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Abstract: Interval-valued Pythagorean fuzzy numbers (IVPFNs) can easily describe the incomplete
and indeterminate information by degrees of membership and non-membership, and the Hamy
mean (HM) operator and dual HM (DHM) operators are a good tool for dealing with multiple
attribute decision making (MADM) problems because it can capture the interrelationship among
the multi-input arguments. Motivated by the studies regarding the HM operator and dual HM
operator, we expand the HM operator and dual HM (DMM) operator to process the interval-valued
Pythagorean fuzzy numbers (IVPFNs) and then to solve the MADM problems. Firstly, we propose
some HM and DHM operators with IVPFNs. Moreover, we present some new methods to solve
MADM problems with the IVPFNs. Finally, an applicable example is given.

Keywords: multiple attribute decision making (MADM); Hamy mean (HM) operator; dual Hamy
mean (DHM) operator; interval-valued Pythagorean fuzzy numbers (IVPFNs)

1. Introduction

Atanassov [1] gave the intuitionistic fuzzy set (IFS) based on the fuzzy set [2] such that their
sum is not greater than one. After their existence, researchers have applied these theories in different
disciplines [3–17] and found that they are more profitable to handle the uncertainties during the
analysis. The above theories have been successfully defined, but in some cases, it is not possible to
handle the situation by IFS. For instance, if a decision maker (DM) may take the membership degrees
of any element as 0.8 and 0.5, then, clearly their sum is not less than one. Hence, under such cases, IFS
can have some deficiencies. In order to resolve this, Pythagorean fuzzy set (PFS) [18,19], an extension
of IFSs, has emerged as a good tool for describing the indeterminacy in uncertain multiple attribute
decision making (MADM). For this set, the condition of the sum of the degrees that is replaced with
their sum of squares is less than one; hence, the PFS is more general than the IFS. Further, it is clear that
0.82 + 0.52 ≤ 1; hence, PFS stands for such cases. After this discovery, Zhang and Xu [20] presented the
PFS TOPSIS for MADM. Zhang [21] presented a PFS similarity measure for solving MADM. Peng and
Yang [22] proposed some fundamental properties for PFNs. Reformat and Yager [23] used the PFSs in
solving the recommender system. Zeng et al. [24] prposed a hybrid method for Pythagorean fuzzy
multiple-criteria decision making. Garg [25,26] proposed some generalized PFS aggregation operators
based on Einstein Operations. Zhang [27] extended the PFS to the interval-valued PFSs (IVPFSs).
Garg [28] presented some aggregation operators with interval-valued Pythagorean fuzzy numbers
(IVPFNs). Also, a new accuracy function has been presented to rank the IVPFNs. However, a novel
accuracy function [28], correlation coefficient [29], improved accuracy function [30], and improved
score function [31] have been defined under the PFS and IVPFS, and have been used to solve the
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MADM. Recently, some confidence operators with PFNs have been developed by Garg [32]. Other
scholars also studied the MADM under the PFS or IVPFS [24,27,30,31,33–41].

Both Bonferroni mean (BM) operators [42–47] and the Heronian mean (HM) [48–53] operators
consider the interrelationships of aggregated arguments. The Hamy mean (HM) [54] operator can
consider interrelationships among any number of arguments; both BM operator and Maclaurin
symmetric mean [55] are the special cases of HM operator. Qin and Liu [56] proposed some
HM operators with 2-tuple linguistic information. Because IVPFNs can easily describe the fuzzy
information, and the HM operator and dual HM (DMM) operator can capture interrelationships
among any number of arguments, it is necessary to expand the HM and DHM operator to deal with
the IVPFNs. The purpose of this paper is to propose some HM and DHM operators with IVPFNs, then
to study some properties of these operators, and apply them to solve MADM problems with IVPFNs.

To achieve this goal, the rest of this paper is set out as follows. Section 2 introduces some
basic definitions of IVPFSs. In Section 3, we propose some HM and DHM operators with IVPFNs.
In Section 4, we propose two MADM methods for IVPFNs with the interval-valued Pythagorean
fuzzy weighted Hamy mean (IVPFWHM) operator and interval-valued Pythagorean fuzzy weighted
dual Hamy mean (IVPFWDHM) operator. In Section 5, an illustrative example is given. In Section 6,
we give some conclusions of this study.

2. Basic Concepts

In this section, we introduce some fundamental concepts of IVPFSs and HM, which will be used
in the next section. These concepts are based on a fixed set X will be used on the next sections.

2.1. Pythagorean Fuzzy Set (PFS)

Definition 1 ([18,19]). A PFS P is defined as

P = {〈x, (µP(x), νP(x))〉|x ∈ X } (1)

where the functions µP : X→ [0, 1] and νP : X→ [0, 1] defines the degrees of membership and non-membership
of the element x ∈ X to P, such that for each x, the condition

(
µp(x)

)2
+
(
νp(x)

)2 ≤ 1, holds.

Definition 2 ([33]). The T = (µ, ν) be called as Pythagorean fuzzy number (PFN) and defined the score and
accuracy functions as S(T) = µ2 − ν2 and H(T) = µ2 + ν2. In order to compare two or more PFNs T1 and
T2, a comparison law is defined as:

(1) If S(T1) < S(T2), then T1 < T2;
(2) If S(T1) = S(T2), then,

(i) If H(T1) = H(T2), then T1 = T2;
(ii) If H(T1) < H(T2), then T1 < T2.

Example 1. Let t1 = (0.7, 0.5), t2 = (0.5, 0.1), t3 = (0.4, 0.1) be three PFNs, according to Definitions 1 and
2, we get S(t1) = 0.72 − 0.52 = 0.2400, S(t2) = 0.52 − 0.12 = 0.2400, S(t3) = 0.42 − 0.12 = 0.1500,
S(t1) = S(t2) > S(t3), H(t1) = 0.72 + 0.52 = 0.7400,H(t2) = 0.52 + 0.12 = 0.2600, S(t1) > S(t2) >

S(t3); therefore, t1 > t2 > t3.

2.2. Interval-Valued Pythagorean Fuzzy Set (IVPFS)

Zhang [27] extended the PFS to the IVPFSs which is defined, as follows, over the fixed set X.
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Definition 3 ([27]). An IVPFS b̃ is defined as:

b̃ =
{〈

x,
(
µb̃(x), νb̃(x)

)〉
|x ∈ X

}
(2)

where µb̃(x) =
[
µZ

b̃
(x), µY

b̃
(x)
]
, νb̃(x) =

[
νZ

b̃
(x), νY

b̃
(x)
]

are the interval numbers of [0, 1] with the condition

0 ≤
(

µY
b̃
(x)
)2

+
(

νY
b̃
(x)
)2
≤ 1, ∀x ∈ X. The pair ã =

([
µZ

b̃
, µY

b̃

]
,
[
vZ

b̃
, vY

b̃

])
is called an IVPF number

(IVPFN), where µb̃, νb̃ ⊆ [0, 1] and (µY
b̃
)

2
+ (νY

b̃
)

2 ≤ 1.

Definition 4 ([28]). For three IVPFNs b̃1 =
([

µZ
b̃1

, µY
b̃1

]
,
[
vZ

b̃1
, vY

b̃1

])
, b̃2 =

([
µZ

b̃2
, µY

b̃2

]
,
[
vZ

b̃2
, vY

b̃2

])
, and

b̃ =
([

µZ
b̃

, µY
b̃

]
,
[
vZ

b̃
, vY

b̃

])
, the basic operational laws are defined as follows:

b̃1 ⊕ b̃2 =



√(

µZ
b̃1

)2
+
(

µZ
b̃2

)2
−
(

µZ
b̃1

)2(
µZ

b̃2

)2
,√(

µY
b̃1

)2
+
(

µY
b̃2

)2
−
(

µY
b̃1

)2(
µY

b̃2

)2

,
[
vZ

b̃1
vZ

b̃2
, vY

b̃1
vY

b̃2

];

b̃1 ⊗ b̃2 =

[µZ
b̃1

µZ
b̃2

, µY
b̃1

µY
b̃2

]
,


√(

vZ
b̃1

)2
+
(

vZ
b̃2

)2
−
(

vZ
b̃1

)2(
vZ

b̃2

)2
,√(

vY
b̃1

)2
+
(

vY
b̃2

)2
−
(

vY
b̃1

)2(
vY

b̃2

)2


;

kb̃ =

√1−
(

1−
(

µZ
b̃

)2
)k

,

√
1−

(
1−

(
µY

b̃

)2
)k
,
[(

vZ
b̃

)k
,
(

vY
b̃

)k
], k > 0;

(
b̃
)k

=

[(µZ
b̃

)k
,
(

µY
b̃

)k
]

,

√1−
(

1−
(

vZ
b̃

)2
)k

,

√
1−

(
1−

(
vY

b̃

)2
)k
, k > 0;

b̃c =
([

vZ
b̃

, vY
b̃

]
,
[
µZ

b̃
, µY

b̃

])
.

