7−→ F (t, u(.))

with

F (t, u(.)) =



−
∫∞

0
f(a)

[
Ŝ(a) + b1(a)̂i(a) + b2(a)ê+ b3(a)r̂(a)

]
da

−
∫∞

0
f(a)v(t)c1(a)p(t, a)

[
(1− b1(a))̂i(a) + (1− b2(a))ê(a)

]
da

−
∫∞

0
f(a)v(t)(1− c1(a))ε(a)p(t, a)

[
(1− b1(a))̂i(a) + (1− b2(a))ê(a)

]
da

0

0

−λ∗(.) [1− (1− δ) Ψ(t, .)] Ŝ

λ∗(.)p0(.) [1− (1− δ) Ψ(t, .)] Ŝ

λ∗(.)q0(.) [1− (1− δ) Ψ(t, .)] Ŝ

0

λ∗(.) (1− δ) Ψ(t, .)Ŝ


with

λ∗(a) =

∫ ∞
0

βi(a, a
′)̂i(a′)da′ +

∫ ∞
0

βe(a, a
′)ê(a′)da′
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The model (3) is well posed as it admits an integrated solution w defined on a maximal time interval
[0;T ] (eventually T → +∞ through a bounded dissipativity property) [10,11]. w satisfies (in Bochner
sense for integrals): ∫ t

0

w(s)ds ∈ D(A)

and

w(t) = w0 + A

∫ t

0

w(s)ds+

∫ t

0

F (s, w(s))ds (t ≥ 0)

In the sequel we denotes by νi(a) := (µI(a) + µ(a) + εi(a)) and νe(a) := (µI(a) + µ(a) + εe(a)) the
global mortalities for i and e compartments respectively. Moreover ε is the additional mortality for the
Q-compartment.

Remark 2. It is possible to add a transition at constant proportional rate from i−state to e−state in
diseases like hepatitis B [3].

3. Optimal Control Problem

Let D = [0;T ]× [0;A]. We want to find an optimal strategy Ψ such that we minimize the functional

C(T,A,Ψ, v) =

∫ T

0

∫ A

0

L(t, a, y(t, a),Ψ(t, a), v(t))dadt

such that (see useful definition in next subsection or [5], pp. 48)

L(t, a, y(t, a),Ψ(t, a), v(t)) = d(a)y(t, a) + c (Ψ(t, a)) + z(v(t))

(with real valued functions c and z) on the admissible set for (Ψ, v):

Ead = {(n,m) ∈ L∞ (D : R)× L∞ ([0;T ] : R) |n(x),m(y) ∈ [0; 1] for a.e. (x, y) ∈ D × [0;T ]}

Here d(a) ∈ R2 (in row) is the damage caused by a member of age a, while the second and third terms
in L represent the cost of the control due to detection/test, cure and fight against perinatal or mother to
child transmission.

3.1. About Existence of Optimal Control (Ψ̂, v̂)

In this work, we assume the existence of a minimum
(
ŷ, p̂, q̂, Ψ̂, v̂

)
. However, an interesting work by

Picart et al. [12] could be used (in with section 2 of [12]) to prove the existence of at least one optimum.
Similarly to [12], positivity of the biological system (2) implies that the total number of newborns cannot
be larger than the total number of newborns without admissible positive control (v = 1 and Ψ = 1).
Using then the lower bound d of the continuous cost function CT,A(Ψ, v) := C(T,A,Ψ, v) and the point
dissipative semiflow of the dynamical system (2) one can prove the existence of a bounded minimizing
sequence (Ψk, vk)k∈N of Ead converging up to a subsequence to an admissible control. Finally, the
sequence {CT,A(Ψk, vk)}k∈N converges as k → +∞ to d, the well-posedness of the minimization
problem [W]: “ minΨ,vC(T,A,Ψ, v) in the admissible set Ead ” in the sense where [W] admits at least
one optimum. About these control (Ψ, v), the convexity with respect to control (v,Ψ) of the integrand
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of the CT,A(Ψ, v) (for existence) and a sufficiently small time-interval (for uniqueness) could also be
helpful. This work focuses on determination of candidates to optimal control for optimal solution of the
cost functional.

