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Abstract: In this paper, sufficient conditions are given to investigate the existence of mild solutions
on a semi-infinite interval for first order semi linear impulsive neutral functional differential
evolution inclusions with infinite delay using a recently developed nonlinear alternative for
contractive multivalued maps in Frechet spaces due to Frigon combined with semigroup theory.
The existence result has been proved without assumption of compactness of the semigroup. We
introduced a new phase space for impulsive system with infinite delay and claim that the phase
space considered by different authors are not correct.
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1. Introduction

In recent years, impulsive differential and partial differential equations have become more
important in some mathematical models of real phenomena, especially in control, biological and
medical domains. In these models, the investigated simulating processes and phenomena usually are
subject to short-term perturbations whose duration is negligible in comparison with the duration of
the process. Consequently, it is natural to assume that these perturbations act instantaneously in the
form of impulses. The theory of impulsive differential equations has seen considerable development,
see the monographs of Bainov and Semeonov [1], Lakshimikantham [2] and Perestyuk [3]. Recently,
several works reported existence results for mild solutions for impulsive neutral functional
differential equations or inclusions, such as ([4–11]) and references therein. However, the results
obtained there are only in connection with finite delay. Since many systems arising from realistic
models heavily depend on histories (i.e., there is an effect of infinite delay on state equations), there
is a real need to discuss partial functional differential systems with infinite delay, where numerous
properties of their solutions are studied and detailed bibliographies are given. The literature related
to first and second order nonlinear non autonomous neutral impulsive systems with or without state
dependent delay is not vast. To the best of our knowledge, this is almost an untreated article in a
literature and is one of the main motivations of this paper.
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When the delay is infinite, the notion of the phase space plays an important role in the study of
both qualitative and quantitative theory. A usual choice is a seminormed space satisfying suitable
axioms, introduced by Hale and Kato in [12]; see also Corduneanu and Lakshmikantham [13];
Graef [14] and Baghli and Benchohra [15,16]. Unfortunately, we can not find broad literature
about the system involving infinite delay with impulse effects. Henderson and Ouahab [17]
discussed existence results for nondensely defined semilinear functional differential inclusions in
Frechet spaces. Hernández et al. [18] studied existence of solutuions for impulsive partial neutral
functional differential equations for first and second order systems with infinite delay. Recently, Arthi
and Balachandran [19] proved controllability of the second order impulsive functional differential
equations with state dependent delay using fixed point approach and cosine operator theory. It has
been observed that the existence or the controllability results proved by different authors are through
an axiomatic defination of the phase space given by Hale and Kato [12]. However, as remarked by
Hino, Murakami, and Naito [20], it has come to our attention that these axioms for the phase space
are not correct for the impulsive system with infinite delay [21,22]. This motivated us to generate
a new phase space for the existence of a nonautonomous impulsive neutral inclusion with infinite
delay. This is another motivation of this paper. To the best of our knowledge, the result proved in this
paper is new and are not available in the literature.

On the other hand, researchers have been proving the controllability results using compactness
assumption of semigroups and the family of cosine operators. However, as remarked by
Triggiani [23], if X is an infinite dimensional Banach space, then the linear control system is
never exactly controllable on the given interval if either B is compact or associated semigroup is
compact. According to Triggiani [23], this is a typical case for most control systems governed
by parabolic partial differential equations and hence the concept of exact controllability is very
limited for many parabolic partial differential equations. Nowadays, researchers are engaged to
overcome this problem, refer to ([19,21,22]). Very recently, Chalishajar and Acharya [22] studied
the controllability of second order neutral functional differential inclusion, with infinite delay and
impulse effect on unbounded domain, without compactness of the family of cosine operators.
Ntouyas and O’Regan [24] gave some remarks on controllability of evolution equations in Banach
paces and proved a result without compactness assumption.

In the last few years, researchers have diverted to fractional impulsive equations due to their
extensive applications in various fields. Fečkan et al. [25] have discussed the existence of PC-mild
solutions for Cauchy problems and nonlocal problems for impulsive fractional evolution equations
involving Caputo fractional derivative by utilizing the theory of operators semigroup, probability
density functions via impulsive conditions, a new concept on a PC-mild solution is introduced in
their paper. We refer to the readers the book of Zhou [26]. Recently, Fu et al. [27] studied the existence
of PC-mild solutions for Cauchy and nonlocal problems of impulsive fractional evolution equations
for which the impulses are not instantaneous, by using the theory of operator semigroups, probability
density functions, and some suitable fixed point theorems.

The rest of this paper is organized as follows: In Section 2, we introduce the system, recall
some basic definitions, and preliminary facts that will be used throughout this paper. The existence
theorems for semi linear impulsive neutral evolution inclusions with infinite delay, and their proofs
are arranged in Section 3. Finally, in Section 4, an example is presented to illustrate the applications
of the obtained results.
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2. Preliminaries

In this paper, we shall consider the existence of mild solutions for first order impulsive partial
neutral functional evolution differential inclusions with infinite delay in a Banach space E

d
dt

[
y(t)− g(t, yt)

]
∈ A(t)y(t) + F(t, yt) (1)

t ∈ J = [0,+∞), t 6= tk, k = 1, 2, . . .

