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Abstract: I review some computational methods for calculating vibrational spectra. They all use
iterative eigensolvers to compute eigenvalues of a Hamiltonian matrix by evaluating matrix-vector
products (MVPs). A direct-product basis can be used for molecules with five or fewer atoms. This is
done by exploiting the structure of the basis and the structure of a direct product quadrature grid.
I outline three methods that can be used for molecules with more than five atoms. The first uses
contracted basis functions and an intermediate (F) matrix. The second uses Smolyak quadrature and
a pruned basis. The third uses a tensor rank reduction scheme.
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1. Introduction

Effective numerical methods for solving the time-independent Schroedinger equation to compute
vibrational spectra of polyatomic molecules have been developed in the last thirty years [1–5].
They are important when approximations, often based on perturbation theory, are not accurate enough.
Almost all methods begin by choosing a basis in which to represent both the wavefunctions and the
Hamiltonian and then solve a linear algebra problem. These two basic tasks are not independent:
a basis with structure favours iterative linear algebra methods (vide infra). Computing vibrational
spectra is useful because it helps experimentalists to assign and interpret measured spectra.

In this article, I present a subjective review of several methods for solving the time-independent
Schroedinger equation to calculate vibrational spectra [4,6,7]. It is possible to generalize the methods I
describe so that they can also be used to compute ro-vibrational spectra [8–14]. All of the methods
presented here obtain solutions to the Schroedinger equation from a space built by evaluating
matrix-vector products (MVPs) and are called iterative methods [15]. I shall ignore Multimode-type
methods (MM) [5,16–20], that work when the potential energy surface (PES) is a sum of terms that
depend on a subset of the coordinates [17,21] (denoted an MM representation) and work quite well for
semi-rigid molecules for which normal coordinates are appropriate. Although widely used, I shall
also ignore multiconfiguration time-dependent Hartree (MCTDH) methods [22,23]. They can be
used with a block power method [24], an “improved relaxation” method, [25–27], or a block Lanczos
method [28] to compute accurate vibrational energy levels. However, improved relaxation, the most
popular MCTDH approach for calculating spectra, converges poorly if the density of states is high and
therefore cannot be used to compute a large number of levels of a large molecule [29].

When using iterative methods, it is better not to calculate a Hamiltonian matrix. Many calculations
are done with a basis so large that it would not be possible to store the Hamiltonian matrix in memory.
Iterative methods require the evaluation of MVPs. How is it possible to compute MVPs without
building a matrix representing the Hamiltonian? I shall first outline ideas that make it possible to
use a product basis to evaluate MVPs without a Hamiltonian matrix. They exploit the structure of the
basis, the quadrature grid, and the kinetic energy operator (KEO). For molecules with more than five
atoms, vectors representing wavefunctions and the vector representing the PES on the quadrature
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grid [4,30,31] are so large that they require too much memory. In the rest of this chapter, I therefore
review methods that obviate the need to store large vectors. The first method (Section 4) uses a
contracted basis. To make the contracted basis method useful, it is essential that it be possible to
evaluate MVPs in the contracted basis without transforming to a huge product grid. The second
method (Section 5) uses a pruned basis and a pruned grid. Pruning significantly reduces the size of the
largest vectors one must store. The third method (Section 6) builds a basis from MVPs by using tensor
rank reduction.

2. Direct Product Basis Sets

When there are D vibrational coordinates, a direct product basis function is

Φn1,n2,...,nD = φn1(q1)φn2(q2) . . . φnD (qD), (1)

where the indices {nk} are independent and nc = 0, 1, · · · , nmax
c . φnc(qc) is a 1D basis function for

coordinate c. If nmax
c = n ∀c, then the direct product basis set has nD functions. The univariate functions

are often φk(x) = h−1/2
k [w(x)]1/2 pk(z), where z is a function of x, pk(z) is a classical orthogonal

polynomial, w(x) is the corresponding weight function, and hk is a normalization factor. Such a basis
is usually called a variational basis representation (VBR) [4,30].