3.2. Context of a Result of Feichtinger et al. [5]

We apply then Theorem 1, ([5], pp. 57) with necessary optimality conditions (Pontryagin’s maximum
principle) ([5], pp. 56) using the following notations, assumptions and short results focusing on(
ŷ, p̂, q̂, Ψ̂, v̂

)
:

• U = V = [0; 1] ⊂ R (in this epidemiological case);

• y ≡

(
i

e

)
: D → R2, p : D → R;

• q : [0;T ]→ R2, Ψ : D → U , v : [0;T ]→ V ;

• L : D × R2 × R× R2 × U × V → R, f : D × R2 × R× R2 × U → R2;

• g : D × [0;A]× R2 × U → R, h : D × R2 × R× R2 × U → R2;

• y0 ≡

(
i0

e0

)
: [0;A]→ R2, ϕ : [0;T ]× R2 × V → R2;

• Admissible control is any couple (Ψ, v) of measurable functions

Ψ : D → U and v : D → V

• The function L, f, g, h, y0, ϕ are Carathéodory (that is, measurable in the (eventually) three
variables t, a, a′ and continuous in the rest of variables), locally essentially bounded, differentiable
in (y, p, q, v) , with locally Lipschitz partial derivatives, uniformly with respect to Ψ ∈ U and
(t, a) ∈ D, a′ ∈ [0;A];
• Moreover using result of Sell and You [13], we can prove that there is a compact Z ⊂ R6 such that

for every admissible control (Ψ, v) the system has a unique solution (S, y, p, q) on D in the sense
of ([5], pp. 51) and the solutions takes values in Z.
• We assume that there exists an optimal solution

(
ŷ, p̂, q̂, Ψ̂, v̂

)
(see interesting results of M.

Brokate [9]);
• (see [5], pp. 56) f(t, a) := f(t, a, ŷ(t, a), p̂, q̂, Ψ̂);
• (see [5], pp. 56) f(t, a,Ψ) := f(t, a, ŷ(t, a), p̂, q̂,Ψ);
• (see [5], pp. 56) g(t, a, a′,Ψ) = g(t, a, a′, ŷ(t, a),Ψ); h(t, a) = h(t, a, ŷ(t, a), p̂(t, a), q̂(t), Ψ̂);
h(t, a,Ψ) = h(t, a, ŷ(t, a), p̂(t, a), q̂(t),Ψ);

3.3. Necessary Optimality Conditions for the Model Studied

We define these expressions following our model (2):

• g(t, a, a′, y(t, a),Ψ(t, a)) = p0(a) [βi(a, a
′)i(t, a′) + βe(a, a

′)e(t, a′)] ;

• p(t, a) :=
∫ A

0
g(t, a, a′, y(t, a),Ψ(t, a))da′;

• f(t, a, y(t, a), p(t, a), q(t),Ψ(t, a)) is defined by

p(t, a) [1− (1− δ)Ψ(t, a)]S(t, a)

(
1

ε(a)

)
− (νi(a), νe(a)) y(t, a)
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• h(t, a, y(t, a), p(t, a), q̂(t, a), Ψ̂) ≡ h(t, a, y(t, a), p(t, a)) is defined by(
f(a)c1(a)p(t, a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)]

f(a)(1− c1(a))ε(a)p(t, a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)]

)

• q(t) :=
∫ A

0
h(t, a, y(t, a), p(t, a))da, ϕ(t, q(t), v(t)) := v(t)q(t),

• y(t, 0) := ϕ(t, q(t), v(t))

• Gie((r1, r2)) := (νi(a)r1; νe(a)r2), Kie(a) := (1; ε(a))T .

