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Abstract: This study deals with the control of chaotic dynamics of tumor cells, healthy host cells, and
effector immune cells in a chaotic Three Dimensional Cancer Model (TDCM) by State Space Exact
Linearization (SSEL) technique based on Lie algebra. A non-linear feedback control law is designed
which induces a coordinate transformation thereby changing the original chaotic TDCM system into
a controlled one linear system. Numerical simulation has been carried using Mathematica that witness
the robustness of the technique implemented on the chosen chaotic system.
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1. Introduction

Cancer pertains to a class of diseases characterized by out-of-control cell growth. Unsatisfactory
performance of immune system against cancerous abnormal cells and consequently their chaotic
growth leads to serious health damages and even death. So this chaotic nature of cancer needs to be
controlled. The chaotic dynamics of cancer growth have been extensively studied in the literature to
understand the mechanism of the disease and to predict its future behavior. Interactions of cancer cells
with healthy host cells and immune system cells are the main components of these models and these
interactions may yield different outcomes. Some important phenomena of cancer progression such as
cancer dormancy, creeping through, and escape from immune surveillance have been investigated [1].
De Pillis and Radunskaya [2] included a normal tissue cell population in this model, performed phase
space analysis, and investigated the effect of chemotherapy treatment by using optimal control theory
whereas Kirschner and Panetta [3] examined the cancer cell growth in the presence of the effector
immune cells and the cytokine IL-2 which has an essential role in the activation and stimulation
of the immune system. They implied that antigenicity of the cancer cells plays an essential role in
the recognition of cancer cells by the immune system. They observed oscillations in the cancer cell
populations which is also demonstrated in the Kuznetsov’s model and in addition, they obtained a
stable limit cycle for some parameter range of the antigenicity. One can find many other models of
the cancer-immune interactions with their dynamical analysis as well as investigations of optimal
therapy effects. Although all these models include different cell populations, they share basic common
characteristics such as existence of cancer free equilibria which is the main attention of investigating
the therapy effects, coexisting equilibria where cancer and other cells are present in the body and in
competition, and finally cancer escape and uncontrolled growth [4]. It has been observed that most of
the interesting dynamics occur around coexisting equilibria which may yield oscillations in the cell
populations, and converge to a stable limit cycle, as we mentioned before.

During the last decade, a lot of work based on different approaches has been done to control the
chaos through the mathematical model representing cancer dynamics. Gohary and Alwasel [5] have
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studied the chaos and optimal control of cancer model with completely unknown parameters together
with the asymptotic stability analysis of biologically feasible steady-states whereas Gohary [6] studied
the problem of optimal control of cancer self-remission and cancer unstable steady-states together
with the stability analysis of biologically feasible equilibrium states using a local stability approach.
Baghernia et al. [7] considered the nonlinear prey-predator model to show the natural interaction
between cancer and immune cells. Furthermore, a controlling strategy is proposed based on sliding
mode control to convert the unstable states to the desired chaotic status.

Motivated by the aforementioned studies, the author aims to control the chaotic dynamics of
TDCM using SSEL technique based on Lie algebra. The main advantages of this approach are that it is
not only robust but also in this approach the control is injected only on healthy host cells (i.e., H(t))
and effect of control can be seen on the rest of state variables (i.e., T(f) & E(t)).

Rest of the study has been organized as follows: In Section 2, a brief about the methodology has
been described whereas Section 3 is on problem formulation. Section 4, contains the implementations
of the technique on the considered system (TDCM). Section 5, is based on numerical simulations and
lastly the whole study has been concluded in Section 6.

2. State Space Exact Linearization

It is a technique of controlling a chaotic system that involves transformation of a given non-linear
system into a linear system by injecting a suitable control input [8]. Let us consider a non-linear
dynamical system as:

x = f(x) M

After injecting control term it can be written as:

x = f(x) = g(x)u(x) @

where x € R”, is the state vector; and u € R, is the control parameter, f : R* — R" and g : R" — R" are
both smooth vector fields on R" and Equation (2) is called feedback linearizable in the domain (2 € R”
if there exists a smooth reversible change of coordinates z € T(x), x € Q2 and a smooth transformation
feedback v = a(x) + B(x)u, x € O, where v € R is the new control if the closed loop system is linear [9].