∆y|t=tk = Ik(y(t−k )), k = 1, 2 . . . (2)

y0 = φ ∈ Bh (3)

where F : J × Bh → P(E) is a multivalued map with nonempty compact values, P(E) is the family
of all subsets of E, g : J × Bh → E and Ik : E → E, k = 1, 2, . . . are given functions, φ ∈ Bh are
given functions and {A(t)}0≤t<+∞ is a family of linear closed (not necessarily bounded) operators
from E into E that generate an evolution system of operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞.
∆y|t=tk = y(t+k )− y(t−k ), y(t+k ) and y(t−k ) represent right and left limits of y(t) at t = tk respectively.
For any continuous function y and any t ≥ 0, we denote by yt the element of Bh defined by
yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. We assume that the histories yt belongs to some abstract phase
space Bh to be specified below.

We present the abstract phase space Bh. Assume that h : (−∞, 0) → (0, ∞) be a continuous
function with l =

∫ 0
−∞ h(s)ds < +∞. Define,

Bh := {φ : [−∞, 0]→ X such that, for any r > 0, φ(θ) is bounded and measurable

function on [−r, 0] and
∫ 0

−∞
h(s) sups≤θ≤0|φ(θ)|ds < +∞}.

Here, Bh endowed with the norm

‖φ‖Bh =
∫ 0

−∞
h(s) sup

s≤θ≤0
|φ(θ)|ds, ∀φ ∈ Bh

Then, it is easy to show that (Bh, ‖.‖Bh) is a Banach space.

Lemma 1. Suppose y ∈ Bh; then, for each t ∈ J, yt ∈ Bh. Moreover,

l|y(t)| ≤ ‖yt‖Bh ≤ l sup
s≤θ≤0

(|y(s)|+ ‖y0‖Bh)

where l :=
∫ 0
−∞ h(s)ds < +∞.
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Proof. For any t ∈ [0, a], it is easy to see that, yt is bounded and measurable on [−a, 0] for a > 0, and

‖yt‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
|yt(θ)|ds

=
∫ −t

−∞
h(s) sup

θ∈[s,0]
|y(t + θ)|ds +

∫ 0

−t
h(s) sup

θ∈[s,0]
|y(t + θ)|ds

=
∫ −t

−∞
h(s) sup

θ1∈[t+s,t]
|y(θ1)|ds +

∫ 0

−t
h(s) sup

θ1∈[t+s,t]
|y(θ1)|ds

≤
∫ −t

−∞
h(s)

[
sup

θ1∈[t+s,0]
|y(θ1)|+ sup

θ1∈[0,t]
|y(θ1)|

]
ds +

∫ 0

−t
h(s) sup

θ1∈[0,t]
|y(θ1)|ds

=
∫ −t

−∞
h(s) sup

θ1∈[t+s,0]
|y(θ1)|ds +

∫ 0

−∞
h(s)ds. sup

s∈[0,t]
|y(s)|

≤
∫ −t

−∞
h(s) sup

θ1∈[s,0]
|y(θ1)|ds + l. sup

s∈[0,t]
|y(s)|

≤
∫ 0

−∞
h(s) sup

θ1∈[s,0]
|y(θ1)|ds + l sup

s∈[0,t]
|y(s)|

=
∫ 0

−∞
h(s) sup

θ1∈[s,0]
|y0(θ1)|ds + l sup

s∈[0,t]
|y(s)|

= l sup
s∈[0,t]

|y(s)|+ ‖y0‖Bh

Since φ ∈ Bh, then yt ∈ Bh. Moreover,

‖yt‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
|yt(θ)|ds ≥ |yt(θ)|

∫ 0

−∞
h(s)ds = l|y(t)|

The proof is complete.

Next, we introduce definitions, notation and preliminary facts from multi-valued analysis, which
are useful for the development of this paper (see [28]).

Let C([0, b], E) denote the Banach space of all continuous functions from [0, b] into E with
the norm

‖y‖∞ = sup{‖y(t)‖ : 0 ≤ t ≤ b}

and let L1([0, ∞), E) be the Banach space of measurable functions y : [0, ∞) → E, that are Lebesgue
integrable with the norm

‖y‖L1 =
∫ ∞

0
‖y(t)‖dt for all y ∈ L1([0, ∞), E)

Let X be a Frechet space with a family of semi-norms {‖ · ‖n}n∈N. Let Y ⊂ X, we say that Y is
bounded if for every n ∈ N, there exists M̄n > 0 such that

‖y‖n ≤ M̄n for all y ∈ Y

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: for every n ∈ N, we
consider the equivalence relation ∼n defined by :x ∼n y if and only if ‖x− y‖n = 0 for all x, y ∈ X.
We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with respect to ‖ · ‖n. To
every Y ⊂ X, we associate a sequence the {Yn} of subsets Yn ⊂ Xn as follows: for every x ∈ X, we
denote [x]n the equivalence class of x of subset Xn and we define Yn = {[x]n : x ∈ Y}. We denote
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Ȳn, int(Yn) and ∂nYn, respectively, the closure, the interior, and the boundary of Yn with respect to
‖ · ‖ in Xn. We assume that the family of semi-norms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X

Let (X, d) be a metric space. We use the following notations:
Pcl(X) := {Y ∈ P(X) : Yclosed}, Pb(X) := {Y ∈ P(X) : Ybounded}
Pcv(X) := {Y ∈ P(X) : Yconvex}, Pcp(X) := {Y ∈ P(X) : Ycompact}.