Example 2. Suppose that t1 = ([0.3, 0.6], [0.1, 0.4]), t2 = ([0.3, 0.7], [0.2, 0.4]), and t3 =

([0.5, 0.7], [0.3, 0.5]) be three IVPFNs, and k = 0.5, then we have:

t1 ⊕ t2 =
([√

0.32 + 0.32 − 0.32 × 0.32,
√

0.62 + 0.72 − 0.62 × 0.72
]
, [0.1× 0.2, 0.4× 0.4]

)
= ([0.4146, 0.8207], [0.0200, 0.1600])

t1 ⊗ t2 =
(
[0.3× 0.3, 0.6× 0.7],

[√
0.12 + 0.22 − 0.12 × 0.22,

√
0.4 + 0.42 − 0.42 × 0.42

])
= ([0.0900, 0.4200], [0.2227, 0.5426])

kt3 =

([√
1− (1− 0.5)0.5,

√
1− (1− 0.7)0.5

]
,
[
0.30.5, 0.50.5])

= ([0.5412, 0.6725], [0.5477, 0.7071])

(t3)
k =

([
0.50.5, 0.70.5], [√1− (1− 0.3)0.5,

√
1− (1− 0.5)0.5

])
= ([0.7071, 0.8367], [0.4042, 0.5412])

t1
c = ([0.3, 0.5], [0.5, 0.7])

Based on the Definition 4, Garg [28] derived the following properties easily.
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Theorem 1. Let b̃1 =
([

µZ
b̃1

, µY
b̃1

]
,
[
vZ

b̃1
, vY

b̃1

])
and b̃2 =

([
µZ

b̃2
, µY

b̃2

]
,
[
vZ

b̃2
, vY

b̃2

])
be two IVPFNs, and

k, k1, k2 > 0, be three real numbers, then:

b̃1 ⊕ b̃2 = b̃2 ⊕ b̃1;
b̃1 ⊗ b̃2 = b̃2 ⊗ b̃1;

k
(

b̃1 ⊕ b̃2

)
= kb̃1 ⊕ kb̃2;(

b̃1 ⊗ b̃2

)k
=
(

b̃1

)k
⊗
(

b̃2

)k
;

k1b̃1 ⊕ k2b̃1 = (k1 + k2)b̃1;((
b̃1

)k1
)k2

=
(

b̃1

)k1k2
.

Definition 5. For an IVPFN b̃ =
([

µZ
b̃

, µY
b̃

]
,
[
vZ

b̃
, vY

b̃

])
, the score and accuracy functions of it are defined as

S
(

b̃
)
= 1

4

[(
1 +

(
µZ

b̃

)2
−
(

vZ
b̃

)2
)
+

(
1 +

(
µY

b̃

)2
−
(

vY
b̃

)2
)]

and H
(

b̃
)
=

(
µZ

b̃

)2
+
(

µY
b̃

)2
+
(

vZ
b̃

)2
+
(

vY
b̃

)2

2 ,

respectively. Further, in order to compare two different IVPFNs b̃1 and b̃2, an order relation is defined as:

(1) if S
(

b̃1

)
< S

(
b̃2

)
, then b̃1 < b̃2

(2) if S
(

b̃1

)
= S

(
b̃2

)
, then,

(i) if H
(

b̃1

)
= H

(
b̃2

)
, then b̃1 = b̃2.

(ii) if H
(

b̃1

)
< H

(
b̃2

)
, then b̃1 < b̃2.

Example 3. Let t1 = ([0.4, 0.7], [0, 0.5]), t2 = ([0.5, 0.5], [0.1, 0.3]), and t3 = ([0.3, 0.4], [0.2, 0.5]) be three
IVPFNs, according to Definition 5, we get:

S(t1) =

(
1 + 0.42 − 02)+ (1 + 0.72 − 0.52)

4
= 0.6000,

S(t2) =

(
1 + 0.52 − 0.12)+ (1 + 0.52 − 0.52)

4
= 0.6000,

S(t3) =

(
1 + 0.32 − 0.22)+ (1 + 0.42 − 0.52)

4
= 0.4900 , S(t1) = S(t2) > S(t3).

H(t1) =
0.42+0.72+02+0.52

2 = 0.4500,
H(t2) =

0.52+0.52+0.12+0.32

2 = 0.3000

S(t1) > S(t2) > S(t3), therefore t1 > t2 > t3.

2.3. HM Operator

Definition 6 ([54]). The HM operator is defined as the following:

HM(x)(b1, b2, · · · bk) =

∑
1≤i1<···<ix≤k

(
x

∏
j=1

bij

) 1
x

Cx
k

(3)
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where x is a parameter and x are x integer values taken from the set {1, 2, · · · , k} of k integer values, and Cx
k

denotes the binomial coefficient and Cx
k = k!

x!(k−x)! .
The properties of the operator are shown as follows:

(i) when bi = b(i = 1, 2, · · · , k), HM(x)(b1, b2, · · · bk) = b;

(ii) when bi ≤ πi(i = 1, 2, · · · , k), HM(x)(b1, b2, · · · bk) ≤ HM(x)(π1, π2, · · ·πk);

(iii) when min{bi} ≤ HM(x)(b1, b2, · · · bk) ≤ max{bi}.

Two particular cases of the HM operator are given as follows:

(1) when x = 1, HM(k)(b1, b2, · · · bk) =
1
k

k
∑

i=1
bi, it becomes the arithmetic mean operator.

(2) when x = k, HM(k)(b1, b2, · · · bk) =

(
k

∏
i=1

bi

) 1
k

, it becomes the arithmetic mean operator. Which is the

arithmetic averaging operator.

3. Certain HM and DHM Operators with IVPFNs

In this section, we shall develop certain Hamy mean operators with IVPFNs.

3.1. IVPFHM Operator

The HM operator has usually been utilized in the situation of an interaction relationship. Next,
we extend the HM operator to IVPFS. From Definitions 4 and 6, we can obtain:

Definition 7. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a set of IVPFNs, then the interval-valued

Pythagorean Fuzzy Hamy mean (IVPFHM) operator is defined as:

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
=

⊕
1≤i1<···<ix≤k

(
x
⊗

j=1
b̃ij

) 1
x

Cx
k

(4)

where x is a parameter and x = 1, 2, · · · , k, i1, i2, · · · ix are x integer values taken from the set {1, 2, · · · , k} of
k integer values, and Cx

k denotes the binomial coefficient and Cx
k = k!

x!(k−x)! .
Based on the operations of the IVPFN described, we can obtain Theorem 2.

