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Abstract: By giving a counter-example, we point out a gap in the paper by Karapinar (Adv. Theory
Nonlinear Anal. Its Appl. 2018, 2, 85–87) where the given fixed point may be not unique and we
present the corrected version. We also state the celebrated fixed point theorem of Reich–Rus–Ćirić
in the framework of complete partial metric spaces, by taking the interpolation theory into account.
Some examples are provided where the main result in papers by Reich (Can. Math. Bull. 1971, 14,
121–124; Boll. Unione Mat. Ital. 1972, 4, 26–42 and Boll. Unione Mat. Ital. 1971, 4, 1–11.) is not applicable.
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1. Introduction and Preliminaries

In 1922, Banach laid the foundations of metric fixed point theory by proposing his prominent
fixed point result. To put a finer point on it, Banach observed that if a self-mapping T, defined on
complete metric space (X, ρ), fulfills the contraction inequality, i.e., there exists a constant k ∈ [0, 1)
such that

ρ(Tξ, Tη) ≤ kρ(ξ, η) for all ξ, η ∈ X, (1)

then it possesses a unique fixed point in X. In 1968, Kannan [1] proposed a new fixed point result.
He considered the following contraction type:

ρ (Tξ, Tη) ≤ λ [ρ(ξ, Tξ) + ρ(η, Tη)] for all ξ, η ∈ X,

where λ ∈ [0, 1
2 ). Very recently, in [2], the acclaimed theorem of Kannan was revisited by taking the

interpolation theory into account. For a metric space (X, ρ), the self-mapping T : X → X is said to be
an interpolative Kannan type contraction, if there are constants λ ∈ [0, 1) and α ∈ (0, 1) such that

ρ (Tξ, Tη) ≤ λ [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α , (2)

for all ξ, η ∈ X with ξ 6= Tξ. The main result in [2] via an interpolative Kannan type contraction is

Theorem 1 ([2]). In the framework of a complete metric space (X, ρ), if a mapping T : X → X forms an
interpolative Kannan type contraction, then it possesses a unique fixed point in X.
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Note that when the inequality (2) holds for all ξ, η ∈ X, and if T possesses a fixed point (say v ∈ X),
then Tξ = v for each ξ ∈ X, that is, T is a constant mapping, which is the trivial case, so the
fixed point of T is unique. The appropriate condition on ξ and η in (2) should be ξ, η ∈ X\Fix(T),
where Fix(T) = {u ∈ X, Tu = u}. In this case, the author [2] ensured the existence of a unique
fixed point. There is a gap, that is, such fixed point is not necessarily unique. The following example
illustrates our concern.

Example 1. Set X = {0, 1, 2, 3} that is endowed with the Euclidean metric ρ(ξ, η) = |ξ − η|. Consider

T0 = 0, T1 = 1, T2 = T3 = 1.

Let ξ, η ∈ X\Fix(T). Then, (ξ, η) ∈ {(2, 3), (3, 2), (2, 2), (3, 3)}. Thus, (2) is satisfied for all λ ∈ [0, 1) and
α ∈ (0, 1). It is evident that both 0 and 1 are fixed points for the self-mapping T.

As a correction of Theorem 1, we should state

Theorem 2. Let (X, ρ) be a complete metric space. A self-mapping T : X → X possesses a fixed point in X,
if there exist constants λ ∈ [0, 1) and α ∈ (0, 1) such that

ρ (Tξ, Tη) ≤ λ [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α

for all ξ, η ∈ X\Fix(T).

The following theorem was proved by Reich, Rus and Ćirić [3–7] independently to combine and
improve both Banach and Kannan fixed point theorems.

Theorem 3. In the framework of a complete metric space (X, ρ), if T : X → X forms a Reich–Rus–Ćirić
contraction mapping, i.e.,

ρ (Tξ, Tη) ≤ λ [ρ(ξ, η) + ρ(ξ, Tξ) + ρ(η, Tη)] , (3)

for all ξ, η ∈ X, where λ ∈
[
0, 1

3

)
, then T possesses a unique fixed point.

Notice that several variations of Reich contractions (3) can be stated. We may state the following:

ρ (Tξ, Tη) ≤ aρ(ξ, η) + bρ(ξ, Tξ) + cρ(η, Tη),

where a, b, c ∈ (0, ∞) such that 0 ≤ a + b + c < 1.
In this paper, we shall investigate the validity of the interpolation approach for Reich contractions

in the context of partial metric spaces that was introduced by Matthews [8].

Definition 1. Let X be a non-empty set. A function p : X × X → [0, ∞) is said to be a partial metric, if the
following conditions are fulfilled for each ξ, η, ζ ∈ X,

(P1) ξ = η ⇔ p(ξ, ξ) = p(η, η) = p(ξ, η);
(P2) p(ξ, ξ) ≤ p(ξ, η);
(P3) p(ξ, η) = p(η, ξ);
(P4) p(ξ, η) ≤ p(ξ, ζ) + p(ζ, η)− p(ζ, ζ).

(4)

In this case, (X, p) is said to be a partial metric space.