Consider Hd : P(X)×P(X)→ R+ ∪ {∞}, given by

Hd(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

where d(A, b) := infa∈A d(a, b), d(a,B) := infb∈B d(a, b). Then, (Pb,cl(X), Hd) is a metric space and
(Pcl(X), Hd) is a generalized (complete) metric space (see [29]).

Definition 1. We say that a family {A(t)}t≥0 generates a unique linear evolution system {U(t, s)}(t,s)∈∆ for
∆1 = {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞} satisfying the following properties:

(1) U(t, t) = I where I is the identity operator in E,
(2) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,
(3) U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every (t, s) ∈ ∆1 and for each y ∈ E,
the mapping (t, s)→ U(t, s)y is continuous.

More details on evolution systems and their properties could be found in the books of
Ahmed [30], Engel and Nagel [31], and Pazy [32].

Definition 2. A multivalued map G : J → Pcl(X) is said to be measurable if for each x ∈ E, the function
Y : J → X defined by

Y(t) = d(x, G(t)) = inf{|x− z| : z ∈ G(t)}

is measurable where d is the metric induced by the normed Banach space X.

Definition 3. A function F : J × Bh → P(X) is said to be an L1
loc-Caratheodory multivalued map if

it satisfies:
(i) x → F(t, y) is continuous(with respect to the metric Hd) for almost all t ∈ J;
(ii) t→ F(t, y) is measurable for each y ∈ Bh;
(iii) for every positive constant k there exists hk ∈ L1

loc(J; R+) such that

‖F(t, y)‖ ≤ hk(t) for all ‖y‖Bh ≤ k and for almost all t ∈ J

A multivalued map G : X → P(X) has convex(closed) values if G(x) is convex (closed) for all
x ∈ X. We say that G is bounded on bounded sets if G(B) is bounded in X for each bounded set B of
X, i.e.,

sup
x∈B
{sup{‖y‖ : y ∈ G(x)}} < ∞

Finally, we say that G has fixed point if there exists x ∈ X such that x ∈ G(x).
For each y ∈ B∗, let the set SF,y known as the set of selectors from F defined by

SF,y = {v ∈ L1(J; E) : v(t) ∈ F(t, yt), a.e.t ∈ J}

For more details on multivalued maps, we refer to the books of Aubin and Cellina [33] and
Deimling [34], Gorniewicz [35], Hu and Papageorgiou [36], and Tolstonogov [37].
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Definition 4. A multivalued map F : X → P(X) is called an admissible contraction with constant {kn}n∈N
if for each n ∈ N there exists kn ∈ (0, 1) such that
(i) Hd(F(x), F(y)) ≤ kn‖x− y‖n for all x, y ∈ X.
(ii) For every x ∈ X and every ε ∈ (0, ∞)n, there exists y ∈ F(x) such that

‖x− y‖n ≤ ‖x− F(x)‖n + εn for every n ∈ N

The following nonlinear alternative will be used to prove our main results.
Theorem 2.1 (Nonlinear Alternative of Frigon, [38,39]). Let X be a Frechet space and U an open
neighborhood of the origin in X and let N : Ū → P(X) be an admissible multivalued contraction.
Assume that N is bounded. Then, one of the following statements holds:
(C1) N has a fixed point;
(C2) There exists λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λN(x).

3. Existence Results

We consider the space

PC = {y : (−∞, ∞)→ E|y(t−k ) and y(t−k ) exist with y(tk) = y(t−k ),

y(t) = φ(t) for t ∈ (−∞, ∞), yk ∈ C(Jk, E), k = 1, 2, 3, . . . }

where yk is the restriction of y to Jk = (tk, tk + 1], k = 1, 2, 3, . . .
Now, we set

B∗ = {y : (−∞, ∞)→ E : y ∈ PC ∩ Bh}
Bk = {y ∈ B∗ : sup

t∈J∗k

|y(t)| < ∞}, where J∗k = (−∞, tk]

Let ‖ · ‖k be the semi-norm in Bk defined by

‖y‖k = ‖y0‖Bh + sup{|y(s)| : 0 ≤ s ≤ tk}, y ∈ Bk

To prove our existence results for the impulsive neutral functional differential evolution problem
with infinite delay (1)− (3). Firstly, we define the mild solution.