Although there are problems for which a VBR basis is best, it is sometimes advantageous to
use a discrete variable representation (DVR) basis [4,30–32]. In 1D, a standard DVR basis is a set
of orthogonal but localized functions that spans the same space as a set of orthogonal de-localized
functions, φk(x). The 1D DVR Hamiltonian matrix eigenvalue problem is

TT(K + VFBR)TU = UE , (2)

where K is an exact kinetic matrix in a basis of φn(q) (VBR) functions and VFBR is either a product or a
quadrature approximation for the exact potential matrix [4]. One way to obtain the transformation
matrix T is to diagonalize the matrix representing x in the VBR,

xT = TX , (3)

where x is the matrix representing x in the φn(q) basis and X is a diagonal matrix whose nonzero
values are eigenvalues [33]. Equation (2) can be written

(TTKT + Vdiag)U = UE ,

where Vdiag is a diagonal matrix whose diagonal elements are values of the potential at the quadrature
(DVR) points. A potential optimised DVR (PO-DVR) [34,35] is made from 1D basis functions that are
solutions of 1D Schroedinger equations

3. Using a Direct Product Basis Set to Solve the Schroedinger Equation

Direct product DVR and VBR bases are popular [4,36–40]. Although direct product bases are huge,
they can be used by exploiting the structure of the basis to efficiently evaluate the MVPs required to
use iterative methods. The Lanczos and filter diagonalisation methods are popular iterative methods
for solving the time-independent Schroedinger equation [40–47]. For a molecule with as many as five
atoms, they make it possible, even with a direct product basis, to solve the vibrational Schroedinger
equation with a general PES. The key ideas have been reviewed several times [4,5,36,37]. They are all
based on doing sums sequentially [40,48].



Mathematics 2018, 6, 13 3 of 14

In a direct product DVR, potential MVPs are trivial because the potential matrix is diagonal.
When the KEO is a sum of products (SOPs) , with g terms each with D factors,

K̂ =
g

∑
l=1

D

∏
k=1

ĥ(k,l)(qk), (4)

then kinetic MVPs can be efficiently evaluated by doing sums sequentially,

g

∑
l=1

∑
n1

h(1,l)
n′1,n1

∑
n2

h(2,l)
n′2,n2
· · ·∑

nD

h( f ,l)
n′D ,nD

un1,n2,··· ,nD = u′n′1,n′2,··· ,n′D
, (5)

where h(k,l)
n′k ,nk

is an element of the n× n matrix representation of the factor ĥ(k,l)(qk). Matrix elements of

the full KEO are never computed.
If there are important singularities in the KEO, then a VBR basis is better than a DVR basis [49].

At an important singularity, the KEO is singular and vibrational wavefunctions have significant
amplitude. In general, singularities occur whenever one coordinate takes a limiting value and
another is undefined [50]. In a VBR basis, it is possible to evaluate the potential MVP by doing
sums sequentially [48,49]. This enables one to avoid calculating potential matrix elements, which would
require computing many-dimensional integrals. Consider a 2D example. The matrix–vector product is

∑
n1

∑
n2

Vn′1n′2,n1n2
un1,n2 = u′n′1,n′2

, (6)

where
Vn′1n′2,n1n2

=
∫

dq1dq2φn′1
(q1)φn′2

(q2)V(q1, q2)φn1(q1)φn2(q2) . (7)

In terms of T matrices (see Equation (3)) ,

Vn′1n′2,n1n2
≈∑

α
∑
β

(T)n′1,α(T)n′2,βV((q1)α, (q2)β)(T†)α,n1(T
†)β,n2 . (8)

The matrix–vector product can be written,

∑
n1

∑
n2

∑
α

∑
β

(T)n′1,α(T)n′2,βV((q1)α, (q2)β)(T†)α,n1(T
†)β,n2 un1,n2 = u′n′1,n′2

(9)

and evaluated by doing sums sequentially,

∑
α

(T)n′1,α ∑
β

(T)n′2,βV((q1)α, (q2)β)∑
n1

(T†)α,n1 ∑
n2

(T†)β,n2 un1,n2 = u′n′1,n′2
. (10)

If there is an important singularity, good basis functions are always nondirect product functions
which are products of functions of the coordinate which is undefined and the coordinate which takes a
limiting value, with a shared index.