For two vector fields, f(x) and g(x), the different order Lie brackets are denoted by the symbols
as follows:

ad;‘(g(x) =f, adji Lo](x) for k = 1,2,3,... with ad?(g(x) = g(x), and each of adﬂig( x) € R" for

k=1,2,3,... If we write adﬁig(x) :[ (ad?g(x))l (ad? (x ))2 (adj‘f (x )) ] ; then (adji (x ))

is computed by the formula:

(adsg(x ) g [

0
k—1 k—1 L f
(ad g(x))j B (adf g(x))i (?xif]]
In some neighborhood N(xp) of a point xg, if the matrix,
M= [ g(x0) adfg(xo) adj%g(xo)... ad;} ED) ]

has a rank 7 and S = span { g,ad 8 adj%g, v adj’}fzg} is involutive, then there exists a real valued
function A(x) € N(xg), such that:

LeA(x) = Ludfg)\(x) = Ladjz(g/\(x) = .. = Lad}.fzg)\(x) = 0, and Lad?_lg)\(x) # 0 where LpA(x)
denotes the Lie derivative of the real valued function A(x) with respect to the vector field F. If that
happens there exists transformation in N(xg), given by:
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T
z:[zl Zy 23 zn]: x)

= [ Ti(x) To(x) .. Tu(x) ' 3)
[ A0 LA® . L TAR ]T

and v = L}’E/\(x) + LgL
system [10-14]:

;_1A(x)u that transforms the non-liner system into the linear controllable

21 =12

z) =23
S 4)
Zp—1 = Zn

Zn =70

3. Problem Formulation

The simplicity and elusiveness of the TDCM in its various forms have attracted the attention of
mathematicians for decades. The equations of motion of TDCM [1] are given by:

T _ o T (1 _ %) — 4, TH — a3 TE

N | (1 - g) — 4y TH ®)
dE TE
rr ;SJrks — 1131TE 7d3E

where T(t) denotes the number of cancer cells; H(t) denotes the healthy host cells and E(t) denotes
effecter immune cells at the time ¢; 1 is the growth rate of cancer cells in the absence of any effect from
other cell populations with maximum carrying capacity ki, a1, and a3 refers to the cancer cells killing
rate by the healthy host cells and effecter cells respectively; r, is the growth rate of healthy host cells
with maximum carrying capacity ky; a,1 is the rate of inactivation of the healthy cells by cancer cells.
The rate of recognition of the cancer cells by the immune system depends on the antigenicity of the
cancer cells. Since this recognition process is very complex, in order to keep the model simple, assume
the stimulation of the immune system depends directly on the number of cancer cells with positive
constants r3 and k3. The effecter cells are inactivated by the cancer cells at the rate a3; as well as they
die naturally at the rate d3. We assume that the cancer cells proliferate faster than the healthy cells (i.e.,
r1 > rp) and all system parameters are being kept positive.

In order to make Equation (5) dimensionless, let us introduce: x; = %, Xy = %, X3 = %,

apok a3k 7 ank 7 k azk d
T=rnt, Ap = T2, Ay = 02, Ry = 2, Ay = 25, Ry = 2, K3 = 2, Ag1 = =74, D3 = 32, the

non-dimensional form of the TDCM Equation (5), can be written as:

x1 = x1(1 —x1) — Appx1x2 — A13x1%3

TDCM : Xy = Roxp (1 —x7) — Ap1x1% 6)
X3 = % — Az1x1x3 — D3x3

4. Control of the Chaotic System

In order to apply the control technique, the above system of Equation (6) can be written as