Definition 5. We say that the function y(·) : (−∞,+∞) → E is a mild solution of the evolution system
(1)− (3) if y(t) = φ(t) for all t ∈ (−∞, 0], ∆y|t=tk = Ik(y(t−k )), k = 1, 2, . . . and the restriction of y(·) to
the interval J is continuous and there exists f (·) ∈ L1(J; E) : f (t) ∈ F(t, yt) a.e in J such that y satisfies the
following integral equation:

y(t) = U(t, 0)
[
φ(0)− g(0, φ)

]
+ g(t, yt) +

∫ t

0
U(t, s)A(s)g(s, ys)ds (4)

+
∫ t

0
U(t, s) f (s)ds + ∑

0<tk<t
U(t, tk)Ik(y(t−k )), for each t ∈ [0,+∞)

We need to introduce the following hypotheses, which are assumed hereafter:
(H1) There exists a constant M1 ≥ 1 such that

‖U(t, s)‖B(E) ≤ M1 for every (t, s) ∈ ∆1
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(H2) The multifunction F : J × Bh → P(E) is L1
loc-Caratheodory with compact and convex values

for each u ∈ Bh and there exist a function p ∈ L1
loc(J, R+) and a continuous nondecreasing function

ψ : J → (0, ∞) such that

‖F(t, u)‖P(E) ≤ p(t)ψ(‖u‖Bh) for a.e t ∈ J and each u ∈ Bh

(H3) For all r > 0, there exists lr ∈ L1
loc(J; R+) such that

Hd(F(t, u)− F(t, v)) ≤ lr(t)‖u− v‖Bh

for each t ∈ J and for all u, v ∈ Bh with ‖u‖Bh ≤ r and ‖v‖Bh ≤ r and

d(0, F(t, 0)) ≤ lr(t) a.e t ∈ J

(H4) There exists a constant M0 > 0 such that

‖A−1(t)‖B(E) ≤ M0 for all t ∈ J

(H5) There exists a constant dk > 0, k = 1, 2, . . . such that

‖Ik(x)− Ik(x̄)‖ ≤ dk‖x− x̄‖ for each k = 1, 2, . . . for all x, x̄ ∈ E

(H6) There exists a constant 0 < L < 1
M0Kn

such that

‖A(t)g(t, φ)‖ ≤ L(‖φ‖Bh + 1) for all t ∈ J, φ ∈ Bh

(H7) There exists a positive constant ck, k = 1, 2, . . . such that

‖Ik(z)‖ ≤ ck for all z ∈ E,
∞

∑
k=1

ck < ∞

(H8) There exists a constant L∗ > 0 such that

‖A(s)g(s, φ)− A(s̄)g(s̄, φ̄)‖ ≤ L∗(|s− s̄|+ ‖φ− φ̄‖Bh) for all s, s̄ ∈ J and φ, φ̄ ∈ Bh.

For every n ∈ N, let us take here l̄n(t) = M1Kn

[
L∗ + ln(t)

]
for the family of semi-norm {‖ · ‖n}n∈N.

In what follows, we fix τ > 1 and assume[
M0L∗Kn +

1
τ
+ M1

m

∑
k=1

dk

]
< 1

Theorem 3.1 Suppose that hypotheses (H1)-(H8) are satisfied. Moreover

∫ +∞

δn

ds
s + ψ(s)

>
M1Kn

1−M0LKn

∫ n

0
max(L, p(s))ds for each n ∈ N (5)

with

δn = (Kn M1H + Mn)‖φ‖Bh +
Kn

1−M0LKn

[
(M1 + 1)M0L + M1Ln

+M0L[M1(KnH + 1) + Mn]‖φ‖Bh + M1

m

∑
k=1

ck

]
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Then, the impulsive neutral evolution problem (1)− (3) has a mild solution.

Proof. We transform the Problem (1) − (3) into a fixed point problem. Consider an operator N :
B∗ → B∗ defined by

N(y) = h ∈ B∗ : h(t) =


φ(t) if t ≤ 0

U(t, 0)[φ(0)− g(0, φ)] + g(t, yt) +
∫ t

0 U(t, s)A(s)g(s, ys)ds

+
∫ t

0 U(t, s) f (s)ds + ∑0<tk<t U(t, tk)Ik(y(t−k )), t ∈ J

where f ∈ SF,y = {v ∈ L1(J, E) : v(t) ∈ F(t, yt) for a.e t ∈ J}. Clearly, the fixed points of the
operator N are mild solutions of the Problem (1)− (3). We remark also that, for each y ∈ B∗, the set
SF,y is nonempty since F has a measurable selection by (H2) (see [40], Theorem III.6).

For φ ∈ Bh, we will define the function x(·) : (−∞,+∞)→ E by

x(t) =

{
φ(t), if t ∈ (−∞, 0]

U(t, 0)φ(0), if t ∈ J

Then, x0 = φ. For each function, z ∈ C([0, ∞), E). We can decompose y into y(t) = z(t) + x(t).
Let Bk

∗ = {z ∈ Bk : z0 = 0}. Then, for any z ∈ Bk
∗, we have

‖z‖k = ‖z0‖Bh + sup{‖z(s)‖ : 0 ≤ s ≤ tk‖ = sup{‖z(s)‖ : 0 ≤ s ≤ tk}

Thus (Bk
∗, ‖ · ‖k)is a Banach space, if we set C1 = {z ∈ B∗; z0 = 0} with the Bielecki-norm on Bk

∗
defined by

‖z‖Bk∗
= max{‖z(t)‖e−τL∗n(t) : t ∈ [0, tk]}

where L∗n(t) =
∫ t

0 l̄n(s)ds, l̄n(t) = M1Knln(t) and τ > 0 is a constant. Then C1 is a Frechet space with
family of seminorms ‖ · ‖Bk∗