The ideas of this section make it possible to compute vibrational spectra without computing and
storing a Hamiltonian matrix. However, for molecules with more than five atoms, the memory cost of
storing vectors in a direct product basis is prohibitive. For molecules with more than five atoms, it is
necessary to introduce other ideas to reduce the memory cost of calculations.

4. Using a DVR to Make a Contracted Basis

To include information about coupling in the basis functions, it is common to use basis functions
that are products of factors that depend on more than one coordinate. I shall call the multi-dimensional
factors contracted basis functions. It is important to devise good algorithms for evaluating MVPs in a
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contracted basis. Contracted bases are necessarily more complicated, i.e., they have less structure, and
it is structure that is exploited to evaluate MVPS efficiently. An important advantage that contracted
bases have is the reduced spectral range of the contracted-basis Hamiltonian matrix. Reducing the
spectral range decreases the number of MVPs required to compute eigenvalues.

For molecules with more than three atoms, it is best to use contracted functions diagonalizing
matrices that represent the Hamiltonian with one or more coordinates fixed. The basis functions are
direct products of functions of different coordinates or groups of coordinates [6,51–53].

Evaluating Matrix-Vector Products without Storing a Vector as Large as the Direct Product DVR

The most obvious way to evaluate MVPs is to transform from the contracted basis to a primitive
basis, in which the contracted functions are determined. Computing matrix elements of the potential
in the primitive basis requires storing the potential on a large (direct product) grid of points. Because
the grid is huge, this is impractical for molecules with more than five atoms. An alternative is to
store an intermediate matrix [6,54]. To explain how this is done, consider a (J = 0) Hamiltonian in
polyspherical coordinates [55–57]

H = Tben(θ, r) + Tstr(r) + V(θ, r) (11)

with

Tben(θ, r) = ∑
i

Bi(r)T
(i)
b (θ)

Tstr(r) = ∑
i

−1
2µi

∂2

∂r2
i

. (12)

θ represents all of the bend coordinates and r represents all of the stretch coordinates. The functions
Bi(r) and the operators T(i)

b (θ) are known [55,56,58]. One constructs contracted bend functions from a
Hamiltonian obtained by fixing the stretch coordinates at some reference geometry and contracted
stretch functions from a Hamiltonian obtained by fixing all the bend coordinates at reference values.
Products of the bend contracted functions and stretch contracted functions are the final basis functions.

The reduced-dimension Hamiltonian for the bend contraction is,

H(b) = Tben(θ, re) + V(θ, re). (13)

Its wavefunctions are denoted by

Xb(θ) = ∑
l

Clb fl(θ) (14)

and the energies by Eb. The fl are primitive bend basis functions (l is a composite index) and the number
of retained bend wavefunctions is denoted by nb. Similarly, the reduced-dimension Hamiltonian for
the stretch contraction is,

H(s) = Tstr(r) + V(θe, r). (15)

with the wavefunctions denoted by,
Ys(r) = ∑

α

Dαsgα(r) (16)

and the energies by Es. The gα are primitive DVR stretch basis functions (α is a composite index
representing a multidimensional DVR function) and the number of retained stretch wavefunctions is
denoted by ns. θe and re represent reference (often equilibrium) values of all the bend coordinates and
all the stretch coordinates. The final basis is a product of the retained stretch and bend eigenfunctions

|bs〉 = |Xb〉|Ys〉 . (17)



Mathematics 2018, 6, 13 5 of 14

The full Hamiltonian is
H = H(b) + H(s) + ∆T + ∆V (18)

where
∆V(θ, r) = V(θ, r)−V(θ, re)−V(θe, r) (19)

and
∆T = ∑

i
∆Bi(r)T

(i)
b (θ) (20)

with
∆Bi(r) = Bi(r)− Bi(re) . (21)