Theorem 2. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a set of IVPFNs, then their aggregated result

by utilizing IVPFHM operator is also an IVPFN, and

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
=

⊕
1≤i1<···<ix≤k

(
x
⊗

j=1
b̃ij

) 1
x

Cx
k

=





√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2


1

Cx
k

,

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2


1

Cx
k


,



 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


1

Cx
k

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


1

Cx
k




(5)

Proof.

x
⊗

j=1
b̃ij =

[ x

∏
j=1

(µZ
ij
),

x

∏
j=1

(µY
ij
)

]
,

√√√√1−
x

∏
j=1

(
1− (νZ

ij
)

2
)

,

√√√√1−
x

∏
j=1

(
1− (νY

ij
)

2
) (6)
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(
x
⊗

j=1
b̃ij

) 1
x

=


( x

∏
j=1

µZij

) 1
x

,

(
x

∏
j=1

µY
ij

) 1
x
,


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x

,

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


 (7)

Thereafter,

⊕
1≤i1<···<ix≤k

(
x
⊗

j=1
ãij

) 1
x

=




√√√√√√1− ∏

1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2,

√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

ij
)

2
)) 1

x

, ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x




(8)

Therefore,

⊕
1≤i1<···<ix≤k

(
x
⊗

j=1
b̃ij

) 1
x

Cx
k

=



√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2


1

Cx
k

,

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2


1

Cx
k


,



 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


1

Cx
k

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


1

Cx
k




(9)

And then, we can know:

0 ≤

√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x

∏
j=1

µY
ij

) 1
x
2


1

Cx
k

≤ 1 (10)

0 ≤

 ∏
1≤i1<···<ix≤k

√√√√√1−
(

x

∏
j=1

(
1−

(
νY

ij

)2
)) 1

x


1

Cx
k

≤ 1 (11)

We can obtain
(
µp(x)

)2
+
(
νp(x)

)2 ≤ 1 from the definition of IVPFS, so


√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2


1

Cx
k


2

+


 ∏

1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1−

(
νY

ij

)2
)) 1

x


1

Cx
k


2

≤ 1−

 ∏
1≤i1<···<ix≤k

1−
(

x
∏
j=1

(
1−

(
νY

ij

)2
)) 1

x


1
Cx

k

+

 ∏
1≤i1<···<ix≤k

1−
(

x
∏
j=1

(
1−

(
νY

ij

)2
)) 1

x


1
Cx

k

= 1

(12)

We complete the proof. �

In the following, we give some properties of the IVPFMM operator.

Property 1. (Idempotency.) Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])

= b̃ =
([

µZ, µY], [vZ, vY]) (i = 1, 2, 3, · · · , k),
then

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃n

)
= b̃ (13)
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Proof.

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)

=





√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2


1

Cx
k

,

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2


1

Cx
k


,



 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


1

Cx
k

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


1

Cx
k





=





√√√√1−
(

∏
1≤i1<···<ix≤k

(
1−

(
µZ

i
)2
)) 1

Cx
k

,√√√√1−
(

∏
1≤i1<···<ix≤k

(
1−

(
µY

i
)2
)) 1

Cx
k

,


(

∏
1≤i1<···<ix≤k

√
1−

(
1− (νZ

i )
2
)) 1

Cx
k

,(
∏

1≤i1<···<ix≤k

√
1−

(
1− (νY

i )
2
)) 1

Cx
k




=

([√
1−

(
1−

(
µZ

i
)2
)

,
√

1−
(

1−
(

1−
(
µY

i
)2
))]

,
[√

1−
(

1− (νZ
i )

2
)

,
√

1−
(

1− (νY
i )

2
)])

=

([√
1−

(
1− (µZ)

2
)

,
√

1−
(

1− (µY)
2
)]

,
[(√

1−
(

1− (νZ)
2
))

,
(√

1−
(

1− (νY)
2
))])

=
([

µZ, µY], [νZ, νY]) = b̃

(14)

�

Property 2. (Monotonicity.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
and c̃i =

([
µZ

θj
, µY

θj

]
,
[
νZ

θj
, νY

θj

])
(i = 1, 2, · · · , k) be two sets of IVPFNs, If

(
µZ

ij

)2
+
(

µY
ij

)2
≤
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
≥(

νZ
θj

)2
+
(

νY
θj

)2
, then,

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
≤ IVPFHM(x)(c̃1, c̃2, · · · , c̃k) (15)

Proof. (
x

∏
j=1

µY
ij

) 1
x

≤
(

x
∏
j=1

µY
θj

) 1
x

(16)

∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2 ≥ ∏

1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
θj

) 1
x
2 (17)

Therefore,√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2


1

Cx
k

≤

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
θj

) 1
x
2


1

Cx
k

(18)

Similarly, we also can obtain

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


1

Cx
k

≥

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νY

θj
)

2
)) 1

x


1

Cx
k

(19)

And √√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2


1

Cx
k

≤

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
θj

) 1
x
2


1

Cx
k

(20)
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 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


1

Cx
k

≥

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (νZ

θj
)

2
)) 1

x


1

Cx
k

(21)

then, the proof is completed. Then,

If
(

µZ
ij

)2
+
(

µY
ij

)2
<
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
>
(

νZ
θj

)2
+
(

νY
θj

)2
then

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
< IVPFHM(x)(c̃1, c̃2, · · · , c̃k);

If
(

µZ
ij

)2
+
(

µY
ij

)2
<
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
=
(

νZ
θj

)2
+
(

νY
θj

)2
then

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
< IVPFHM(x)(c̃1, c̃2, · · · , c̃k);

If
(

µZ
ij

)2
+
(

µY
ij

)2
=
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
>
(

νZ
θj

)2
+
(

νY
θj

)2
then

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
< IVPFHM(x)(c̃1, c̃2, · · · , c̃k);

If
(

µZ
ij

)2
+
(

µY
ij

)2
=
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
=
(

νZ
θj

)2
+
(

νY
θj

)2
then

IVPFHM(x)
(

b̃1, b̃2, · · · , b̃k

)
= IVPFHM(x)(c̃1, c̃2, · · · , c̃k).

�

Property 3. (Boundedness.) Let b̃i = (
[
µZ

ij
, µY

ij

]
,
[
νZ

ij
, νY

ij

]
), b̃+ = (

[
µZ

maxij
, µY

maxij

]
,
[
νZ

minij
, νY

minij

]
) and

b̃+ = (
[
µZ

minij
, µY

minij

]
,
[
νZ

maxij
, νY

maxij

]
)(i = 1, 2, · · · , k) be a set of IVPFNs. According to the process of

property of monotonicity and idempotency, it is easy to obtain that,

b̃−i < IVPFHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
< b̃+i (22)

Example 4. Let b̃1 = ([0.1, 0.4], [0.2, 0.5]), b̃2 = ([0.4, 0.6], [0.3, 0.4]), b̃3 = ([0.5, 0.7], [0.2, 0.3]),
b̃4 = ([0.3, 0.5], [0.2, 0.4]) be four IVPFNs. Then we use the proposed IVPFHM operator to aggregate
four IVPFNs. (suppose x = 2):

IVPFHM(2)
(

b̃1, b̃2, b̃3, b̃4

)

=





√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

µZ
ij

) 1
2
2


1

C2
4

,

√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

µY
ij

) 1
2
2


1

C2
4


,



 ∏
1≤i1<···<i2≤4

√√√√1−
(

2
∏
j=1

(
1− (νZ

ij
)

2
)) 1

2


1

C2
4

,

 ∏
1≤i1<···<i2≤4

√√√√1−
(

2
∏
j=1

(
1− (νY

ij
)

2
)) 1

2


1

C2
4
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=





√√√√1−
(

(1− 0.1× 0.4)× (1− 0.1× 0.5)× (1− 0.1× 0.3)
×(1− 0.4× 0.5)× (1− 0.4× 0.3)× (1− 0.5× 0.3)

) 1
6

,√√√√1−
(

(1− 0.4× 0.6)× (1− 0.4× 0.7)× (1− 0.4× 0.5)
×(1− 0.6× 0.7)× (1− 0.6× 0.5)× (1− 0.7× 0.5)

) 1
6

,




√

1− ((1− 0.22)× (1− 0.32))
1
2 ×

√
1− ((1− 0.22)× (1− 0.22))

1
2

×
√

1− ((1− 0.22)× (1− 0.22))
1
2 ×

√
1− ((1− 0.32)× (1− 0.22))

1
2√

1− ((1− 0.32)× (1− 0.22))
1
2 ×

√
1− ((1− 0.22)× (1− 0.22))

1
2


1
6

,


√

1− ((1− 0.52)× (1− 0.42))
1
2 ×

√
1− ((1− 0.52)× (1− 0.32))

1
2

×
√

1− ((1− 0.52)× (1− 0.42))
1
2 ×

√
1− ((1− 0.42)× (1− 0.32))

1
2√

1− ((1− 0.42)× (1− 0.42))
1
2 ×

√
1− ((1− 0.32)× (1− 0.42))

1
2


1
6




= ([0.3171, 0.5497], [0.2097, 0.4036])

Finally, we get IVPFHM(2)
(

b̃1, b̃2, b̃3, b̃4

)
= ([0.3171, 0.5497], [0.1317, 0.2401]).