. It is obvious that y satisfies (4) if and only if z satisfies z0 = 0 and

z(t) = g(t, zt + xt)−U(t, 0)g(0, φ) +
∫ t

0
U(t, s)A(s)g(s, zs + xs)ds +

∫ t

0
U(t, s) f (s)ds

+ ∑
0<tk<t

U(t, tk)Ik(z(t+k ) + x(t−k ))

where f (t) ∈ F(t, zt + xt) a.e t ∈ J.
Let us define a multivalued operator F : C1 → C1 by

F (z) = h ∈ Bk
∗ : h(t) = g(t, zt + xt)−U(t, 0)g(0, φ) +

∫ t

0
U(t, s)A(s)g(s, zs + xs)ds

+
∫ t

0
U(t, s) f (s)ds + ∑

0<tk<t
U(t, tk)Ik(z(t−k ), x(t−k )), t ∈ J

where f ∈ SF,z = {v ∈ L1(J, E) : v(t) ∈ F(t, zt + xt) for a.e t ∈ J}. Obviously, the operator inclusion
N has a fixed point is equivalent to the operator inclusion F has one, so it turns to prove that F has
a fixed point.

Let z ∈ Bk
∗ be a possible fixed point of the operator F . Given n ∈ N, then z should be solution of
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the inclusion z ∈ λF (z) for some λ ∈ (0, 1) and there exists f ∈ SF,z ⇔ f (t) ∈ F(t, zt + xt) such that,
for each t ∈ [0, n], we have

‖z(t)‖ = ‖A−1(t)‖B(E)‖A(t)g(t, zt + xt)‖+ ‖U(t, 0)‖B(E)‖A−1(0)‖B(E)‖A(0)g(0, φ)‖

+
∫ t

0
‖U(t, s)‖B(E)‖A(s)g(s, zs + xs)‖ds +

∫ t

0
‖U(t, s)‖B(E)‖ f (s)‖ds

+ ∑
0<tk<t

‖U(t, tk)‖B(E)‖Ik(z(t−k ) + x(t−k ))‖

≤ M0L(‖zt + xt‖Bh + 1) + M1M0L(‖φ‖Bh + 1) + M1

∫ t

0
L(‖zs + xs‖Bh + 1)ds

+M1

∫ t

0
p(s)ψ(‖zs + xs‖Bh)ds + M1

m

∑
k=1

ck

≤ M0L‖zt + xt‖Bh + M0L(1 + M1) + M1Ln + M1M0L‖φ‖Bh + M1

∫ t

0
L‖zs + xs‖Bh ds

+M1

∫ t

0
p(s)ψ(‖zs + xs‖Bh)ds + M1

m

∑
k=1

ck

Assumption (A1) gives

‖zs + xs‖Bh ≤ ‖zs‖Bh + ‖xs‖Bh

≤ K(s)‖z(s)‖+ M(s)‖z0‖Bh + K(s)‖x(s)‖+ M(s)‖x0‖Bh

≤ Kn‖z(s)‖+ Kn‖U(s, 0)‖B(E)‖φ(0)‖+ Mn‖φ‖Bh

≤ Kn‖z(s)‖+ Kn M1‖φ(0)‖+ Mn‖φ‖Bh

≤ Kn‖z(s)‖+ Kn M1H‖φ‖Bh + Mn‖φ‖Bh

≤ Kn‖z(s)‖+ (Kn M1H + Mn)‖φ‖Bh

Set

Cn = (Kn M1H + Mn)‖φ‖Bh

then we have

‖xs + zs‖Bh ≤ Kn‖z(s)‖+ Cn (6)

Using the inequality Equation (6) and the nondecreasing character of ψ, we obtain,

‖z(t)‖ ≤ M0L(Kn‖z(t)‖+ Cn) + M0L(1 + M1) + M1Ln + M1M0L‖φ‖Bh

+M1

∫ t

0
L(Kn‖z(s)‖+ Cn)ds + M1

∫ t

0
p(s)ψ(Kn‖z(s)‖+ Cn)ds

+M1

m

∑
k=1

ck

≤ M0LKn‖z(t)‖+ M0L(1 + M1) + M1Ln + M0LCn + M1M0L‖φ‖Bh

+M1

[ ∫ t

0
L(Kn‖z(s)‖+ Cn)ds +

∫ t

0
p(s)ψ(Kn‖z(s)‖+ Cn)ds

]
+M1

m

∑
k=1

ck
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Then

(1−M0LKn)‖z(t)‖ ≤ (M1 + 1)M0L + MLn + M0LCn + M1M0L‖φ‖Bh + M1

m

∑
k=1

ck

+M1

[ ∫ t

0
L(Kn‖z(s)‖+ Cn)ds +

∫ t

0
p(s)ψ(Kn‖z(s)‖+ Cn)ds

]
Set

δn = Cn +
Kn

1−M0LKn

[
(M1 + 1)M0L + MLn + M0LCn + M1M0L‖φ‖Bh + M1

m

∑
k=1

ck

]
Thus,

Kn‖z(t)‖+ Cn ≤ δn +
M1Kn

1−M0LKn

[ ∫ t

0
L(Kn‖z(s)‖+ Cn)ds +

∫ t

0
p(s)ψ(Kn‖z(s)‖+ Cn)ds

]
We consider the function µ defined by

µ(t) = sup{Kn‖z(s)‖+ Cn : 0 ≤ s ≤ t}, 0 ≤ t < +∞

Let t∗ ∈ [0, t] be such that µ(t) = Kn‖z(t∗)‖+ Cn. By the previous inequality, we have

