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Abstract: This paper uses the viscosity implicit midpoint rule to find common points of the fixed
point set of a nonexpansive mapping and the zero point set of an accretive operator in Banach space.
Under certain conditions, this paper obtains the strong convergence results of the proposed algorithm
and improves the relevant results of researchers in this field. In the end, this paper gives numerical
examples to support the main results.
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1. Introduction

Let E be a Banach Space and E* the dual space. | denotes the normalized duality mapping from
E to 2F" and is defined by

J(x) = {f € B i< x f>= |xI* = |fIP}, x€E.

Let C be a nonempty set of E. A mapping f : C — C is contractive, if | f(x) — f(y)|| < k||x —y||,
Vx,y € C, k € [0,1). Amapping S: C — C is nonexpansive, if ||S(x) — S(y)|| < ||x —yl, Vx,y € C.
Let F(S) denote the fixed point set of S.

A:C— E is called accretive operator, if there exists j(x —y) € J(x —y) such that
(Ax — Ay, j(x —y)) > 0, forany x,y € C. If R(I+rA) = E, Vr > 0, then A is called m-accretive
operator. ], : R(I+rA) — D(A) is called the resolvent of m-accretive operator A and defined by
I, = I+ rA)_l, Vr > 0. It is well known that J, is nonexpansive mapping and N(A) = F(J;),
where N(A) = {x € E: 0 € Ax} and F(J;) is the fixed point set of J,. So fixed point theory of
nonexpansive mappings has been applied to zero point problem of accretive operator, see [1-6] and
the references therein.

The implicit midpoint rule is one of the powerful methods for solving ordinary differential
equations; see [7-12] and the references therein. Moreover, viscosity iterative algorithms for finding
common fixed points for nonlinear operators and solutions of variational inequality problems have
been researched by many authors.
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In 2009, Chang et al. [1] proposed a viscosity iterative algorithm for accretive operator and
nonexpansive mapping;:
xg=x€C,

Yn = BuXu + (1 — Bu)STrxn,
Xpi1 = &nf (Xn) + (1 — &) yn, V1 > 0.

In 2010, Jung [13] proposed a composite iterative algorithm by viscosity method for finding the
zero point of an accretive operator:

xo=x€C,
Yn = Bnxn + (1= Bu)Jr,Xn,
Xn+1 = ‘an(xﬂ) + (1 - ‘Xn)]/n/vn > 0.

In 2016, Jung [14] extended the related results and proposed an iterative algorithm for finding
common point of zero of accretive operator and fixed point of nonexpansive mapping:

Xpt1 = Jrp (nf () + (1 — ) Sx), ¥ > 0,
Xp+1 = Jrp (@ f(xn) + (1 — ay)Sxn +e4),Vn > 0.

In 2017, Li [15] introduced a new iterative algorithm in a real reflexive Banach space E with the
uniformly Gateaux differentiable norm and C is a nonempty closed convex subset of E which has the
normal structure:

xg=x€C,
Yn = ﬁnS]rn (en + xn) + (1 - ,Bn)xn/
Xpi1 = &nT(xn) + (1 — ay)yn, ¥V > 0.

In 2015, Xu et al. [16] used viscosity iterative algorithm to implicit midpoint rule for nonexpansive
mapping in Hilbert space and proposed viscosity implicit midpoint rule: {x,} was generated by
the following

Xn+Xx
Xp4+1 = “nf(xn) + (1 - ‘Xn)T<nzn+l), n>0.

Under some conditions on {, }, they obtained that {x, } strongly converged to g € F(T), and g
was the solution of variational inequality ((I — f)q,x —g) >0, x € F(T).

In 2017, Luo et al. [17] extended the results of Xu et al. [16] from Hilbert space to uniformly
smooth Banach space: {x, } was generated by the following

n > 0.

Xn +Xx
Xpg1 = @ f(xn) + (1~ "‘n)T<nzn+l)

7

Under some conditions, they obtained that {x;,} strongly converged to g € F(T), and g was the
solution of variational inequality ((I — f)qg,j(x —g)) >0, x € F(T).