T
J.C:f(x) where, x = [ X1 X2 X3 ] ,and,

T
flx) = [ x1(1—x1) — Appx1x2 — Azxixz Roxa(1 —x2) — Aprxixp I;iff;f;’ — Az1x1x3 — D3x3 ]
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Parametric entrainment control u (x1, X2, x3) is applied to the parameter R; in the second equation
of the Equation (6) and one gets,

x = f(x) +g(x)u @)

T
where g(x) = [ 0 x O ] and u € R.
Using Equations (6) and (7), and using Lie bracket,

T
adsg(x) = [ Apxixy 2Rpxa 0 ] 8)

T
ad7g(x) = [ Apxixy  AZx133 +2Rox3(Ry — Ajx1)  —Anxixa {m - A31x3} ] )

Lemma 1. For any xo € R3\span {(1,0,0), (0,0,1)} U span {(0,1,0), (0,0, 1)}, there exists an open set N(xq)
containing xo where the matrix M = [ g(xo) adfg(xo) ad}g(xo) ] has rank 3 and S = span {g, adfg}
is involutive.

Proof. Let
0  Apxix Appx3x;
M| =1 x, 2R2x% A%lxlx% +2R2x%(R2 —Anxy) | = A%ZX%xixa <(x1RjII<<33)2 - A31> # 0, for
0 0 —Anxx { (fﬁ?f — Agx;

non-zero values of state variables involved in |M|. It is also confirmed by Figure 1.

0.005 |

0.004

0.003

0.002

0.001 \ ]

0.000 u 1
0 100 200 300 400 500

Figure 1. Time series of Det (M).

Therefore p(M) = 3 or equal to the order of the system. With the help of Equations (7) and (8)
one can show that:
Apx12x2

[g, adfg] = | 2R3 |=adsg(x) (10)
0

which shows that [g, adg g] belongs to S = span [g, ads g]. Hence, S is involutive.

Lemma 2. For any thrice differentiable function ¥(x3), there exists, a smooth transformation

T
z = [‘I’ LeY LJ%‘Y] with a smooth inverse, defined on an open set N(xg) where xo €
R3\span {(1,0,0), (0,0,1)} U span {(0,1,0), (0,0,1)} that reduces Equation (6) to a linear controllable form.
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Proof. Since Lemma 1 holds, there exists a real valued function A(x) such that LeA(x) = 0 and
Lad gA(x) = 0 but, Lad}g)\(x) # 0. Now, LgA(x) = 0 implies & = 0 and Lad gA(x) = 0 implies 2 -0

Hence A(x) is independent of x; and x; but depends on x3. Thus,

A(x) =¥ (x3) (11)

where simple calculations yield, Lud}g)\(x) = —ApX1X2X3 { (xfiiif — A31}‘I”(x3) # 0as x1,x &

x3 # 0.
With the help Equation (11) one can easily calculate the following Lie derivatives given as

LeA(x) = x3 ( R — Agixg — D3) ¥ (x3)

x1+K3
LJ%/\(x) = x3A%Y(x3) + x3x1 BCY' (x3) + x3 AZ¥" (x3)
3A(x) = 3 3 2 _ 2RKC | g
Lf)t(x) = X3 [A + 3x1ABC + x3A° + x3x1ABC ORTAR ¥ (x3) (12)
—x3%1B[x1C + AppRoxa(1 — x2) + A1pAp1x1%2 + A1z x3 A ¥/ (x3)
+x3A [3x1BC + 2A2| ¥ (x3) + x3 A3Y" (x3)
LgLJZI)\(X) = —X1XZX3AlzB‘Iﬂ(X3)
where, A= Raxy A31x1 - D3, B = Raks 5 — A31, C=1- X1 — Aqu - A13X3.
Y1+ (x1+K3)