µ(t) ≤ δn +
M1Kn

1−M0LKn

[ ∫ t

0
Lµ(s)ds +

∫ t

0
p(s)ψ(µ(s))ds

]
for t ∈ [0, n]

Let us take the right-hand side of the above inequality as v(t). Then, we have µ(t) ≤ v(t) for all
t ∈ [0, n]. From the definition of v, we have v(0) = δn and

v′(t) =
M1Kn

1−M0LKn
[Lµ(t) + p(t)ψ(µ(t))] a.e t ∈ [0, n]

Using the nondecreasing character of ψ, we get

v′(t) =
M1Kn

1−M0LKn
[Lv(t) + p(t)ψ(v(t))] a.e t ∈ [0, n]

This implies that for each t ∈ [0, n]and using the condition (5), we get

∫ v(t)

δn

ds
s + ψ(s)

≤ M1Kn

1−M0LKn

∫ t

0
max(L, p(s))ds

≤ M1Kn

1−M0LKn

∫ n

0
max(L, p(s))ds

<
∫ +∞

δn

ds
s + ψ(s)

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn and hence µ(t) ≤ Λn. Since
‖z‖Bk∗

≤ µ(t), we have ‖z‖Bk∗
≤ Λn.

Set Ω = {z ∈ Bk
∗ : sup{‖z(t)‖ : 0 ≤ t ≤ n} < Λn + 1 for all n ∈ N}.
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Clearly, Ω is an open subset of Bk
∗. We shall show that F : Ω̄ → P(Bk

∗) is a contraction and an
admissible operator. First, we prove that F is a contraction. Let z, z̄ ∈ Bk

∗ and h ∈ F (z̄). Then, there
exists f (t) ∈ F(t, zt + xt) such that for each t ∈ [0, n],

h(t) = g(t, zt + xt)−U(t, 0)g(0, φ) +
∫ t

0
U(t, s)A(s)g(s, zs + xs)ds

+
∫ t

0
U(t, s) f (s)ds + ∑

0<tk<t
U(t, tk)Ik(z(t−k ) + x(t−k ))

From (H3) it follows that,

Hd(F(t, zt + xt), F(t, z̄t + xt)) ≤ ln(t)‖zt − z̄t‖Bh

Hence, there is ρ ∈ F(t, z̄t + xt) such that

‖ f (t)− ρ‖ ≤ ln(t)‖zt − z̄t‖Bh t ∈ [0, n]

Consider Ω∗ : [0, n]→ P(E), given by

Ω∗ = {ρ ∈ E : ‖ f (t)− ρ‖ ≤ ln(t)‖zt − z̄t‖}

Since the multivalued operator V(t) = Ω∗(t)
⋂

F(t, z̄t + xt) is measurable (in [40], see proposition
III, 4), there exists a function f̄ (t), which is a measurable selection for V . Thus, f̄ (t) ∈ F(t, z̄t + xt)

and using (A1), we obtain for each t ∈ [0, n]

‖ f (t)− f̄ (t)‖ ≤ ln(t)‖zt − z̄t‖Bh

≤ ln(t)
[
K(t)‖z(t)− z̄(t)‖+ M(t)‖z0 − z̄0‖Bh

]
(7)

≤ ln(t)Kn‖z(t)− z̄(t)‖

Let us define, for each t ∈ [0, n]

h̄(t) = g(t, z̄t + xt)−U(t, 0)g(0, φ) +
∫ t

0
U(t, s)A(s)g(s, z̄s + xs)ds

+
∫ t

0
U(t, s) f̄ (s)ds + ∑

0<tk<t
U(t, tk)Ik(z̄(t−k ) + x(t−k ))
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Then, for each t ∈ [0, n] and n ∈ N and using (H1) and (H3)-(H6) and (H8), we get

‖h(t)− h̄(t)‖ ≤ ‖g(t, zt + xt)− g(t, z̄t + xt)‖

+
∫ t

0
‖U(t, s)A(s)

[
g(s, zs + xs) + g(s, z̄s + xs)

]
‖ds

+
∫ t

0
‖U(t, s)

[
f (s)− f̄ (s)

]
‖ds

+ ∑
0<tk<t

‖U(t, tk)
[

Ik(z(t−k ) + x(t−k ))− Ik(z̄(t−k ) + x(t−k ))
]
‖

≤ ‖A−1(t)‖B(E)‖A(t)g(t, zt + xt)− A(t)g(t, z̄t + xt)‖

+
∫ t

0
‖U(t, s)‖B(E)‖A(s)g(s, zs + xs)− A(s)g(s, z̄s + xs)‖ds

+
∫ t

0
‖U(t, s)‖B(E)‖ f (s)− f̄ (s)‖ds

+ ∑
0<tk<t

‖U(t, tk)‖B(E)‖Ik(z(t−k ) + x(t−k ))− Ik(z̄(t−k ) + x(t−k ))‖

≤ M0L∗‖zt − z̄t‖Bh +
∫ t

0
M1L∗‖zs − z̄s‖Bh ds

+
∫ t

0
M1‖ f (s)− f̄ (s)‖ds

+M1

m

∑
k=1

dk‖(z(t−k )− z̄(t−k ))‖
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Using (A1) and (7), we obtain