Motivated and inspired by the above papers, this paper uses the viscosity implicit midpoint rule
to find common points of the fixed point set of a nonexpansive mapping and the zero point set of
an accretive operator in Banach space and obtains the strong convergence results and improves the
previous results. Finally, this paper gives numerical examples to support the main results.

2. Preliminaries

Foralle € [0,2], x| = |ly| = 1, [|x—y|| > &, if there exists & > 0 such that 14 <15,
then E is called uniformly convex. A Banach space is uniformly convex if and only if there exists a
continuous strictly increasing convex function g : [0, +00) — [0, 4-00) with ¢(0) = 0 such that
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1A%+ (1= A)yl* < Allx)® + (1= A)ly]* = A1 = A)g(Ilx = yl)- 1)

Foreach x,y € U, U = {x € E: ||x|| =1}, if 1&% exists, then E is said to be have a
Gateaux differentiable norm. If for each y € U, the limit is attained uniformly for x € U, then E is
said to be have a uniformly Gateaux differentiable norm. It is well known that if E has uniformly
Gateaux differentiable norm, then | is single valued and norm-to-weak* uniformly continuous on each
bounded subset of E, see [18].

Let C be a closed convex subset of E. If for each bounded closed convex subset D of C which
contains at least two points, there exists one element x € D which is not a diametral point of D such
that diam(D) > sup{||x —y|| : y € D}, where diam(D) is the diameter of D, then C is said to have
normal structure.

We need the following lemmas for the proof of our main results.

Lemma1 [19]. For A, ju >0, x € E, so ax = [, (5x+ (1= §)Jax).
Lemma 2 [20]. Let {a,},{bn}, {cn} be three nonnegative real sequences satisfying

Ay < (1—ty)an +by+cy, Vn >0,

where {t,} C (0,1). If the following conditions are satisfied Y. t, = 00, by = o0(ty); Y cn < oo.
n=0 n=1
So lima, = 0.
n—00

Lemma 3 [4,21]. Let E be a real reflexive Banach space with the uniformly Gateaux differentiable norm and C
be nonempty closed convex subset of E which has normal structure. Let S : C — C be a nonexpansive mapping
with a fixed point and T : C — C be a fixed contraction with the coefficient T € (0,1). Let {xs 1} be an
sequence defined as follows

xsrp = tTxs + (1- t)SxS/T/t,

where t € (0,1). Then {x¢} converges strongly as t — 0 to a fixed point x* of S, which is the unique solution
in F(S) to the following variational inequality

(Tx* —x*,j(x* —p)) >0, Vp € F(S).

Lemma 4 [2]. In a Banach space E, there holds the inequality
2 2 -
[l +ylI* < " + 20y, j(x +y)), Vx,y € E,

where j(x +y) € J(x+y).
3. Main Results

Theorem 1. Let E be a reflexive and uniformly convex Banach space which has uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C — C be a contractive
mapping with k € [0,1), A be a m-accretive operator in E and S : C — C be a nonexpansive mapping with
F(S)NN(A) # @. Forany xo € C and Yn > 0, {x,, } is generated by

{ v = Bu () (U= B, (),

(2)
Xn4+1 = ‘anxn + (1 - ‘Xn)syn,

where {ay},{Pn} C (0,1) and {r,} C (0,1) satisfy the following conditions:
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(o)
(i) lima, = 0, ¥ ay, = o0, |ay —ay_1| = o(ay); (ii) E|,Bn—,5n_1| < oo; (ifi) limr, = 7,
n—soo =0 n—o0