In the contracted basis, MVPs for ∆T and H(b) + H(s) are easy [6].
If one uses an finite basis representation (FBR) primitive bend basis and a DVR primitive stretch

basis, a matrix element of ∆V in the product contracted basis is,

〈b′s′|∆V(θ, r)|bs〉 = ∑
l′ l
α

Dαs′Cl′b′〈l′|∆V(θ, rα)|l〉ClbDαs . (22)

This may be re-written

∑
α

Fb′b,αDαs′Dαs , (23)

where I have introduced an F matrix [6] defined by,

Fb′ ,b,α =< b′|∆V(θ, rα)|b >= ∑
l′ l

Cl′b′Clb〈l′|∆V(θ, rα)|l〉 . (24)

The integral 〈l′|∆V(θ, rα)|l〉 is computed with quadrature. The Fb′b,α elements are calculated
(in parallel) and stored before matrix vector products are evaluated. The ∆V matrix–vector product

u′b′s′ = ∑
bs
〈b′s′|∆V|bs〉ubs , (25)

is done as follows:

u(1)
bα = ∑

s
Dαsubs

u(2)
b′α = ∑

b
Fb′bαu(1)

bα

u′b′s′ = ∑
α

Dαs′u
(2)
b′α . (26)

The idea of reducing the memory cost of contracted-basis calculations by storing a matrix
representation of ∆V was used in [54], where only the bend basis was contracted. The full power of the
method is realized only when both stretch and bend bases are contracted [6,59–64]. Recently, similar
ideas were used for Cl− -H2O [65]. Yu has studied several molecules using similar ideas [66–69].
As in [54], he contracts only the bend part.

5. Using Pruning to Reduce Both Basis and Grid Size

In this section, I present an alternative method for computing vibrational spectra of molecules
with more than five atoms. In contrast to the idea of using contracted basis functions, it uses univariate
basis functions, but uses only selected products, i.e., the basis of Equation (1) is pruned by removing
functions that are deemed unimportant. This makes it possible to obviate the need to store large vectors.
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It seems clear that one should discard basis functions that are not necessary. Many authors have
implemented basis pruning strategies [16,18,19,53,62,63,70–86]. Although pruning has the obvious
advantage that it decreases the size of the vectors one must store and the spectral range of the
Hamiltonian matrix, if one uses an iterative method, it complicates the evaluation of MVPs. A pruned
basis necessarily has less structure than a direct product basis. In this section, I shall discuss how to
evaluate MVPs when the pruning strategy retains some product structure.

Pruning is more efficient when used with a FBR and not a DVR [40]. The simplest VBR pruning
condition is n1 + · · · + nD ≤ b. The pruned basis is much smaller than the direct product basis.
If nc = 0, 1, · · · , b for c = 1, · · · , D and b = 14 then the size of the direct product is ∼6 ×1011,
for D = 10; ∼4 ×1017, for D = 15; and ∼3 ×1023, for D = 20. On the other hand, if basis functions
with n1 + · · ·+ nD > b = 14 are discarded, the basis size increase with D is less than linear: ∼2.0 ×106,
for D = 10, ∼7.7 ×107, for D = 15, ∼1.4 ×109, for D = 20. MVPs for the KEO in a pruned basis are
straightforward. MVPs for the potential are only straightforward if a direct product quadrature grid
is used [83], but if a direct product quadrature is used, one needs to store a potential vector about as
large as the direct product vectors one avoids by pruning the basis. The most important advantage of
pruning is therefore lost It is possible to find a nondirect product quadrature scheme that uses fewer
points and to evaluate potential MVPs by doing sums sequentially. The ideas will be explained with
the n1 + · · ·+ nD ≤ b pruning condition, but better pruning conditions will be briefly discussed at the
end of this section.