Mathematics 2018, 6, 256 3 of 7

The function ρp : X× X → [0, ∞) defined as

ρp(ξ, η) = 2p(ξ, η)− p(ξ, ξ)− p(η, η) (5)

is a standard metric on X. It is natural to define the basic topological concepts, in particular, convergence of
a sequence, fundamental (Cauchy) sequence criteria, continuity of the mappings, and completeness of
the topological space in the framework of partial metric spaces; see, e.g., [8–18].

Definition 2. In the framework of a partial metric space (X, p), we say that

(i) A sequence {ξn} converges to the limit ξ if p(ξ, ξ) = lim
n→∞

p(ξ, ξn);

(ii) A sequence {ξn} is fundamental or Cauchy if lim
n,m→∞

p(ξn, ξm) exists and is finite;

(iii) A partial metric space (X, p) is complete if each fundamental sequence {ξn} converges to a point ξ ∈ X
such that p(ξ, ξ) = lim

n,m→∞
p(ξn, ξm);

(iv) A mapping F : X → X is continuous at a point ξ0 ∈ X if for each ε > 0, there exists δ > 0 such that
F(Bp(ξ0, δ)) ⊆ BP(Fξ0, ε).

For what follows, we shall recall the following lemma that can be derived easily (see [8]).

Lemma 1. Let p be a partial metric on a non-empty set X and ρp be the corresponding standard metric space
on the same set X.

(a) A sequence {ξn} is fundamental in the framework of a partial metric (X, p) if and only if it is a fundamental
sequence in the setting of the corresponding standard metric space (X, ρp).

(b) A partial metric space (X, p) is complete if and only if the corresponding standard metric space (X, ρp) is
complete. Moreover,

lim
n→∞

ρp(ξ, ξn) = 0⇔ p(ξ, ξ) = lim
n→∞

p(ξ, ξn) = lim
n,m→∞

p(ξn, ξm). (6)

(c) If ξn → ζ as n→ ∞ in a partial metric space (X, p) with p(ζ, ζ) = 0, then we have

lim
n→∞

p(ξn, η) = p(ζ, η) for every η ∈ X.

In this paper, we initiate the notion of interpolative Reich–Rus–Ćirić type contractions on partial
metric spaces. We also present two examples illustrating our approach.

2. Main Results

We start this section by introducing the notion of interpolative Reich–Rus–Ćirić type contractions.

Definition 3. In the framework of a partial metric space (X, p), a mapping T : X → X is called an interpolative
Reich–Rus–Ćirić type contraction, if there are constants λ ∈ [0, 1) and α, β ∈ (0, 1) such that

p (Tξ, Tη) ≤ λ [p (ξ, η)]β · [p (ξ, Tξ)]α · [p (η, Tη)]1−α−β (7)

for all ξ, η ∈ X\Fix(T),

Theorem 4. In the framework of a partial metric space (X, p), if T : X → X is an interpolative Reich–Rus–Ćirić
type contraction, then T has a fixed point in X.

Proof. We take an arbitrary point ξ0 ∈ (X, p) and build an iterative sequence {ξn} by ξn = Tn(ξ0) for
each positive integer n. If there exists n0 such that ξn0 = ξn0+1, then ξn0 is a fixed point of T. The proof
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is completed. Henceforwards, assume that ξn 6= ξn+1 for each n ≥ 0. By substituting the values ξ = ξn

and η = ξn−1 in (7), we find that

p (ξn+1, ξn) = p (Tξn, Tξn−1) ≤ λ [p (ξn, ξn−1)]
β [p (ξn, Tξn)]

α · [p (ξn−1, Tξn−1)]
1−α−β

= λ [p (ξn, ξn−1)]
β · [p (ξn, ξn+1)]

α · [p (ξn−1, ξn)]
1−α−β

= λ [p (ξn−1, ξn)]
1−α · [p (ξn, ξn+1)]

α .

(8)

By a calculation, we derive

[p (ξn, ξn+1)]
1−α ≤ λ [p (ξn−1, ξn)]

1−α (9)

from the inequality (8). We conclude that {p (ξn−1, ξn)} is a non-increasing sequence with non-negative
terms. Thus, there is a nonnegative constant ` such that lim

n→∞
p (ξn−1, ξn) = `. Note that ` ≥ 0. Indeed,

from (9), we deduce that

p (ξn, ξn+1) ≤ λp (ξn−1, ξn) ≤ λn p (ξ0, ξ1) . (10)

Regarding λ < 1, and by taking n→ ∞ in the inequality (10), we deduce that ` = 0.
For what follows, we shall prove that {ξn} is a fundamental (Cauchy) sequence by

employing standard tools. More precisely, starting with the triangle inequality, we shall get the
following estimation:

p (ξn, ξn+r) ≤ p(ξn, ξn+1) + · · ·+ p(ξn+r−1, ξn+r)

≤ λn p (ξ0, ξ1) + · · ·+ λn+r−1 p (ξ0, ξ1)

≤ λn

1− λ
p (ξ0, ξ1) .