‖h(t)− h̄(t)‖ ≤ M0L∗K(t)‖z(t)− z̄(t)‖+
∫ t

0
M1L∗K(s)‖z(s)− z̄(s)‖ds

+
∫ t

0
M1ln(s)Kn‖z(s)− z̄(s)‖ds

+M1

m

∑
k=1

dk sup
s∈[0,tk ]

‖z(s)− z̄(s)‖

≤ M0L∗Kn‖z(t)− z̄(t)‖+
∫ t

0
M1Kn

[
L∗ + ln(s)

]
‖z(s)− z̄(s)‖ds

+M1

m

∑
k=1

dk sup
s∈[0,tk ]

‖z(s)− z̄(s)‖

≤ M0L∗Kn‖z(t)− z̄(t)‖+
∫ t

0
l̄n(s)‖z(s)− z̄(s)‖ds

+M1

m

∑
k=1

dk sup
s∈[0,tk ]

‖z(s)− z̄(s)‖

≤ M0L∗Kn

[
eτL∗n(t)

][
e−τL∗n(t)‖z(t)− z̄(t)‖

]
+

∫ t

0

[
ln(s)eτL∗n(s)

][
e−τL∗n(s)‖z(s)− z̄(s)‖

]
ds

+M1

m

∑
k=1

dkeτL∗n(s)e−τL∗n(s) sup
s∈[0,tk ]

‖z(s)− z̄(s)‖

≤ M0L∗KneτL∗n(t)‖z− z̄‖Bk∗
+

∫ t

0

[ eτL∗n(s)

τ

]′
ds‖z− z̄‖Bk∗

+M1

m

∑
k=1

dkeτL∗n(s)‖z− z̄‖Bk∗

≤ M0L∗KneτL∗n(t)‖z− z̄‖Bk∗
+

1
τ

eτL∗n(t)‖z− z̄‖Bk∗

+M1

m

∑
k=1

dkeτL∗n(t)‖z− z̄‖Bk∗

≤
[

M0L∗Kn +
1
τ
+ M1

m

∑
k=1

dk

]
eτL∗n(t)‖z− z̄‖Bk∗

Therefore,

‖h− h̄‖Bk∗
≤

[
M0L∗Kn +

1
τ
+ M1

m

∑
k=1

dk

]
‖z− z̄‖Bk∗

By an analogous relation, obtained by interchanging the roles of z and z̄, it follows that

Hd(F (z)−F (z̄)) ≤
[

M0L∗Kn +
1
τ
+ M1

m

∑
k=1

dk

]
‖z− z̄‖B̄

Thus, the operator F is a contraction for all n ∈ N.
Now, we shall show that F is an admissible operator. Let z ∈ Bk

∗. Set, for every n ∈ N, the space,

Bk
∗∗ = {y : (−∞, n]→ E : y|[0,n] ∈ PC([0, n], E), y0 ∈ Bh}
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and let us consider the multivalued operator F : Bk
∗∗ → Pcl(Bk

∗∗) defined by

F (z) = h ∈ Bk
∗∗ : h(t) = g(t, zt + xt)−U(t, 0)g(0, φ) +

∫ t

0
U(t, s)A(s)g(s, zs + xs)ds

+
∫ t

0
U(t, s) f (s)ds + ∑

0<tk<t
U(t, tk)Ik(z(t−k ) + x(t−k )), t ∈ [0, n]

where f ∈ Sn
F,y = {v ∈ L1([0, n], E) : v(t) ∈ F(t, yt) for a.e t ∈ [0, n]}.

From (H1) to (H7), and since F is multivalued map with compact values, we can prove that for every
z ∈ Bk

∗∗, F (z) ∈ Pcl(Bk
∗∗) and there exists z∗ ∈ Bk

∗∗ such that z∗ ∈ F (z∗). Let h ∈ Bk
∗∗, ȳ ∈ µ̄ and

ε > 0. Assume that z∗ ∈ F (z̄), then we have

‖z̄(t)− z∗(t)‖ ≤ ‖z̄(t)− h(t)‖+ ‖z∗(t)− h(t)‖
≤ eτL∗n(t)‖z̄(t)−F (z̄)‖Bk∗

+ ‖z∗ − h‖

Since h is arbitrary, we may suppose that

h ∈ B(z∗, ε) = {h ∈ Bk
∗∗ : ‖h− z∗‖Bk∗

≤ ε}

Therefore,

‖z̄− z∗‖n ≤ ‖z̄−F (z̄)‖Bk∗
+ ε

If z is not in F (z̄), then ‖z∗ −F (z̄)‖ 6= 0. Since F (z̄) is compact, there exists x ∈ F (z̄) such that