3.2. IVPFWHM Operator

It can be seen that the IVPFHM operator doesn’t consider the importance of the aggregated
arguments. To overcome the limitation of IVPFHM, we develop the interval-valued Pythagorean fuzzy
weighted HM (IVPFWHM) operator as follows.

Definition 8. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a set of IVPFNs with weight vector being

ω = (ω1, ω2, · · ·ωk)
T , ωi ∈ [0.1] and

k
∑

k=1
ωi = 1, then the IVPFWHM operator is given as:

IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=


⊕

1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

Cx
k−1

(1 ≤ x < k)
x
⊗

i=1
b̃

1−ωi
k−1

i (x = k)

(23)

Based on the operations of the IVPFN described, we can obtain Theorem 3.

Theorem 3. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a collection of IVPFNs, then their aggregated

result of IVPFWHM operator is also an IVPFN, and

IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

⊕
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

Cx
k−1

=





√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1


,



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1





(1 ≤ x < k)

(24)
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or
IVPFWHM(x)

ω

(
b̃1, b̃2, · · · , b̃k

)
=

x
⊗

i=1
b̃

1−ωi
k−1

i

=



[
k

∏
i=1

(
µZ

i
) 1−ωi

k−1 ,
k

∏
i=1

(
µY

i
) 1−ωi

k−1

]
,

√√√√1−
k

∏
i=1

(
1− (νZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (νY

i )
2
) 1−ωi

k−1



(x = k)
(25)

Proof.

(
x
⊗

j=1
b̃ij

) 1
x

=


( x

∏
j=1

µZ
ij

) 1
x

,

(
x

∏
j=1

µY
ij

) 1
x
,


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x

,

√√√√1−
(

x
∏
j=1

(
1− (νY

ij
)

2
)) 1

x


 (26)

Thereafter,

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

=



√√√√√√√1−

1−

( x
∏
j=1

µZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)

,

√√√√√√√1−

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


,




√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)

,


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)





(27)

Moreover,

⊕
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

=



√√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)

,

√√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


,



∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)

,

∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)





(28)

Therefore,

⊕
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

Cx
k−1

=



√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1


,



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1





(29)

For the second case, when (x = k), we get

b̃
1−ωi
k−1

i =

[(µZ
i
) 1−ωi

k−1 ,
(
µY

i
) 1−ωi

k−1

]
,

√1−
(

1− (νZ
i )

2
) 1−ωi

k−1 ,

√
1−

(
1− (νY

i )
2
) 1−ωi

k−1

 (30)
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Then,

k
⊗

i=1
b̃

1−ωi
k−1

i =[ k
∏
i=1

((
µZ

i
) 1−ωi

k−1

)
,

k
∏
i=1

((
µY

i
) 1−ωi

k−1

)]
,


√√√√1−

k
∏
i=1

(
1− (νZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (νY

i )
2
) 1−ωi

k−1


 (31)

and we can easily obtain,

0 ≤

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

≤ 1 (32)

0 ≤

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

≤ 1 (33)

and,
0 ≤

k
∏
i=1

((
µY

i
) 1−ωi

k−1

)
≤ 1 (34)

0 ≤

√√√√1−
k

∏
i=1

(
1− (νY

i )
2
) 1−ωi

k−1

≤ 1 (35)

Therefore, 

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1



2

+


 ∏

1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

≤

1−

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

+


 ∏

1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

= 1

(36)

For the second case, x = k, we can easily prove that it is kept. Therefore, the aggregation result
produced by Definition 8 is still an IVPFN. Next, we shall deduce some desirable properties of the
IVPFWHM operator. �

In the following, we give some properties of the IVPFWHM operator.

Property 4. (Idempotency.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
=
([

µZ, µY], [νZ, νY]) = b̃, and weight vector

meets ω = (ω1, ω2, · · ·ωk)
T , ωi ∈ [0, 1] and

k
∑

i=1
ωi = 1, then,
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IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
= b̃ (37)

Property 5. (Monotonicity.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
and c̃i =

([
µZ

θj
, µY

θj

]
,
[
νZ

θj
, νY

θj

])
(i = 1, 2, · · · , k) be two sets of IVPFNs, and weight vector meets ω = (ω1, ω2, · · ·ωk)

T , ωi ∈ [0, 1]

and
k
∑

i=1
ωi = 1. If

(
µZ

ij

)2
+
(

µY
ij

)2
≤
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
≥
(

νZ
θj

)2
+
(

νY
θj

)2
then,

IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
≤ IVPFWHM(x)

ω (c̃1, c̃2, · · · , c̃k) (38)

Property 6. (Boundedness.) Let b̃i = (
[
µZ

ij
, µY

ij

]
,
[
νZ

ij
, νY

ij

]
), b̃+ = (

[
µZ

maxij
, µY

maxij

]
,
[
νZ

minij
, νY

minij

]
) and

b̃+ = (
[
µZ

minij
, µY

minij

]
,
[
νZ

maxij
, νY

maxij

]
)(i = 1, 2, · · · , k) be a set of IVPFNs with weight vector being

ω = (ω1, ω2, · · ·ωk)
T , ωi ∈ [0, 1],

k
∑

i=1
ωi = 1, because of Property 5, then,

b̃−i < IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
< b̃+i (39)

Example 5. Let b̃1 = ([0.1, 0.4], [0.2, 0.3]), b̃2 = ([0.2, 0.4], [0.3, 0.5]), b3 = ([0.3, 0.4], [0.2, 0.3]),
b̃4 = ([0.4, 0.7], [0.1, 0.3]) be four IVPFNs, the weighting vector of attributes be ω = {0.2, 0.1, 0.3, 0.4}.
Then we use the proposed IVPFWHM operator to aggregate four IVPFNs, (suppose x = 2).

IVPFWHM(2)
ω

(
b̃1, b̃2, b̃3, b̃

)
=



√√√√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

µZ
ij

) 1
2
2

(1−
2
∑

j=1
ωij

)


1

C2
4−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

µY
ij

) 1
2
2

(1−
2
∑

j=1
ωij

)


1

C2
4−1


,



 ∏
1≤i1<···<i2≤4


√√√√1−

(
2

∏
j=1

(
1− (νZ

ij
)

2
)) 1

2


(1−

2
∑

j=1
ωij

)


1

C2
4−1

,

 ∏
1≤i1<···<i2≤4


√√√√1−

(
2

∏
j=1

(
1− (νY

ij
)

2
)) 1

2


(1−

2
∑

j=1
ωij

)


1

C2
4−1





=





√√√√1−
(

(1− 0.1× 0.2)1−0.2−0.1 × (1− 0.1× 0.3)1−0.2−0.3 × (1− 0.1× 0.4)1−0.2−0.4

×(1− 0.2× 0.3)1−0.1−0.3 × (1− 0.2× 0.4)1−0.1−0.4 × (1− 0.3× 0.4)1−0.3−0.4

) 1
3

,√√√√1−
(

(1− 0.4× 0.4)1−0.2−0.1 × (1− 0.4× 0.4)1−0.2−0.3 × (1− 0.4× 0.7)1−0.2−0.4

×(1− 0.4× 0.4)1−0.1−0.3 × (1− 0.4× 0.7)1−0.1−0.4 × (1− 0.4× 0.7)1−0.3−0.4

) 1
3

,





(√
(1− (1− 0.22)× (1− 0.32))

1
2

)1−0.2−0.1

×
(√

(1− (1− 0.22)× (1− 0.22))
1
2

)1−0.2−0.3

×
(√

(1− (1− 0.22)× (1− 0.12))
1
2

)1−0.2−0.4

×
(√

(1− (1− 0.32)× (1− 0.22))
1
2

)1−0.1−0.3

×
(√

(1− (1− 0.32)× (1− 0.12))
1
2

)1−0.1−0.4

×
(√

(1− (1− 0.22)× (1− 0.12))
1
2

)1−0.3−0.4



1
3

,



(√
(1− (1− 0.32)× (1− 0.52))

1
2

)1−0.2−0.1

×
(√

(1− (1− 0.32)× (1− 0.32))
1
2

)1−0.2−0.3

×
(√

(1− (1− 0.32)× (1− 0.32))
1
2

)1−0.2−0.4

×
(√

(1− (1− 0.52)× (1− 0.32))
1
2

)1−0.1−0.3

×
(√

(1− (1− 0.52)× (1− 0.32))
1
2

)1−0.1−0.4

×
(√

(1− (1− 0.32)× (1− 0.32))
1
2

)1−0.3−0.4



1
3




= ([0.2299, 0.4585], [0.5479, 0.6893])

Finally, we get IVPFWHM(2)
ω

(
b̃1, b̃2, b̃3, b̃

)
= ([0.2299, 0.4585], [0.5479, 0.6893]).
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3.3. IVPFDHM Operator

Wu et al. [32] proposed the dual Hamy mean (DHM) operator.