(11)

Letting n→ ∞ in the inequality (11), we ascertain that {ξn} is a fundamental sequence.
Hence, lim

n,m→∞
p(ξn, ξm) = 0, that is, {ξn} is a fundamental sequence in (X, p). By Lemma 1,

{ξn} is also Cauchy in (X, ρp). More particularly, since (X, p) is complete, (X, ρp) is also complete.
Hence, there exists ξ ∈ X such that

p(ξ, ξ) = lim
n→∞

p(ξ, ξn) = lim
n,m→∞

p(ξn, ξm) = 0, (12)

which implies that
lim

n→∞
ρp(ξ, ξn) = 0. (13)

As a next step, we make evident that the limit ξ of the iterative sequence {ξn} is a fixed point
of the given mapping T. Assume that ξ 6= Tξ, so p(ξ, Tξ) > 0. Recall that xn 6= Txn for each n ≥ 0.
By letting ξ = ξn and η = ξ in (7), we determine that

p (ξn+1, Tξ) =p (Tξn, Tξ)

≤λ [p (ξn, ξ)]β · [p (ξn, Tξn)]
α · [p (ξ, Tξ)]1−α−β

=λ [p (ξn, ξ)]β · [p (ξn, ξn+1)]
α · [p (ξ, Tξ)]1−α−β .

(14)

Letting n→ ∞ in the inequality (14), we find out p(ξ, Tξ) = 0, so ξ = Tξ, which is a contradiction.
Thus, Tξ = ξ.
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The following examples illustrate Theorem 4.

Example 2. Let X = {1, 3, 4, 7} be a set endowed with the classical partial metric ρ(ξ, η) = max{ξ, η},
that is,

ρ(ξ, η) 1 3 4 7
1 1 3 4 7
3 3 3 4 7
4 4 4 4 7
7 7 7 7 7

We define a self-mapping T on X by T :

(
1 3 4 7
1 3 1 3

)
. It is clear that T is not a Reich–Rus–Ćirić

contraction. Indeed, there is no λ ∈ [0, 1
3 ) such that the following inequality is fulfilled:

ρ(T1, T3) = ρ(1, 3) = 3 ≤ λ(ρ(1, 3) + ρ(T1, 1) + ρ(3, T3))

= λ(ρ(1, 3) + ρ(1, 1) + ρ(3, 3))

= 7λ.

On the other hand, choose α = 1
2 , β = 2

5 and λ = 7
10 . Let ξ, η ∈ X\Fix(T); then, (ξ, η) ∈

{(4, 7), (7, 4), (4, 4), (7, 7)}. Without loss of generality, we have
Case 1: ξ = η = 4. Here,

ρ (Tξ, Tη) = 1 ≤ 4λ = λ [ρ (ξ, y)]β · [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α−β .

Case 2: ξ = η = 7. we have

ρ (Tξ, Tη) = 3 ≤ 7λ = λ [ρ (ξ, y)]β · [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α−β .

Case 3: ξ = 4 and η = 7. Here,

ρ (Tξ, Tη) =3 ≤ λ71−α4α

=λ [ρ (ξ, y)]β · [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α−β .

Thus, the self-mapping T is an interpolative Reich–Rus–Ćirić type contraction and 1, 3 are the desired fixed
points. Note that, in the setting of interpolative Reich–Rus–Ćirić type contractions, the constant lies between 0
and 1, although in the classical version it is restricted by 1/3.

Example 3. Following Example 1, let X = {0, 1, 2, 3}. Consider

T0 = 0, T1 = 1, T2 = T3 = 1.

Consider p(x, y) = max{x, y}. Clearly, (7) holds for all ξ, η ∈ X\Fix(T) [by taking λ =
√

2
2 , β = 1

2
and α = 1

3 ]. Note that T has two fixed points, which are 0 and 1.
On the other hand, taking x = 0 and y = 1, we have, for any λ ∈ [0, 1

3 ),

p(Tx, Ty) = 1 > 2λ = λ[p(x, y) + p(x, Tx) + p(y, Ty)],

that is, Corollary 4 in [9] is not applicable.

The following is an immediate consequence of our main result.
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Corollary 1. In the framework of a standard metric space (X, ρ), if T : X → X is an interpolative
Reich–Rus–Ćirić type contraction, that is,

ρ (Tξ, Tη) ≤ λ [ρ (ξ, y)]β · [ρ (ξ, Tξ)]α · [ρ (η, Tη)]1−α−β (15)

for all ξ, η ∈ X\Fix(T), then T possesses a fixed point in X.

Proceeding as Theorem 4, we shall extend Theorem 2 to partial metric spaces.

Theorem 5. Let (X, p) be a complete partial metric space and T : X → X be such that

p (Tξ, Tη) ≤ λ · [p (ξ, Tξ)]α · [p (x, Tη)]1−α (16)

for all ξ, η ∈ X\Fix(T), where λ ∈ [0, 1) and α ∈ (0, 1). Then, T possesses a fixed point in X.

3. Conclusions

The main contribution of the paper to ensure the existence of fixed points for interpolative
Reich–Rus–Ćirić type contraction mappings on partial metric spaces. We also removed the gap in [2].
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