The direct product quadrature is, in a sense, too good because it is so good that many matrix
elements with basis functions removed by the pruning are also exact. A nondirect product
Smolyak quadrature is better. It has far fewer points but maintains enough structure to allow
efficient MVPs. For detail see [7,87,88]. To make a Smolyak quadrature, one needs a family of
1D quadrature rules for each coordinate. Quadratures are labelled by ic, ic = 1, 2, · · · , imax

c .
The number of points in quadrature rule ic is mc(ic), where mc(ic) is a non-decreasing function
of ic. To evaluate MVPs efficiently, one needs to use points for which all points in rule ic − 1 are
also in rule ic. Such points are called nested. The standard way to write a Smolyak quadrature is
f (q1, q2, q3, q4, q5, q6)(

1w(q1)
2w(q2)

3w(q3)
4w(q4)

5w(q5)
6w(q6)) is

∑
i1+···+i6≤H

Csmol
i1,···i6

m1(i1)

∑
k1

m2(i2)

∑
k2

m3(i3)

∑
k3

m4(i4)

∑
k4

m5(i5)

∑
k5

m6(i6)

∑
k6

i1 wk1
i2 wk2

i3 wk3
i4 wk4

i5 wk5
i6 wk6 f (qk1

1 , qk2
2 , qk3

3 , qk4
4 , qk5

5 , qk6
6 ) , (27)

where qkc
c is a point in the quadrature labelled by ic, ic wkc is the corresponding weight and the 1D

quadratures are designed to approximate∫
dqc

cw(qc) f (zc(qc)) . (28)

Csmol
i1,···i6 are coefficients; see [7]. H is increased until convergence is achieved. The union of the grids for

which i1 + · · ·+ i6 ≤ H is satisfied is called the Smolyak grid. The size of the Smolyak grid is orders of
magnitude smaller than the direct product grid size.

It would be costly to use Equation (27) in the evaluation of MVPs because it would be necessary
to evaluate the sum over i1 + · · ·+ i6 ≤ H for each MVP. When the 1D quadrature rules are nested,
one can [7] replace Equation (27) with

= ∑N1
k1

∑N2
k2

∑N3
k3

∑N4
k4

∑N5
k5

∑N6
k6

w(k1, k2, k3, k4, k5, k6) (29)

× f (qk1
1 , qk2

2 , qk3
3 , qk4

4 , qk5
5 , qk6

6 ) ,
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where

w(k1, · · · , k6) = ∑
i1+···i6≤H

Csmol
i1,··· ,i6

i1 wk1 · · ·
iD wk6 , (30)

are “super weights” that are pre-computed [89]. Nc is a maximum number of points for coordinate
c [7]. Nc depends on kc′ if c > c′ and N1 does not depend on k1, · · · , kD. Using the super weights, it is
possible to evaluate a potential MVP by doing sums sequentially,

u′(n′6, n′5, n′4n′3, n′2, n′1) =
N1

∑
k1=1

Tn′1k1

N2

∑
k2=1

Tn′2k2

N3

∑
k3=1

Tn′3k3

N4

∑
k4=1

Tn′4k4

N5

∑
k5=1

Tn′5k5

N6

∑
k6=1

Tn′6k6

w(k1, k2, k3, k4, k5, k6)V(qk1
1 , qk2

2 , qk3
3 , qk4

4 , qk5
5 , qk6

6 )

nmax
6

∑
n6=0

Tn6k6

nmax
5

∑
n5=0

Tn5k5

nmax
4

∑
n4=0

Tn4k4

nmax
3

∑
n3=0

Tn3k3

nmax
2

∑
n2=0

Tn2k2

nmax
1

∑
n1=0

Tn1k1

u(n6, n5, n4, n3, n2, n1) , (31)

where Tnk = h−1/2
k pk(z(qk)). nmax

c depends on nc′ if c < c′.
To use Equation (31), one first sums over n1 to compute an intermediate vector y1k1,n2,n3,n4,n5,n6

and then sums over n2 to compute an intermediate vector whose components are y2k1,k2,n3,n4,n5,n6

etc. At each step, the nc and kc indices are constrained among themselves. Everything is clearly
explained in [90]. The Smolyak grid is a sum of smaller direct product grids and therefore has
structure that makes it possible to evaluate MVPs by doing sums sequentially. It is also possible to do
sums sequentially for any pruning condition of the form g1(n1) + · · ·+ gD(nD) ≤ b [87]. Sometimes,
gc(nc) = αcnc with αc =