Definition 9. The DHM operator is defined as follows:

DHM(x)(b1, b2, · · · , bk) =

 ∏
1≤i1<...<ix≤n


x
∑

j=1
bij

x




1
Cx

k

(40)

where x is a parameter and x = 1, 2, . . . , k, i1, i2, . . . , ix are x integer values taken from the set {1, 2, . . . , k} of k
integer values, and Cx

n denotes the binomial coefficient and Cx
k = k!

x!(k−x)! .

In the following, we proposed the interval-valued Pythagorean fuzzy DHM (IVPFDHM) operator
for IVPFNs.

Definition 10. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a set of IVPFNs, then the IVPFDHM

operator is:

IVPFDHM(x)
(

b̃1, b̃2, · · · , b̃k

)
=

 ⊗
1≤i1<···<ix≤k


x
⊕

j=1
b̃ij

x




1
Cx

k

(41)

where x is a parameter and x = 1, 2, . . . , k, i1, i2, . . . , ix are x integer values taken from the set {1, 2, . . . , k} of k
integer values, and Cx

n denotes the binomial coefficient and Cx
k = k!

x!(k−x)! .

Based on the operations of the IVPFN described, we can obtain Theorem 4.

Theorem 4. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a collection of IVPFNs, then the aggregated

value of IVPFDHM operator is also an IVPFN, and

IVPFDHM(x)
(

b̃1, b̃2, · · · , b̃k

)
=

 ⊗
1≤i1<···<ix≤k

 x
⊕

j=1
b̃ij

x


1

Cx
k

=





 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


1

Cx
k

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µY

ij
)

2
)) 1

x


1

Cx
k


,



√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2


1

Cx
k

,

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2


1

Cx
k





(42)

Proof.
x
⊕

j=1
b̃ij =

([√
1−

x
∏
j=1

(
1− (µZ

ij
)

2
)

,

√
1−

x
∏
j=1

(
1− (µY

ij
)

2
)]

,

[
x

∏
j=1

(νZ
ij
),

x
∏
j=1

(νY
ij
)

])
(43)

x
⊕

j=1
b̃ij

x =



√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x

,

√√√√1−
(

x
∏
j=1

(
1− (µY

ij
)

2
)) 1

x

,

( x
∏
j=1

νZ
ij

) 1
x

,

(
x

∏
j=1

νY
ij

) 1
x

 (44)
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Therefore,

⊗
1≤i1<···<ix≤k

 x
⊕

j=1
b̃ij

x

 =

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µZ

ij
)

2
)) 1

x

, ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µY

ij
)

2
)) 1

x

,


√√√√√√1− ∏

1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2,

√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2




(45)

Then, we can get

 ⊗
1≤i1<···<ix≤k

 x
⊕

j=1
b̃ij

x


1

Cx
k

=



 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


1

Cx
k

,

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1− (µY

ij
)

2
)) 1

x


1

Cx
k


,



√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2


1

Cx
k

,

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2


1

Cx
k





(46)

From the aggregation result above, we prove the result of IVPFDHM aggregation is also an IVPFN
in the following, then,

0 ≤

 ∏
1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1−

(
µY

ij

)2
)) 1

x


1

Cx
k

≤ 1 (47)

0 ≤

√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2


1

Cx
k

≤ 1 (48)

And, we can prove


 ∏

1≤i1<···<ix≤k

√√√√1−
(

x
∏
j=1

(
1−

(
µY

ij

)2
)) 1

x


1

Cx
k


2

+


√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2


1

Cx
k


2

≤

 ∏
1≤i1<···<ix≤k

1−
(

x
∏
j=1

(
1−

(
µY

ij

)2
)) 1

x


1
Cx

k

+ 1−

 ∏
1≤i1<···<ix≤k

1−
(

x
∏
j=1

(
1−

(
νY

ij

)2
)) 1

x


1
Cx

k

= 1

(49)

Therefore, we proved that the aggregation result of IVPFDHM is also an IVPFN. Next, we will
talk about some properties of the IVPFDHM operator. �

Property 7. (Idempotency.) If all b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) are equal, i.e., b̃i = b̃ =([

µZ, µY], [vZ, vY]), then,

IVPFDHM(x)
(

b̃1, b̃2, · · · , b̃n

)
= b̃ (50)

Property 8. (Monotonicity.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
and c̃i =

([
µZ

θj
, µY

θj

]
,
[
νZ

θj
, νY

θj

])
(i = 1, 2, · · · , k) be two sets of IVPFNs. If

(
µZ

ij

)2
+
(

µY
ij

)2
≤
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
≥(

νZ
θj

)2
+
(

νY
θj

)2
, then,

IVPFDHM(x)
(

b̃1, b̃2, · · · , b̃k

)
≤ IVPFDHM(x)(c̃1, c̃2, · · · , c̃k) (51)
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Property 9. (Boundedness.) Let b̃i = (
[
µZ

ij
, µY

ij

]
,
[
νZ

ij
, νY

ij

]
) be a set of IVPFNs. If b̃+ =

(
[
µZ

maxij
, µY

maxij

]
,
[
νZ

minij
, νY

minij

]
) and b̃+ = (

[
µZ

minij
, µY

minij

]
,
[
νZ

maxij
, νY

maxij

]
)(i = 1, 2, · · · , k), because of

Properties 7 and 8, then,
b̃−i < IVPFDHM(x)

ω

(
b̃1, b̃2, · · · , b̃k

)
< b̃+i (52)

Example 6. Let b̃1 = ([0.2, 0.5], [0.1, 0.2]), b̃2 = ([0.1, 0.3], [0.3, 0.4]), b̃3 = ([0.4, 0.6], [0.2, 0.5]),
b̃4 = ([0.5, 0.7], [0.4, 0.6]) be four IVPFNs. Then we use the proposed IVPFDHM operator to aggregate
four IVPFNs, (suppose x = 2).

IVPFDHM(x)
(

b̃1, b̃2, b̃3, b̃4

)

=





 ∏
1≤i1<···<i2≤4

√√√√1−
(

2
∏
j=1

(
1− (µZ

ij
)

2
)) 1

2


1

C2
4

,

 ∏
1≤i1<···<i2≤4

√√√√1−
(

2
∏
j=1

(
1− (µY

ij
)

2
)) 1

2


1

C2
4


,



√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

νZ
ij

) 1
2
2


1

C2
4

,

√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

νY
ij

) 1
2
2


1

C2
4





=






√

1− ((1− 0.22)× (1− 0.12))
1
2 ×

√
1− ((1− 0.22)× (1− 0.42))

1
2

×
√

1− ((1− 0.22)× (1− 0.52))
1
2 ×

√
1− ((1− 0.12)× (1− 0.42))

1
2√

1− ((1− 0.12)× (1− 0.52))
1
2 ×

√
1− ((1− 0.42)× (1− 0.52))

1
2


1
6

,


√

1− ((1− 0.52)× (1− 0.32))
1
2 ×

√
1− ((1− 0.52)× (1− 0.62))

1
2

×
√

1− ((1− 0.52)× (1− 0.72))
1
2 ×

√
1− ((1− 0.32)× (1− 0.62))

1
2

×
√

1− ((1− 0.32)× (1− 0.72))
1
2 ×

√
1− ((1− 0.62)× (1− 0.72))

1
2


1
6


,



√√√√1−
(

(1− 0.1× 0.3)× (1− 0.1× 0.2)× (1− 0.1× 0.4)
×(1− 0.3× 0.2)× (1− 0.3× 0.4)× (1− 0.2× 0.4)

) 1
6

,√√√√1−
(

(1− 0.2× 0.4)× (1− 0.2× 0.5)× (1− 0.2× 0.6)
×(1− 0.4× 0.7)× (1− 0.4× 0.6)× (1− 0.5× 0.6)

) 1
6




= ([0.3156, 0.5432], [0.2428, 0.4377])

At last, we get IVPFDHM(x)
(

b̃1, b̃2, b̃3, b̃4

)
= ([0.3156, 0.5432], [0.2428, 0.4377]).