§1|rn — 11| < co.
Then {x,} and {y,} converge strongly to g € F(S) N N(A), where q is the unique solution of the
variational inequality ((I — f)q,Jo(q — p)) < 0,Vp € F(S)NN(A).
Proof. The proof is split into eleven steps.
Step 1: Show that {x,} and {y, } are bounded.
Take p € F(S) N N(A), then we have

lyn =PIl < Bull 24525 — p + (1= B) T, (25522 ) = p
< Bl B pl| 4 (1 — By || Pt — p|
< Hlxw — pll + Slxass — pll,

and then we get

X1 =Pl < anllfxn —pll + (1 —an)||Syn — pl
< kan||xn — pll +anllfo—pll + (1 —an)llyn — pll
< kan||xn = pll + anll fp — pll + 52 0 — pll + 52 |x01 — pll

= (ke + 5 ) v = pll + @l fp = Pl + 52 1 = L

It follows that

1-—
ke + 72”1 20y

o~ < S — gl + el pl
20, (1—k 20, (1—k
= [1_ ”‘éan )]Hxn p| + 20, (1-k) Ifp—pll

T+ay T 1-k
SmaX{on— I, pr PH}

Then {x,} and {y,} are bounded. So {fx.}, {fyn}, {Sxu}, {Syn}, {Jr,xn} and {J;,yn} are

also bounded.
Step 2: Show that nlgn %21 — x| = 0.
From (2), we have
||xn+1 - xn” = Hlxnfxn + (1 - “n)syn - lxn—lfxn—l - (1 - ‘Xn—l)syn—lH

< anl|foxn = fu-a| + lan — ap—1| - [ fxn—1— Syn—1l + (1 — an)[|Syn — Syu—1l  (3)
< kapl|xn = xp—1|| 4 an — ap_1] - || fxn—1 = Syn—1ll + (1 — &n) lyn — Y1

From (2), we have

Iy =t = 1B (2550 + (1= By, (255251 ) = B (R
~( = Bl (2
< BB 4 |,y — By - [ T, 1(xn 12+xn)||
(1= B, (25520 ) =y, (52 .

4)
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From Lemma 1, we have

I (35352 ) = s (557 |
= W (5 () (1 ) (25) ) = s ()

< | (Bt ) (1 Tt ), (e ) — gt o
= (150 (R ) o (1 5 ) (J (Rt ) - 2t

M (x,1+2xn+1) _ Xn+;n+1 |+ ‘1  ra

Tn
H]Vn (xn+;n+1) o X11+2xn+1 H

| /\

Tn— 1||Xn+1 Xn— 1H 4 ‘1 fn 1 .||xn+1;xn—1 ”

— ||Xn+1 Xn— 1H 4 ‘1 Vn 1

Put (4) and (5) into (3), we get

tnsn =l < K00 = a4 ot — o = Sy [ (1= ) 22225722
(0= ) B = B ()|
+(1 =) (1~ Bn)|1 '||%—Irn(%)ll
< kan || xn — xp1] + 1_2a" %1 — xul| + 1_2“" [xn — x| + |an — ay—1|My
[ @) By~ Bucal + (1 - )1~ B2~ 22|

- (k(xn = an>”x”7x" 1||+1 aonn*xn 1||+‘“n*0¢n—1|M1

n-1
'n

(= w0 [Ba = o] + (1= ) (1= )1 = =1 || M.
It follows that
s = all < S s — )+ 2priectl g
+z(17an)\/3n—ﬁn71\+1zi1a;an)<lfﬁn) 1 M,
= [1- 2400, — x| + 2yl
+2(1—an)Iﬁn—ﬁn71|+12izan)(1—l3n) M,,

where M1 = max||fx,_1 — Sy,_1]| and M = maxnm = Jn (Xﬁ#> I

Take t,, = zai’frl“_nk), then £, > a, (1 — k). From Z Ky = 00,80 Y t,; = oo.

n=0 n=0
Take b, = %Ml,then by — % From |ay — &, 1| = o(an), s0 by = o(ty).
2(1=atn) | B —Bu—1|+2(1—an) (1) [ 1- 2 yn .
Take ¢, = ! o, M,.  From 11m Ny =T, then ¢, <

2M2(|ﬁn Bn-1| + ‘r" = 1|)(Ve>0) From Z |Bn — Bu—1] < coand Z|rn—rn 1| < 00,50 Z cn <
n—=

Q.