⌊
ωc

ωlowest
+ 0.5

⌋
is a good choice. Often this choice can be improved. In general,

basis functions with many non-zero indices for coordinates with large frequencies are unimportant.
They can be pushed out of the basis by using Gc(nc) > αP

c nc. In general, it is important to include in
the basis product functions for which there are several non-zero indices for coordinates with small
frequencies. Such functions are preferentially included in the basis by using Gc(nc) < αP

c . These are
general guidelines which we have found useful, but they are not specific [87,88].

6. Using Rank Reduction to Avoid Storing Full Dimensional Vectors

Contraction (Section 4) and pruning (Section 5) enable one to avoid storing vectors with as
many elements as the direct product basis. For molecules with more than five atoms, this is essential.
For example, if D = 12 and n = 10 then for a single vector one needs ∼8000 GB of memory to store
a vector with nD components. In this section, I describe another approach for avoiding vectors with
nD components. It does use a direct product basis but exploits advantages of a SOPs PES [91–93].
The key idea is that in some cases, the nD coefficients, used to represent a function, can be computed
from a much smaller set of numbers. For example, a product of functions of a single coordinate,
φ1(q1)φ2(q2) · · · φD(qD), can be represented as

n

∑
i1=1

f (1)i1
θ1

i1(q1)
n

∑
i2=1

f (2)i2
θ2

i2(q2) · · ·
n

∑
iD=1

f (D)
iD

θD
iD
(qD)

and it is only necessary to store Dn numbers.
We have developed computational methods that solve the Schroedinger equation by projecting

into a basis of functions that are sums of products. Although the functions in this basis are SOPs,
the basis is not a direct product basis. A single basis function with R terms is determined by only RDn
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numbers. If D is large, this is much less than nD. The key idea is to use basis functions that are sums of
products of optimised factors. It works if the Hamiltonian is itself a SOPs. The SOPs basis functions
are represented in a primitive product basis made from 1-D functions θ

j
ij
(qj) with ij = 1, . . . , nj for

each coordinate qj. Any function can be expanded in this basis as

Ψ(q1, . . . , qD) '
n1

∑
i1=1
· · ·

nD

∑
iD=1

Fi1i2 ...iD

D

∏
j=1

θ
j
ij
(qj) . (32)

The goal is to avoid explicitly introducing Fi1i2 ...iD . This is possible if Ψ(q1, . . . , qD) is a SOPs.
In that case,

Fi1i2 ...iD =
R

∑
`=1

D

∏
j=1

f (`,j)
ij

(33)

where f (`,j) is a one-dimensional vector associated with the `-th term and coordinate j. The SOPs
format for multidimensional functions is known as the canonical polyadic (CP) decomposition for
tensors [94–96].

Basis functions are made by applying the Hamiltonian. We have used a shifted block power
method [91]. It is imperative that every basis vector be in the form of Equation (33). This is only the
case if the Hamiltonian is of the form,

H(q1, . . . , qD) =
T

∑
k=1

D

∏
j=1

hkj(qj), (34)

where hkj is a one-dimensional operator acting in a Hilbert space associated with coordinate qj. PES can
be forced into SOPs form by using, for example, potfit [5,97], multigrid potfit [98], or neural network
methods [99–101].

When H is applied to a vector F to obtain a new vector F′, the number of terms in the vector
increases. If there are T terms in H, the rank (number of terms) of F′ is a factor of T larger than the
rank of F. All vectors have the form

Fi1i2 ...iD =
R

∑
`=1

s`
D

∏
j=1

f̃ (`,j)
ij

with
nj

∑
ij

| f̃ (`,j)
ij
|2 = 1 , (35)

where, for each term (`) and each coordinate (j), f̃ (`,j)
ij

is a normalized 1-D vector, s` is a normalization
coefficient, and nj is the number of basis functions for coordinate j. H can be applied to F by evaluating
1-D matrix–vector products,