3.4. IVPFWDHM Operator

It can be seen that the IVPFDHM operator doesn’t consider the importance of the aggregated
arguments and that the weights of attributes play an important role in the process of aggregation.
To overcome the limitation of IVPFDHM, we develop the interval-valued Pythagorean fuzzy weighted
DHM (IVPFWDHM) operator.

Definition 11. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a set of IVPFNs with weight vector being

ω = (ω1, ω2, · · ·ωk)
T , ωi ∈ [0.1],

k
∑

i=1
ωi = 1, then the IVPFWDHM operator is given as:

IVPFWDHM(x)
ω (ã1, ã2, · · · , ãk) =



 ⊗
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x


1

Cx
k−1

(1 ≤ x < k)

x
⊕

i=1
ã

1−ωi
k−1

i (x = k)

(53)

Based on the operations of the IVPFN described, we can obtain Theorem 5.
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Theorem 5. Let b̃i =
([

µZ
i , µY

i
]
,
[
vZ

i , vY
i
])
(i = 1, 2, · · · , k) be a collection of IVPFNs, then the aggregated

result of IVPFWDHM operator is also an IVPFN, and

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

 ⊗
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x


1

Cx
k−1

=



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


,



√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1




(1 ≤ x < k)

(54)

or

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

x
⊕

i=1
ã

1−ωi
k−1

i =




√√√√1−

k
∏
i=1

(
1− (µZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (µY

i )
2
) 1−ωi

k−1

,

[
k

∏
i=1

(
νZ

i
) 1−ωi

k−1 ,
k

∏
i=1

(
νY

i
) 1−ωi

k−1

]


(x = k)

(55)

Proof.
x
⊕

j=1
ãij

x =



√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x

,

√√√√1−
(

x
∏
j=1

(
1− (µY

ij
)

2
)) 1

x

,

( x
∏
j=1

νZ
ij

) 1
x

,

(
x

∏
j=1

νY
ij

) 1
x

 (56)

Thereafter,

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x

 =






√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)

,


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


,



√√√√√√√1−

1−

( x
∏
j=1

νZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)

,

√√√√√√√1−

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)




(57)

Moreover,

⊗
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x

 =



∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)

,

∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


,



√√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)

,

√√√√√√√1− ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)





(58)
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Therefore,

 ⊗
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x


1

Cx
k−1

=



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


,





√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1





(59)

For the second case, when (x = k), we get:

b̃
1−ωi
k−1

i =

[(µZ
i
) 1−ωi

k−1 ,
(
µY

i
) 1−ωi

k−1

]
,

√1−
(

1− (νZ
i )

2
) 1−ωi

k−1 ,

√
1−

(
1− (νY

i )
2
) 1−ωi

k−1

 (60)

Then,

k
⊕

i=1
b̃

1−ωi
k−1

i =



√√√√1−

k
∏
i=1

(
1− (µZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (µY

i )
2
) 1−ωi

k−1

,
[

k
∏
i=1

((
νZ

i
) 1−ωi

k−1

)
,

k
∏
i=1

((
νY

i
) 1−ωi

k−1

)] (61)

Then, we can obtain,

0 ≤

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

≤ 1 (62)

0 ≤

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

≤ 1 (63)

And,

0 ≤

√√√√1−
k

∏
i=1

(
1− (µY

i )
2
) 1−ωi

k−1

≤ 1 (64)

0 ≤
k

∏
i=1

((
νY

i
) 1−ωi

k−1

)
≤ 1 (65)

Therefore, 
 ∏

1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

+



√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1



2

≤


 ∏

1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

+1−


 ∏

1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


2

= 1

(66)
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For the second case, x = k, we can easily prove that it is kept. Therefore, the aggregation result
produced by Definition 11 is still an IVPFN. Next, we shall deduce some desirable properties of the
IVPFWDHM operator. �

Property 10. (Idempotency.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
=
([

µZ, µY], [νZ, νY]) = b̃, and weight vector

meets ω = (ω1, ω2, · · ·ωk)
T , ωi ∈ [0, 1] and

k
∑

i=1
ωi = 1, then,

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
= b̃ (67)

Property 11. (Monotonicity.) Let b̃i =
([

µZ
ij

, µY
ij

]
,
[
νZ

ij
, νY

ij

])
and c̃i =

([
µZ

θj
, µY

θj

]
,
[
νZ

θj
, νY

θj

])
(i = 1, 2, · · · , k) be two sets of IVPFNs with weight vector being ω = (ω1, ω2, · · ·ωk)

T , ωi ∈ [0, 1],
k
∑

i=1
ωi = 1, If

(
µZ

ij

)2
+
(

µY
ij

)2
≤
(

µZ
θj

)2
+
(

µY
θj

)2
and

(
νZ

ij

)2
+
(

νY
ij

)2
≥
(

νZ
θj

)2
+
(

νY
θj

)2
, then,

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
≤ IVPFWDHM(x)

ω (c̃1, c̃2, · · · , c̃k) (68)

Property 12. (Boundedness.) Let b̃i = (
[
µZ

ij
, µY

ij

]
,
[
νZ

ij
, νY

ij

]
), b̃+ = (

[
µZ

maxij
, µY

maxij

]
,
[
νZ

minij
, νY

minij

]
) and

b̃+ = (
[
µZ

minij
, µY

minij

]
,
[
νZ

maxij
, νY

maxij

]
)(i = 1, 2, · · · , k) be a set of IVPFNs with weight vector being

ω = (ω1, w2, · · ·ωk)
T , ωi ∈ [0, 1],

k
∑

i=1
ωi = 1, because of Property 11, then,

b̃−i < IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
< b̃+i (69)

Example 7. Let b̃1 = ([0.3, 0.5], [0.2, 0.4]), b̃2 = ([0.4, 0.6], [0.6, 0.7]), b̃3 = ([0.5, 0.7], [0.2, 0.3]),
b̃4 = ([0.4, 0.8], [0.1, 0.2]) be four IVPFNs. the weighting vector of attributes be ω = {0.3, 0.2, 0.3, 0.2}.
Then, we use the proposed IVPFWDHM operator to aggregate four IVPHNs, (suppose x = 2).