From Lemma 2, we get lim ||x,, 11 — x| = 0.
n—oo

Step 3: Show that nh_r}rolo||x,1 — Jr,Xn|l = 0.
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Because | - || is convex function and (1), so we have

Purt = pIP < aallforn — pl? + (1= ) |Syu — pIP

< “anxn - PHZ + (1 - "‘n)Hyn - PHZ

<l f = plP+ (U= ) [Ball =55t — plP 4 (1 ), (Bt )
—pa(1 = Bu)g (12552 — g, (245221

< ] forn = pI? + (1 = )| 2t — p|®
—(1 = wa)Bu(1 — pu)g (125525t — , (251 ) )

< allfrn = pl* + 52 2 — plP + 52 |2 — p
—(1 = wa)Ba(1 = Bu)g (112525 — , (25522 ) ).

It follows that

2 1 2, 2 2
[xp41 —plI” < 1+§: [xn = plI” + 1f§,,”fxn_PH

_ 20 “'1)ﬁn(1*/3n)g(|| xn+2xn+1 — T (xn+2xn+1 ) ”)

T+ay,

< lxn = pII* + 2|l fxu — pl®
2(1*1’611)[371(1*/371) ( Xn+Xpi1 XntXp41
- g(l12test — g, (2t ) ),

1+ay,

Then we have

2(1—way) By (1—By ntTXp nTXp n
(ool g (| 2tost — (25t ) ) — 2| fxn —

2 2
< len =plI" = llxnea = plI™

14wy, — 1+4ay,
boundedness of {fx,}, we get hmg(” Intiwid _ (%) ||) =0.

If (l an)lgn(l ,Bn (HXnJr;nJrl _]rn(xn+xn+1)||>> 20y ||fxn _ p”Z’ 50

T+ay

If 2(1_"‘")*3”(1_[5")g(IlX”H”+1 —]rn(ixﬁf”“)||)< 24| fan — pII?, so from limw, = 0 and the

ngo{z(l—a,i)f;:l—ﬁn)g< LIS NE ]rn(%) H) 2 fx pnz}

2 2 2
< llxo = plI” = llxn1 = plI” < llxo — plI™.

mtgeet — gy, () |) - Al o — plP] < oo

Then g [2(1_“il)ﬁn(1—ﬁ71)g<
n=0

T+ay
So we get
. 2(1—“;1),371(1—,311) Xn + Xp41 xn+xn+1 20‘71 21
R (e u 3= pl?| =0,

and then hmg(HM — I (%) H) =0.

nJF n nt n
From the property of g, so we get lim | Intomtl T, (" > +1) | =o.
We also have

||x” _ ]ran|| S ||xn _ xn+§n+] || + || Xn+2xn+] _ Irn (Xn+;n+l ) || + ||]rn (%) — ]rnan

< sa = |+ || Bt — g, (Bgus )
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Then from step 2, we get nlgrolOHxn — JraXnl| = 0.

Step 4: Show that 1211 lyn — Sya|| = 0.
n—oo

ln = Syall < Bull 2555 — Syl + (1= ) [, (25522 ) = Sy
< ||x"+# _ SynH + (1 _ ,Bn)H]rn <X11+;n+1) _ Xn+;€n+1 H

Xn+xn+1) _ XptXpy1 H
2

< 1P — s ||+ nr — Syl + (1 - ﬁn)lUrn( )

xn+xn+1) _ XntXpy ||
5 .