(HF)i′1 ...i′D
= ∑

i1,i2,··· ,iD

T

∑
k=1

D

∏
j′=1

(hkj′)i′
j′ ij′

R

∑
`=1

D

∏
j=1

s` f̃ (`,j)
ij

. (36)

=
T

∑
k=1

R

∑
`=1

D

∏
j=1

∑
ij

(hkj)i′jij
s` f̃ (`,j)

ij
, (37)

where (hkj)ij ,i′j
= 〈θ j

ij
|hkj|θ

j
i′j
〉.
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To avoid having vectors with many terms, we must reduce the rank. To do this, we replace Fold
i1i2 ...iD

Fold
i1i2 ...iD

=
Rold

∑
`=1

s`
D

∏
j=1

old f̃
(`,j)
ij

=⇒ Fnew
i1i2 ...iD

=
Rnew

∑
`=1

s`
D

∏
j=1

new f̃ (`,j)
ij

, (38)

where Rnew < Rold and choose new f̃ (`,j)
ij

to minimize ‖ Fnew − Fold ‖. We use the same Rnew for
all reductions. An alternating least squares (ALS) algorithm described in [96] is used to carry out
the reduction.

In [91], it was demonstrated that these ideas work for a 20D Hamiltonian of coupled oscillators.
A rank of only 20 (i.e., 20 terms in each of the basis functions) was sufficient to converge about
40 states of a 20D Hamiltonian. Related ideas were used successfully for molecules with as many as
10 atoms [91–93].

7. Conclusions

Iterative eigensolvers make it possible to calculate vibrational spectra without storing a
Hamiltonian matrix. The Lanczos algorithm, filter diagonalization, and a re-started Lanczos or
Arnoldi method available as ARPACK [102] are common iterative eigensolvers

It is easiest to use an iterative eigensolver when the Hamiltonian is a SOP. A Taylor series
potential is a SOPs. In many cases, the vibrational KEO is a SOPs. In normal coordinates,
it is only a SOPs if one expands elements of the effective moment of inertia tensor [103] or sets them to
zero (approximates the KEO). If the PES is not a SOPs, it can be massaged into SOPs form [101,104]. It is
harder to use an iterative eigensolver when the Hamiltonian is not an SOPs. In this case, quadrature
(or collocation) is used and the Hamiltonian matrix is usually not sparse. In a product basis, the cost
of Hamiltonian MVPs scales as nD+1 [40,48,49]. This favourable scaling is obtained by exploiting
structure. Product basis/product grid methods are methods of first resort for molecules with four or
five atoms. They also work extremely well for Van der Waals molecules when only the intermonomer
coordinates are treated explicitly [8,11,12,105,106].

In this review article, I describe three methods that obviate the need to store vectors with as many
components as the product basis. The first method uses basis functions that are eigenfunctions of a
Hamiltonian obtained by setting a subset of the coordinates equal to reference values. In Section 4,
a method is described for evaluating MVPs in a product contracted basis. It does not require storing
vectors as large as the primitive product basis set. The key idea is to store an intermediate matrix,
called the F matrix. The second method uses basis functions that are products of univariate functions.
Functions deemed unimportant are removed from a direct-product basis by imposing a pruning
condition. The pruning condition is chosen so that the pruned basis has structure. When used with a
general PES, it is necessary to use the pruned basis in conjunction with a nondirect product quadrature
grid that satisfies two requirements. It must have fewer points than the product quadrature and it
must have sufficient structure to be able to evaluate MVPs by doing sums sequentially. A Smolyak
quadrature satisfies both requirements. However, to use it, the quadrature must be written not as a
sum over quadrature levels, as is usually the case, but as a sum over points (i.e., not Equation (27)
but Equation (30)). The third method uses SOPs basis functions. It works only if the Hamiltonian is a
SOPs. The basis functions are determined by reducing the rank of the vectors obtained from MVPs.
With rank reduction methods, it is possible to compute vibrational spectra for molecules with more
than a dozen atoms [107].
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