IVPFWDHM(2)
ω

(
b̃1, b̃2, b̃3, b̃4

)
=



 ∏
1≤i1<···<i2≤4


√√√√1−

(
2

∏
j=1

(
1− (µZ

ij
)

2
)) 1

2


(1−

2
∑

j=1
ωij

)


1

C2
4−1

,

 ∏
1≤i1<···<i2≤4


√√√√1−

(
2

∏
j=1

(
1− (µY

ij
)

2
)) 1

2


(1−

2
∑

j=1
ωij

)


1

C2
4−1


,



√√√√√√√√√1−

 ∏
1≤i1<···<i2≤4

1−

( 2
∏
j=1

νZ
ij

) 1
2
2

(1−
2
∑

j=1
ωij

)


1

C2
4−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<i2≤k

1−

( 2
∏
j=1

νY
ij

) 1
2
2

(1−
2
∑

j=1
ωij

)


1

C2
4−1
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=







(√
(1− (1− 0.32)× (1− 0.42))

1
2

)1−0.3−0.2

×
(√

(1− (1− 0.32)× (1− 0.52))
1
2

)1−0.3−0.3

×
(√

(1− (1− 0.32)× (1− 0.42))
1
2

)1−0.3−0.2

×
(√

(1− (1− 0.42)× (1− 0.52))
1
2

)1−0.2−0.3

×
(√

(1− (1− 0.42)× (1− 0.32))
1
2

)1−0.2−0.2

×
(√

(1− (1− 0.52)× (1− 0.42))
1
2

)1−0.3−0.2



1
3

,



(√
(1− (1− 0.52)× (1− 0.62))

1
2

)1−0.3−0.2

×
(√

(1− (1− 0.52)× (1− 0.72))
1
2

)1−0.3−0.3

×
(√

(1− (1− 0.52)× (1− 0.82))
1
2

)1−0.3−0.2

×
(√

(1− (1− 0.62)× (1− 0.72))
1
2

)1−0.2−0.3

×
(√

(1− (1− 0.62)× (1− 0.82))
1
2

)1−0.2−0.2

×
(√

(1− (1− 0.72)× (1− 0.82))
1
2

)1−0.3−0.2



1
3

,



,



√√√√1−
(

(1− 0.2× 0.6)1−0.3−0.2 × (1− 0.2× 0.2)1−0.3−0.3 × (1− 0.2× 0.1)1−0.3−0.2

×(1− 0.6× 0.2)1−0.2−0.3 × (1− 0.6× 0.1)1−0.2−0.2 × (1− 0.2× 0.1)1−0.3−0.2

) 1
3

,√√√√1−
(

(1− 0.4× 0.7)1−0.3−0.2 × (1− 0.4× 0.3)1−0.3−0.3 × (1− 0.4× 0.2)1−0.3−0.2

×(1− 0.7× 0.3)1−0.2−0.3 × (1− 0.7× 0.2)1−0.2−0.2 × (1− 0.3× 0.2)1−0.3−0.2

) 1
3

,


= ([0.7306, 0.9099], [0.2547, 0.3905])

Finally, we get IVPFWDHM(2)
ω

(
b̃1, b̃2, b̃3, b̃4

)
= ([0.7306, 0.9099], [0.2547, 0.3905]).

4. Models for MADM with IVPFNs

Based on the IVPFWHM and IVPFWDHM operators, in this section, we shall propose the
model for MADM with IVPFNs. Let E = {E1, E2, · · · , Em} be a discrete set of alternatives,
and D = {D1, D2, · · · , Dn} be the set of attributes, ω = (ω1, ω2, · · · , ωn) is the weight of the

attribute Dj(j = 1, 2, · · · , n), where ωj ∈ [0, 1],
n
∑

j=1
ωj = 1. Suppose that B̃i =

(
b̃ij

)
m×n

=([
µZ

ij , µY
ij

]
,
[
νZ

ij , νZ
ij

])
m×n

is the interval-valued Pythagorean fuzzy decision matrix, where
[
µZ

ij , µY
ij

]
indicates the degree that the alternative Ei satisfies the attribute Dj given by the decision maker,[

νZ
ij , νY

ij

]
depicts the degree that the alternative Ei doesn’t satisfy the attribute Dj given by the decision

maker,
[
µZ

ij , µY
ij

]
⊂ [0, 1],

[
νZ

ij , νY
ij

]
⊂ [0, 1],

(
µY

ij

)2
+
(

νY
ij

)2
≤ 1, i = 1, 2, · · · , m, j = 1, 2, · · · , n.

In the following, we use the IVPFWHM (IVPFWDHM) operator to solve the MADM problems
with IVPFNs.

Step 1. We use the IVPFNs given in matrix B̃, and the IVPFWHM operator,

IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)

=
⊕

1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

)(
x
⊗

j=1
b̃ij

) 1
x

Cx
k−1

=



√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

µY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1


,



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (νY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1




(1 ≤ x < k)

(70)

IVPFWHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

x
⊗

i=1
b̃

1−ωi
k−1

i =



[
k

∏
i=1

(
µZ

i
) 1−ωi

k−1 ,
k

∏
i=1

(
µY

i
) 1−ωi

k−1

]
,

√√√√1−
k

∏
i=1

(
1− (νZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (νY

i )
2
) 1−ωi

k−1




(x = k)

(71)
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Or

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

 ⊗
1≤i1<···<ix≤k

(
1−

x
∑

j=1
ωij

) x
⊕

j=1
ãij

x


1

Cx
k−1

=



 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µZ

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1

,

 ∏
1≤i1<···<ix≤k


√√√√1−

(
x

∏
j=1

(
1− (µY

ij
)

2
)) 1

x


(1−

x
∑

j=1
ωij

)


1
Cx

k−1


,



√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νZ
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1

,

√√√√√√√√√1−

 ∏
1≤i1<···<ix≤k

1−

( x
∏
j=1

νY
ij

) 1
x
2

(1−
x
∑

j=1
ωij

)


1
Cx

k−1




(1 ≤ x < k)

(72)

IVPFWDHM(x)
ω

(
b̃1, b̃2, · · · , b̃k

)
=

x
⊕

i=1
ã

1−ωi
k−1

i =




√√√√1−

k
∏
i=1

(
1− (µZ

i )
2
) 1−ωi

k−1

,

√√√√1−
k

∏
i=1

(
1− (µY

i )
2
) 1−ωi

k−1

,

[
k

∏
i=1

(
νZ

i
) 1−ωi

k−1 ,
k

∏
i=1

(
νY

i
) 1−ωi

k−1

]


(x = k)

(73)

To derive the b̃i(i = 1, 2, · · · , m) of the alternative Ei.

Step 2. Calculate the S
(

b̃i

)
and H

(
b̃i

)
(i = 1, 2, · · · , m) of the overall IVPFNs b̃i to rank all the

alternatives Ei(i = 1, 2, · · · , m).
Step 3. Rank all the alternatives Ei(i = 1, 2, · · · , m) and select the best one(s) in accordance with S

(
b̃i

)
and H

(
b̃i

)
(i = 1, 2, · · · , m).

Step 4. End.

5. Numerical Example and Comparative Analysis

5.1. Numerical Example

With the rapid development of economic globalization and the growing competitive enterprise
environment, the competition between modern enterprises has become the competition between
supply chain and supply chain. Owing to the diversity of the people’s consumption concept, the new
product life cycles are getting shorter, volatility of the demand market and those from external factors
drives enterprises to achieve effective supply chain integration and management, and strategic alliance
with other enterprises in order to enhance core competitiveness and resist external risk. The key
measure to achieving this goal is the supplier selection. Therefore, supplier selection has gained
great attention whether in supply chain management theory or in actual production management
problems. A company wants to select an air-conditioning and know there are four possible suppliers
as candidates Ei(i = 1, 2, 3, 4) to select. The experts select four attributes to assess the four possible
suppliers: (1) D1 the quality of product; (2) D2 the price of product; (3) D3 product life cycle; (4) D4

after-sale service. The weight vector of attributes is ω = (0.3, 0.2, 0, 1, 0.4)T , (suppose x = 2) as shown
in Table 1.

In the following, in order to select the best suppliers in supply chain management (SCM),
we utilize the IVPFHM, IVPFWHM, IVPFDHM, and IVPFWDHM operators to solve the MADM
problem with IVPFNs, which includes the following calculating steps:

Step 1. According to Table 1, aggregate all IVPFNs bij(i = 1, 2, 3, 4, j = 1, 2, · · · , n) by using the
IVPFHM, IVPFWHM, IVPFDHM, and IVPFWDHM operators to derive the overall IVPFNs
bij(i = 1, 2, 3, 4, j = 1, 2, · · · , n) of the alternative Ei. The aggregation results are shown in
Table 3, (suppose x = 2).
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Step 2. According to the results listed in Table 3, the score functions of the suppliers are shown in
Table 2.

Table 1. Decision matrix.