Y1 = xns1ll + atall fn = Syall + (1= B i, (25
From steps 2 and 3, nlgrolo ®y = 0 and the boundedness of {fx,} and {Sy.}, we get
nli_{ro‘o”yn — Synl = 0.
Step 5: Show that nh_r)r010||xn —yall =0.
lxn =yl < llxn = Xnga | + X421 = Synll + [1Syn — yull
= llxn — xna | + anll fxn = Synll + 1Syn — yall.
From steps 2 and 4, we get nlgn |xn — ynl| = 0.
Step 6: Show that nlgn lyn — Jr,ynll = 0.
1yn = Jraynll < llyn = xall + X0 = JryXnll + [ JryXn = Jru Yl
< 20lyn = xnll + llxn = Jr, 2 l-
From steps 3 and 5, we get nlgn lyn — Jr,ynll = 0.
Step 7: Show that nlgn [ — Sxp|| = 0.
10 = Sxull - < llxn = yull + [lyn = Synll + [Syn — Sxal
< 2|xn = yull + lyn — Syul-
From steps 4 and 5, we get nlgn l|xn — Sxn|| = 0.

Step 8: Show that nlglgoHyn — Jrynl|| = 0.

lyn — Tyl < Nyn — Truynll + 1 Tryn — Jryall
= {1y = Jruyall + 1 (= + (1= 3 ) Joun ) = Jrwm

< Nlyn = Tl + |1 = | Wouin = il
From step 6 and nlgl(}orn =r, we get nh_r)roloHy,1 — Jrynll = 0.

Step 9: Show that lim ||x,, — Jyx,|| = 0.
n—oo
xn = Jrxnll < \1xn = ynull + lyn = Trynll + [ Jryn — Jral|
< 2llxn = yall + lyn = Jrynll-
From steps 5 and 8, we get nlglgoﬂxn — Jrxq|| = 0.

Step 10: Show that limsup(q — fgq, J(g — x,)) = 0.

n—o00
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Let {x¢} be defined by x; = tfx; + (1 — t)Sx;. From Lemma 3, we have that {x;} converges
strongly to q € Pr(s)nn(a)f9, which is also the unique solution of the variational inequality

(9—fa.,J(g—p)) <0,Vp € F(S)NN(A).
We have

Il — xn||2 = (1 —1£)(Sxt — Sxp + Sxy — X, J(x¢ — xn)) + t{(fxr — x¢ + x¢ — X, J (¢t — X))
< (1= t)]xr = xul” + (1= £))1S2n — xull - [0 = xull + £l — 20| > + £{fxe — 20, ] (x¢ — X))
= [lxe = xull> + (1 = £)[[Sxn — x| - 130 — x| + |20 — 2ul|® + {Foxe — 20, J (20 — x)).-

It follows that (fx; —x¢, J(xt —xp)) < %Han — Xu|| - ||xt — xp||. From step 7, we get
limsup(g — fg,J(q — x1)) = 0.
n—oo

Step 11: Show that nlgroloﬂxn —q| =0.

From Lemma 4, we have

(1- txn)ZIISyn - 4”2 + 20y (fxn —q,](Xn1—q))
(1= an)?llyn — qlI> + 2kenl|xn — ql| - 201 — g1l + 20 (f7 — 4, ] (X1 — 7))

2
[xn41 —4l” <
<

2(1 1 2
< (1= an)’ (3lxn = gl + Sl — qll) "+ 2kaallx = g1 - |1 ]
+20n(fq —q,](Xn41 —9))
1—ay 1—uny l “n
= (50 o — 1P 4+ (52) s — ql2 o+ O3 — gl s — gl
+2kan || xn — q| - ([ Xn+1 — g1l + 20 (fq — q, ] (Xn41 — 7))
2 2
= (5) o = gl + (5) s —al?
+{“ e +2ko<n] % =gl - %1 = qll + 200 (fg = 4, (ens1 — )
2
< (52) =l + (52) s — I
+{“ O k| (I = gl + s = ql12) + 280 (£ = 0, T (vns1 — ).

It follows that

1 — gl < |2cn — gl
ne1 17[( +%+m] o

+ 20y . -
1_{(1-%)2“1 w? }<f‘7 0, ] (X1 —q))

1—2<<1 (o) i, )
= 1 —_

2 20
———— g+ —/——— (a1 —a)).
1,<%+k%> ] lben = 4l 1,{M+ }<f‘1 q, ) (Xn41 — 1))

1 2(“ ) +ktx>
Take t, = —>————. From lim a,, = 0, we have
n—,oo

1— ( (an)” “”) +ktxn>

EURY
by > 1—2<(12‘X") +ern> =w,(2—2k—ay) > ay(2 —2k —¢)(Ve > 0).