We introduce (according to [5], pp. 56) the following adjoint system for the adjoint functions
(ξ, η, ζ), considered as row-vector functions (while y, p and q are column-vectors in L∞

(
D : R2

+

)
,

L∞ (D : R+), L∞
(
[0;T ] : R2

+

)
) from L∞ (D : R2)× L∞ (D : R)× L∞ ([0;T ] : R2)

− (∂t + ∂a) ξ(t, a) = d(a) +Gie(ξ(t, a)) + ζ(t)f(a)p(t, a)(1− b1(a)) (c1(a); (1− c1(a)))

+

∫ A

0

p0(a)η(t, a′) (βi(a, a
′); βe(a, a

′)) da′

ξ(T, a) = 0

ξ(t, A) = 0

with

ζ(t) = v(t)ξ(t, 0)

η(t, a) = [1− (1− δ) ξ(t, a)]S(t, a)ξ(t, a)Kie(a) + f(a)ζ(t, a)W (y(t, a))

where

W (y(t, a)) =

(
c1(a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)]

(1− c1(a))ε(a) [(1− b1(a))i(t, a) + (1− b2(a))e(t, a)]

)
For the solution (ŷ, p̂, q̂), and the corresponding solution (ξ, η, ζ) of the adjoint system (existing by

Theorem 1 or Proposition 2 [5], pp. 57) we define (as [5]) the boundary and distributed Hamiltonians ([5], pp. 57):{
Hb(t, v) = ξ(t, 0)ϕ(t, v) +

∫ A

0
L(t, b, v)db

H(t, a,Ψ) = L(t, a,Ψ) + ξ(t, a)f(t, a,Ψ) +
∫ A

0
η(t, a′)g(t, a′, a,Ψ)da′ + ζ(t)h(t, a,Ψ)

The following proposition relies to the Theorem 1(Pontryagin’s maximum principle [5] with proof on
page 64) and straightforward computations.

Proposition 3. We assume that there exists an optimal control
(

Ψ̂, v̂
)

and the corresponding solution(
Ŝ, ŷ, p̂, q̂, Ψ̂, v̂

)
that minimizes the single-objective cost functional CT,A(Ψ, v) := C(T,A,Ψ, v) under

assumptions in section 3.2 with(
ŷ, p̂, q̂, Ψ̂, v̂

)
∈ L∞

(
D : R2

)
× L∞ (D : R)× L∞

(
[0;T ] : R2

)
× L∞ (D : U)× L∞ ([0;T ] : V ) .

Then
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a- For a.e t0 ∈ [0;T ], a0 ∈ [0;A] and (t, a) ∈ D{
∂Hb

∂v
(t0, v̂(t0)) (v − v̂(t0)) ≥ 0, ∀v ∈ V

H(t, a, u)−H(t, a, Ψ̂(t, a)) ≥ 0, ∀u ∈ U

b- Moreover the minimization conditions of the Hamiltonian gives:

c′(Ψ(t, a)) = (1− δ)p(t, a)Ŝ(t, a)ξ(t, a)

(
1

ε(a)

)
z′(v(t)) = −ξ(t, 0)q(t)

c- If c′ and z′ are invertible (as for c(s) = w1s
2 and z(s) = w2s

2) then optimal control is explicitly
described (for 0 ≤ v ≤ 1) by:

Ψ̂(t, a) = min

{
1; max

{
0; [c′]−1

(
(1− δ)p̂(t, a)Ŝ(t, a)ξ̂(t, a)

(
1

ε(a)

))}}
v̂(t) = min

{
1; max

{
0; [z′]−1

(
−ξ̂(t, 0)q̂(t)

)}}
4. Discussion

We know that c′ and [c′]−1 have the same variation: then assuming that c′ is monotonic implies the
same variation for [c′]−1. If c′ is increasing (as in the particular case c(s) = w1s

2 or generally c is
convex), then the optimal effort, Ψ̂, roughly increases (1 − δ) and hence so does the number of those
cured by the test/detection and containment stage. It possible to apply this result on 20 years in the case
of hepatitis B in a pygmy group named Baka living in the heart of the forest within the east of Cameroon
(Africa) with 5647 peoples (data in Foupouapouognigni Y. [4] in 2010). We evaluate [3,7] p0 with least
mean squares as p0(a) = 1 − 0.643.e−0.156a in a situation of endemicity when the basic reproduction
rate is greater than one. It is also possible to choose a linear boundary conditions on i and e such that in
subsection 3.3: g(t, a, a′, y(t, a),Ψ(t, a)) = p0(a)β(t, a) and get interesting results.
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