D1 D2 D3 D4

E1
([0.10,0.40]
[0.20,0.50])

([0.50,0.60]
[0.20,0.30])

([0.30,0.40]
[0.30,0.50])

([0.40,0.50]
[0.20,0.30])

E2
([0.50,0.60]
[0.10,0.30])

([0.50,0.60]
[0.10,0.30])

([0.50,0.70]
[0.20,0.30])

([0.60,0.70]
[0.40,0.60])

E3
([0.60,0.70]
[0.20,0.40])

([0.20,0.30]
[0.70,0.80])

([0.50,0.60]
[0.10,0.20])

([0.20,0.50]
[0.20,0.30])

E4
([0.30,0.70]
[0.20,0.30])

([0.30,0.70]
[0.10,0.20])

([0.20,0.50]
[0.40,0.60])

([0.50,0.80]
[0.30,0.70])

Table 2. The rank and score of the suppliers by using IVPFHM, IVPFWHM, IVPFDHM, and
IVPFWDHM operators.

E1 E2 E3 E4 Order

IVPFHM 0.5603 0.6654 0.5623 0.6033 E2 > E4 > E3 > E1
IVPFWHM 0.6436 0.7352 0.6514 0.6862 E2 > E4 > E3 > E1
IVPFDHM 0.4891 0.5980 0.5042 0.5428 E2 > E4 > E3 > E1

IVPFWDHM 0.3972 0.5155 0.4156 0.4470 E2 > E4 > E3 > E1

Table 3. The aggregation result of IVPFHM, IVPFWHM, IVPFDHM, and IVPFWDHM operators.

E1 E2 E3 E4

IVPFHM ([0.2428,0.6315]
[0.2261,0.4068])

([0.4490,0.7434]
[0.1259,0.2769])

([0.2655,0.6007]
[0.2310,0.3588])

([0.3201,0.6608]
[0.1788,0.3062])

IVPFWHM ([0.2421,0.8608]
[0.2317,0.4138])

([0.4599,0.9083]
[0.1318,0.2813])

([0.2765,0.8403]
[0.2317,0.3578])

([0.3056,0.8760]
[0.1726,0.2937])

IVPFDHM ([0.2598,0.4798]
[0.2237,0.5395])

([0.4566,0.5856]
[0.1225,0.3802])

([0.2790,0.4590]
[0.2168,0.4742])

([0.3315,0.5039]
[0.1687,0.4051])

IVPFWDHM ([0.2542,0.4787]
[0.2281,0.8080])

([0.4650,0.5997]
[0.1265,0.7055])

([0.2982,0.4644]
[0.2121,0.7729])

([0.3156,0.4967]
[0.1657,0.7286])

According to the result of the company order, we know that the best choice is supplier 2. We obtain
the same result by different aggregation, proving the effectiveness of result.

5.2. Influence of the Parameter on the Final Result

The aggregation method to extend IVPFS with HM has two advantages, one is that it can reduce
the bad effects of the unduly high and low assessments on the final result, the other is that it can capture
the interrelationship between IVPFNs. These aggregation operators have a parameter vector, which
makes the extended operator more flexible, causing a different vector to lead to different aggregation
results, scores, and ranking results. In order to illustrate the influence of the parameter vector x on the
ranking result, we discuss the influence with several parameter vectors. The results of which are given
in Tables 4 and 5.

We can see that the different parameters lead to different results and different ranking orders.
The more attributes we consider, the bigger the scores and the bigger the attribute value, the lower the
scores. Therefore, the parameter vector can be considered as the decision maker’s risk preference.
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Table 4. Ranking results by utilizing a different parameter vector x in the IVPFWHM operator.

(x = 1,2,3,4)
Scores

Order
E1 E2 E3 E4

x = 1 0.5259 0.6225 0.5475 0.5654 E2 > E4 > E3 > E1
x = 2 0.6436 0.7352 0.6514 0.6962 E2 > E4 > E3 > E1
x = 3 0.5115 0.6006 0.5170 0.5521 E2 > E4 > E3 > E1
x = 4 0.5079 0.6101 0.5144 0.5473 E2 > E4 > E3 > E1

Table 5. Ranking results by utilizing a different parameter vector x in the IVPFWDHM operator.

(x = 1,2,3,4)
Scores

Order
E1 E2 E3 E4

x = 1 0.5079 0.6101 0.5158 0.5473 E2 > E4 > E3 > E1
x = 2 0.3972 0.5155 0.4156 0.4470 E2 > E4 > E3 > E1
x = 3 0.5236 0.6226 0.5464 0.5620 E2 > E4 > E3 > E1
x = 4 0.5259 0.6244 0.5578 0.5661 E2 > E4 > E3 > E1

5.3. Comparative Analysis

Then, we compare the proposed method with the IVPFWA operator and IVPFWG operator
proposed by Garg [28].

Definition 12. ([28]). Suppose that B̃ =
(

b̃ij

)
m×n

=
([

µZ
ij , µY

ij

]
,
[
νZ

ij , νY
ij

])
m×n

be an IVPFN matrix,

ω = (ω1, ω2, · · · , ωn) be the weight of wj, 0 ≤ ωi ≤ 1,
n
∑

i=1
ωi = 1. Then,

b̃i = IVPFWAω

(
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)
=
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(
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(
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])
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(74)

b̃i = IVPFWGω

(
b̃i1, b̃i2, · · · , b̃in

)
=

n
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(
b̃ij

)ωj

=

([
n
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(
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n
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(
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,
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(
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ij
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i = 1, 2, · · · , m, j = 1, 2, · · · , n

(75)

By utilizing B̃ and the IVPFWA and IVPFWG operators, the aggregation results were derived and
are shown in Table 6.

Table 6. The aggregation results of green suppliers by the IVPFWA (IVPFWG) operators.

IVPFWA IVPFWG

E1 ([0.2939,0.4896], [0.2083,0.3680]) ([0.2232,0.4732], [0.2124,0.3971])
E2 ([0.4355,0.5500], [0.1072,0.2551]) ([0.4076,0.5181], [0.1142,0.2652])
E3 ([0.2518,0.4540], [0.2144,0.3478]) ([0.3192,0.4300], [0.2498,0.3751])
E4 ([0.3914,0.5291], [0.1663,0.3005]) ([0.3534,0.5144], [0.2139,0.3673])

According to Table 6, the score values were derived and are shown in Table 7.
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Table 7. The score functions of the suppliers.

IVPFWA IVPFWG

E1 0.5368 0.5180
E2 0.6039 0.5878
E3 0.5257 0.5074
E4 0.5788 0.5522

Following from Table 7, the order of the suppliers is given in Table 8.

Table 8. Order of the green suppliers.

Order

IVPFWA E2 > E4 > E1 > E3
IVPFWG E2 > E4 > E1 > E3

From above, we can observe that we consistently identify the same best suppliers, showing
the effectiveness of our approaches. However, the existing aggregation operators, such as IVPFWA
operator and IVPFWG operator, don’t consider interrelationship among arguments being aggregated,
and thus can’t eliminate the influence of unfair arguments. Our proposed IVPFWHM and
IVPFWDHM operators consider the information concerning the interrelationship among arguments
being aggregated.

In a word, we have verified the effectiveness of the proposed method and shown the advantages
of solving the MADM problem with incomplete and indeterminate information.

6. Conclusions

IVPFNs can easily describe incomplete and indeterminate information by degrees of membership
and non-membership, and the HM operator and dual HM (DMM) operators are good tools to deal with
multiple attribute decision making (MADM) problems because they can capture the interrelationship
among the multi-input arguments. Motivated by the studies regarding the HM operator and dual HM
operator, in this paper, we proposed some new HM and DHM operators to cope with MADM with
IVPFNs, including the IVPFHM operator, IVPFWHM operator, IVPFDHM operator, and IVPFWDHM
operator. Moreover, these proposed operators are utilized to solve the MADM problems with IVPFNs.
Finally, we used an illustrative example for supplier selections in SCM to show the feasibility and
validity of the proposed operators by comparison with the other existing methods. In subsequent
studies, we shall extend the proposed operators to the different fields [56–72] as well as propose some
new aggregation operators under the uncertain environment [73–80]. On the other hand, we can
develop the potential applications of the proposed method to different domains [81–87].
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