(e} [ee]
From ) a; = oo, weget ) t, = oco.
n=0 n=0
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Take b, = W(fq q,](xn41 — q)), then we have
1- | 080

bl g, 22w

by 204(fq—q,](xn11—q))  2(fq—q,](xn41 —‘1)>.

From lim 0 oy = 0 and step 10, we get b, = o(t,).

Take ¢, = 0, then we get Z cy < 00,

From Lemma 2, we get | hm ||xn g|| = 0. This completes the proof. [

The results of Theorem 1 improve the related results in [13,14,16,17]. For example, this paper uses
the viscosity implicit midpoint rule to find common points of the fixed point set of a nonexpansive
mapping and the zero point set of an accretive operator and the results improve the related results
in [13,14]; If B, = 0, the results of Theorem 1 can obtain the related results in [16,17].

Corollary 1. Let E be a reflexive and uniformly convex Banach space which has uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C — C be a contractive
mapping with k € [0,1), A be a m-accretive operator in E and S : C — C be a nonexpansive mapping with
F(S)NN(A) # @. Forany xo € Cand Vn > 0, {x,} is generated by

{ yn = Bo (25 ) 4 (1= )i, (2520 +en,

Xn+1 = “nfxn + (1 - ’Xn)s]/n/
where {ay}, {Pn} C (0,1), {ex} C Eand {r,} C (0,1) satisfy the following conditions:

(i) hmzxn—O len—oo |y — ay—1] = o(an);
n=0

(if) Z |Bn = Bn—1| < oo;

(iii) 11mrn =, Z |tn — tn1] < 00;
n=1
() len|| = o(an).
Then {x,} and {y,} converge strongly to q € F(S) N N(A), where q is the unique solution of the
variational inequality ((I — f)q,Jo(q —p)) < 0,¥p € F(S)NN(A).

Proof. Assume
Wp = ,Bn (%) + (1 - ,Bn)]rn (%)z
Zpt1 = &nfzn + (1 — apn)Swy.

Then we have

lxn11 = zngall < kanllxn =z + (1 = an)|lyn — wnll

< Kt} — zall 4+ (1 — ) (| 25252 — 22051 4 e )

< (kw4 252 )l = 2+ 252 1 = 2ol + (1= ) el

It follows that

Koy + 15 2(1-
R R A = 1

A\

20, (1—k (1
= [1— 200 |y — 2| + 22 .
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T _ 2a,(1-k) o o, _
ake t, = =, thent, > 2y (1 —k). From Y} a, = oo, weget ) t, = oo.
" n=0 n=0

Take b, = zgl%oyﬂenﬂ,then %,11 = % From ||e,|| = o(ay), we get by, = o(ty).

[ee]
Take ¢, =0, thenwe get ) ¢, < 0.

n=0
From Lemma 2, we get nlgn Iy —zx|| = 0. From Theorem 1, we have {z,} and {w,}

converge strongly to g4 € F(S) N N(A), where g is the unique solution of the variational inequality
(I=£f)a,Jp(g—p)) < 0,¥p € F(S)NN(A). So {x,} and {y,} also converge strongly to g €
F(S) N N(A). This completes the proof. [J

The results of Corollary 1 improve the related results in [14,16,17].