With the help of Equation (12), the transformation Equation (3) takes the form

71 Ty (x) A(x) ¥ (x3)
z = Zn = T(X) = Tz(x) = Lf/\(X) = X3A‘Y/(JC3) (13)
Z3 Ts(x) L/%/\(x) x3 (A% + x1BC) ¥/ (x3) + x3A%¥" (x3)

Inverse transformation can be calculated from Equation (13) as

X1 T '(2)
x=| 0 | =T =| T, ) (14)
X3 Ty ' (2)
Controller u is obtained from the Equation (3) as
W — 1 [v - L3/\(x)] (15)
LgL2A(x) f

These will change the TDCM given by Equation (6) into a linear controllable system:

Zl =122
22 = Z3 (16)
23 =0

where v is considered linear in z1, zp, and z3. Without loss of generality, one may choose the linear
form of v as v = ayz1 + axzy + azzz where, a1, a,a3 € R.

Theorem 1 [8]. (Stabilization at a point): The controller v = ayz1 + ayzp + azz3 stabilizes the equilibrium
point z = (0,0,0) iff a1, a5,a3 < 0and ay + azas > 0.

Theorem 2 [8]. (Stabilization onto a limit cycle—Hopf bifurcation): The controller v = a1z1 + axzy + 4323
stabilizes the system on to a stable limit cycle if al,a2,a3 < 0and a; + axaz > 0.
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Now, using Equations (12) and (15), the controller u can be written as:

a1'¥ (x3) + (a2x3A + a3x3 A% + a3x3x1BC) ¥/ (x3) + a;;x%Az‘I’” (x3)
3 o 2R3K3x2C? ,

¥1%2%3A12B —x3x1B [x1C + A1pRoxp(1 — x2) + A1pAp1x1x2 + Azxs Al ¥/ (x3)
+x3A [3x1BC + 2A%] ¥7 (x3) + 5 A% (x3).

Equation (6) with an output function ¥(x3) becomes a controlled one when the control loop is
closed with control input given by Equation (17).

Now the problem is studied for the particular forms of ¥ (x3). However, there are many choices
for ¥(x3) (i.e., linear, quadratic, etc. in x3). Here we choose only linear because the other forms will
give more complicated forms of u after tedious calculations.

Let, a linear output ¥ (x3) = x3 — x¢ will give control law:

a1(x3 — xg) + (a2x3A + a3x3 A + a3x3x1BC)

-1 2R3K3x2C2
R —x3 | A3 +3x; ABC ABC? — =580 18
" X1XQX3A1QB 3 [ N T xsx (7‘1'|‘I<3)3 ] ( )
—x3x1B [x1C + A1pRox2(1 — x2) + A12A21x1X%2 + A13x3A]
— T —
stabilizes Equation (6) to the control goal xg = ( 18.87 —17.87 +2.5x¢ xg ) or Xgp =

( 0.13 0.87 +2.5x¢ xg )T where x, is the parameter that determines the control goal.

Let ¥(x3) = x3 + K, where K is arbitrary constant to be determined later. Controlling Equation
(17) to the origin and changing the values of K, one can control x to the control goal x,. In this case
control law takes the form:

a1(x3 + K) + (a2x3A + azx3 A% + azx3x1 BC)
-1 202
_x [A3 + 3%, ABC + x3x, ABC? — W]

U= ——
X1x2x3A12B

(x1+K3)? (19

—x3x1B [x1C + A1pRox2(1 — x2) + A1 A1 x1x2 + A13X34]

for the transformations, from linear to nonlinear and vice versa, we have the following relations respectively,

Z1 x3+ K
| = A (20)
Z3 X3A2 + x3x1BC

Similarly, using reverse transformation, someone can find x in terms of z. Below the same has
been written using Mathematica:

—25(D tE)
X1 2(1(721 +Z3+2127ij()
X | = +25(D+E—2z1+K+04) (21)
s 5(21—K)(DiE)<7z5(DliE)2 _%>
(Z] — K)
z 8.4z z3
where D = —3.8 — 21—2K and E = 4 /14.04 + K—221 + T ZZ 7
—41

Since the feedback control law stabilizes the equilibrium point of Equation (16), then using
Equation (21) and changing the value of K, one can control x3 to the goal x; and the variation of K is
given by the formula:

K= —xg (22)
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= T
As x3 goes to the goal xg, the state vector x goes to x ¢ = ( 18.87 —17.87 +2.5x; xg ) or

K= (013 087+25% x )T.