‖z∗ −F (z̄)‖ = ‖z∗ − x‖

Then, we have

‖z̄(t)− z∗(t)‖ < ‖z̄(t)− h(t)‖+ ‖x(t)− h(t)‖
≤ eτL∗n‖z̄−F (z̄)‖Bk∗

+ ‖x(t)− h(t)‖

Thus, ‖z̄− x‖Bk∗
≤ ‖z̄−F (z̄)‖Bk∗

+ ε.
Therefore, F is an admissible operator contraction.
From the choice of Ω, there is no z ∈ ∂Ω such that z = λF (z) for some λ ∈ (0, 1). Then, the

statement (C2) in Theorem (2.1) does not hold. This implies that the operator F has a fixed point z∗.
Then y∗(t) = z∗(t) + x(t), t ∈ (−∞,+∞) is a fixed point of the operator N, which is a mild solution
of the Problem (1)− (3).
Hence the proof.

4. Example

As an application of Theorem (3.1), we study the following impulsive neutral differential system:

∂

∂t

[
v(t, ξ)−

∫ 0

−∞
T(θ)u(t, v(t + θ, ξ))dθ

]
∈ a(t, ξ)

∂2v
∂ξ2 (t, ξ)

+
∫ 0

−∞
P(θ)Q(t, v(t + θ, ξ))dθ

t ∈ [0,+∞), ξ ∈ [0, π]

v(t, 0) = v(t, π) = 0

z(t+k )− z(t−k ) = Ik(z(t−k )), k = 1, 2, . . .

v(θ, ξ) = v0(θ, ξ) −∞ < θ ≤ 0, ξ ∈ [0, π] (8)
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where a(t, ξ) is a continuous function and is uniformly Holder continuous in t; T, P : (−∞, 0] →
R; u : (−∞, 0]× R → R and v0 : (−∞, 0]× [0, π] → R are continuous functions and Q : [0,+∞)×
R→ P(R) is a multivalued map with compact convex values.

Consider E = L2([0, π], R) and define A(t) by A(t)w = a(t, ξ)w
′′

with domain D(A) = {w ∈ E :
w, w

′
are absolutely continuous, w

′′ ∈ E, w(0) = w(π) = 0}.
Then, A(t) generates an evolution system U(t, s) satisfying assumption (H1)(see [41]). We can

define respectively that

g(t, φ)(ξ) =
∫ 0

−∞
T(θ)u(t, φ(θ)(ξ)dθ, −∞ < θ ≤ 0, ξ ∈ [0, π]

and

F(t, φ)(ξ) =
∫ 0

−∞
P(θ)Q(t, φ(θ)(ξ)dθ, −∞ < θ ≤ 0, ξ ∈ [0, π]

Then, in order to prove the existence of mild solutions of the System (8), we suppose the following
assumptions:

(i) u is Lipschitz with respect to its second argument. Let lip(u) denotes the Lipschitz constant of u.
(ii) There exist p ∈ L1(J, R+) and a nondecreasing continuous function ψ : [0,+∞) → (0,+∞)

such that

|Q(t, x)| ≤ p(t)ψ(|x|), for t ∈ J, and x ∈ R

(iii) T, P are integrable on (−∞, 0].
(iv) There exist positive constants ck and dk, k = 1, 2, . . . such that

‖Ik(x)− Ik(x̄)‖ ≤ dk‖x− x̄‖,
‖Ik(z)‖ ≤ ck, for all x, x̄, z ∈ E

By the dominated convergence theorem, one can show that f ∈ SF,y is a continuous function from Bh
to E. Moreover, the mapping g is Lipschitz continuous in its argument. In fact, we have

‖g(t, φ1)− g(t, φ2)‖ ≤ M0L∗lip(u)
∫ 0

−∞
‖T(θ)‖dθ‖φ1 − φ2‖, for φ1, φ2 ∈ Bh

On the other hand, we have for φ ∈ Bh and ξ ∈ [0, π]

‖F(t, φ)(ξ)‖ ≤
∫ 0

−∞
‖p(t)P(θ)‖ξ(‖(φ(θ))(ξ)‖)dθ

Since the function ξ is nondecreasing, it follows that

‖F(t, φ)‖P(E) ≤ p(t)
∫ 0

−∞
‖P(θ)‖dθξ(‖φ‖), for φ ∈ Bh

Proposition: Under the above assumptions, if we assume that condition (5) in Theorem (3.1) is true,
φ ∈ Bh, then the System (8) has a mild solution which is defined in (−∞,+∞).

5. Conclusions

In this manuscript, we have proved the existence result of first order impulsive neutral evolution
inclusion with infinite delay in Frechet spaces. Here, we defined a new notion of phase space and
proved the result without compactness of an evolution operator, using a recently developed nonlinear
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alternative for contractive multivalued maps due to Frigon. The same result can be generalized for
controllability of an impulsive neutral evolution inclusion with infinite delay of the form [19,21]

d
dt

[
y(t)− g(t, yt)

]
∈ A(t)y(t) + Bu(t) + F(t, yt)

t ∈ J = [0,+∞), t 6= tk, k = 1, 2, . . .

∆y|t=tk = Ik(y(t−k )), k = 1, 2, . . .

y0 = φ ∈ Bh
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