Theorem 2. Let E be a reflexive and uniformly convex Banach space which has uniformly Gateaux differentiable
norm and C be a nonempty closed convex subset of E which has normal structure. Let f : C — C be a contractive
mapping with k € [0,1), A be a m-accretive operator in E and S : C — C be a nonexpansive mapping with
F(S)NN(A) # @. Forany xo € C and ¥n > 0, {x,, } is generated by

yn = ﬁn<%) + (1 — 1871)]711 (% +€n>,
Xn+1 = lxnfxn + (1 - lxn)s]/n/

©)

where {an},{Pn} C (0,1), {ex} C Eand {r,} C (0,1) satisfy the following conditions:

(0]
(i) lima, =0, ¥ ay =00, |ay —a, 1] = o(ay);
n—oo n=0

(i) 5 |Bu— Buor] < o0
n=1

[ee]
(iii) limry, =71, ¥ |rp—ry—1] < oo;
n—o0 n=1

. (e}
(iv) Y |len]| < oo
n=1

Then {x,} and {y,} converge strongly to q € F(S) N N(A), where q is the unique solution of the
variational inequality ((I — f)q,Jo(q —p)) <0,Vp € F(S)NN(A).
Proof. The proof is split into eleven steps.
Step 1: Show that {x,} and {y, } are bounded.

Take p € F(S) N N(A), then we have

lya =Pl < Ball =52 = pll + (1= Bl (255252 +e) = p
n+ n f’l+ n
< Bl = pll + (1= Ba) 12522 — pll + (1= Ba) [lenll
< $la = pll + 3lxws1 = pll + lleall,

and then we get
%1 =Pl < anllfxn = pll + 1 = an)l|Syn = pll

< ka5 = pll + anllfp = pll + (1= @)1y — ]
< (K + 152 ) I = pll + 35281 = pll + aall fp = pll + (1= ) e

It follows that
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2(1—ay)

20, (1—k) 2
s =PIl < |1 = 250 llxn = pll+ 2l fp = pll + 2w

20, (1—k) 20, (1K) || fp—
< [1- 200 jjx,, — pl| + 2B Ll 4 p)fey |

< max{|xo = pll, L2 + 2 e }.

Then {x,} and {y,} are bounded. So {fx.}, {fyn}, {Sxu}, {Syn}, {Jr,xn} and {J;,yn} are

also bounded.
Step 2: Show that nlgn %51 — x| = 0.

From (6), we have

||xn+1 - xn” = Hlxnfxn + (1 - “n)syn - lxn—lfxn—l - (1 - ‘xn—l)syn—lH
< an fxn = fon-all + lan — a1l - | fxn—1 = Syn—1ll + (1 — an) [|Syn — Syn—l  (7)
< kanl|xn — x|l + e — @] - | fxn—1 — Syn—1ll + (1 —an) lyn — yu-1l-

From (6), we have

Iy =yl < Bull2HZE | 4 B — By |- |2 — (2 e ) |

(8)
+(1 _ .B”)”]Vn (Xn+£€n+1 + en) _ ]7n71 (xn—]2+Xn + en—l) ||
From Lemma 1, we have
s (2255258 4 ) = Jry (252 401 ) |
il (”;nl (% + en ) + (1 - ";;1)]”1 (% +en)) —Jras (% + enfl) |
< H 7r;”1 <Xn+2xn+l +en> + (1 . 7n—1)]'rn (Xn+xn+1 + en) _ (xn—1+xn +en_1) H
)

_rnl

\ /\

T'n— 1||xn+1 Xn—1 +e,

g (B ) — (B2t 4y )|

+1- ”1wﬁﬂ¥ﬂ+%—%4n

L A -

A () = (B e )
Put (8) and (9) into (7), we get

[xnr1 = xnll < kanllxn — x| + [an — a1 |My 4 (1 — ) [| 2225721 |
+(1—an)|Bn — Bn-1|M3 + (1 —an) (1 — Bn)llen — en—1l|
+(1 =) (1= Ba) |1 — 2L My
< (k"‘n = a")Hxn
+(1—an)|Bn — Pu—1|Mz + (1 — “n)(l —Bn)llen —en—1l|

— Xl 4 |an — 1| My

+(1— ) (1= Ba) |1 — 22| My,
It follows that
2(1—k n—&p n
s =l = [1 = 2Ry — | + Ztppatlngy + 2itelig, — M
2(1—ay)(1—By 1 ) (1 n)|Tn—Tp—
2020 0f) (o, | 4 [y ) + 20ttt gy,

where
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Xnp+X Xn+ X Xn+Xx Xn+Xx
M; = max||”f"“ — T, (ﬂfnﬂ +en)||, My = max||J;, ("fnﬂ +€n> _ (%ﬂ“ +en> .