5. Numerical Simulations

The system parameters involved in Equation (6) have been chosen as: A1 = 1; Aj3 = 2.5;
Ap1 = 1.5; Ry = 0.6; A31 = 0.2; R3 = 4.5; k3 = 1; D3 = 0.5 with the initial conditions: T(0) = 0.1;
H(0) = 0.1; E(0) = 0.1, and for K = —1; a; = —0.1; a = —0.9; a3 = —0.6, a controller given by
Equation (19) is evaluated. Using Mathematica, the following different graphs have been plotted to
show the robustness as well as effectiveness of the implemented technique. Figures 2 and 3 depict the
uncontrolled and controlled time series of the state variables of the system Equation (6), respectively
whereas the phase plots (a graph between state vector & its derivative) of three state vectors are shown
in Figures 4-6 for controlled and uncontrolled one, respectively. Someone can observe that chaotic
attractors are being replaced by regular ones as the controller is injected. Comparative parametric
plots of controlled and uncontrolled state vectors pairwise and 3D have been sketched (Figures 7-11).

1.2
— Uncontrolled x;; —— Uncontrolled x3; ]
L0 yncontrolled X3 ]

0.8
0.6

0.4

0.2}

0.0 — |
0 50 100 150 200

Figure 2. Time series of uncontrolled x1, x5, and x3.

1.0

—— Controlledx;; —— Controlled x;;

—— Controlled x3

0 20 40 60 80 100

Figure 3. Time series of uncontrolled x1, x5, and x3.
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0.2 C —— Uncontrolled xp |

[ —— Controlled x;
0.1 '

0.0

0.0 0.2 0.4 0.6 0.8

Figure 4. Phase plots of x.

—— Uncontrolled x;

25" —— Controlledx; -

-04 -02 0.0 0.2 0.4 0.6 0.8

Figure 5. Phase plots of x.

0.5 —— Uncontrolled x3

0.4 ’— Controlled x3

0 '
02
0.1 *

0.0

-0.2}

0.0 0.2 0.4 0.6 0.8

Figure 6. Phase plots of x3.
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1017 ! 3
—— Uncontrolled

—— Controlled

0.5~

0.07 e

0.0 0.2 0.4 0.6 0.8

Figure 7. Parametric plots between x; & x3.

—— Uncontrolled
0.8 -

— Controlled |

0.6 -

0.4 -

0.2 -

0.0 -

-0.5 0.0 0.5 1.0

Figure 8. Parametric plots between x; & x3.

—— Uncontrolled

—— Controlled
0.8 -

0.6 -

0.4 -

0.2

0.0 -

0.0 0.2 0.4 0.6 0.8

Figure 9. Parametric plots between x3 & x1.
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X2
0.8 0.6 0.4 0.2 0.0

Figure 10. Parametric 3D plot of uncontrolled state vectors.

X1
0.10 0.15 0.20 0.25 0.30

X3

Figure 11. Parametric 3D plot of controlled state vectors.

6. Conclusions

In this paper, we have controlled the chaotic dynamics of TDCM using the SSEL method based on
Lie algebra. Without the loss of generality, an equivalent linear system to the considered chaotic system
has been obtained using Lie algebra. Also, a single control term has been injected to the chaotic system
and the control has been observed in all three state vectors representing the number of cancer cells
T(t); the healthy host cells H(t); and the effecter immune cells E(t) in a very short time. The robustness
of the technique in controlling the chaotic behavior can be observed through the presented plots.

Conflicts of Interest: The author declares no conflict of interest.
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