Take t, = zai’f“ k) ,then £, > &, (1 — k). From nzo &, = 00, SO H;O t, = oo.
Take b, = 2""%ﬁz*'Ml,then = % From |a, — ay—1| = 0(an), 50 by = 0(ty).
Take
_2(1—an) 2(1 - )(1 Bn) 2(1 —an) (1 = Bu)|rn — rn1|
%= a |Bn — Bn—1|Ms + T (lenll + llen—11)+ T My,

then ¢ < 2/ = Bu-1[Ms + 2 Jewll + flea1l) + WMW

From Z|[3n Bn_1| < oo, Z\|en\|<oo Jlim ry = r and Z|rn—rn 1] < o0, 80 ch<oo

n= n=1 n=1
From Lemma 2, we get hm ||xn+1 — x| = 0.
Step 3: Show that lijrl lxn — Jr, xn|| = 0.
n—oo
Because | - ||* is convex function and (1), so we have
2 2 2
%01 = plI" < anllfan = plI° + (1 = an)[[Syn = pl
< | frn = pl* + (1 — @)y — pII?
2

<t fan = pI* o+ (1~ )| 5 —
U= wn) (1= Bl (222 ) —pl
= anl fon = pI* + (1= ) [Bu | 532 = p|
F1= Bl (B ) + b (252 ey )) - F’ﬂ

2

2

< anllfxn — plI? + (1 — ) B 22t —
=) (1= Bl (25 4 ey — p) + (1, (2 1) = p) I
< tll fn — pIP + (1 — )| Bt — p?

(1= a) (1= )| 2t gy, —

B (17a,,%1*ﬁn)g<|l bt Lo g (% + en) ||>

< allfrn — pIP + (1 — )| Bt — p?

(1= ) (1= B) | 2t 4 —

— Qo) (Iop o (| ftinat 4, — J, (St 1, ) )

< tllfrn — I + (1 — ) B et — 2

(1= ) (1 o)l 1 ey, — p

(1= ) (1= o) (1252 — pl)” + 2(en, ] (252 40, — p)))

N (17a,,¥1—ﬁn)g(|| IR SR (H# + en> ||)

= all frn — Pl + (1 — )| 2t — 2

+2(1 = an) (1 — ﬁn)<en,](""+# +en— p))

_ (1—ana(1—ﬁn)g<” bl o g (H# + eﬂ) ||>

< | form — pI2 50— pI? + 5 21 — pl?

+2(1— @) (1= ) e, T (225222 + e — p))

_ (1—a,,£(1—5n)g(” bl g, (H# + en) ||)_
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It follows that

2 _1 2, 2 2, (1-a)(1 +
lxwsr —pI? < F2llxn — pI + 22511 fn — pIP + LS e ]| - | 255250 e —

a- a,%lfﬁn)g(uxﬁzx"“ +en —Jn, (xﬁ# +e”) ”)

2 20, 1 1—Bn nt+Xp
< [l — plI? + 22 | fr — pl|? + L8lBud g ) | 2t as g |

B (1ian%4(1,}gn)g(“ xn+2xn+1 +en—Jr, (% + en) ||)

Then we have

Aol g (15520 e — o (2320 e ) [) = 22 Lo — P

T+ay,
1 1 + 2 2
At Apo) g, | - | 222 40,y — p|| < [l — I = i1 — pII

1_n1_n nTin nTin n 2 1_n1_n
if Ctifibulg (2t oy — y, (53 e ) <l fon = pIP O e

o
|2t e, —p|l, so from lima, = 0, step 1 and ZOHenH < oo, we get
n=
lim g (1124552 + e — Jy, (255250 e, )| ) =

n—oo
1- 1— + 2 1 )(1
1f Gelfobulo(|mbtus e, — g, (2501 po )|} > 2 — plP+ U= ey -
12535+ en — |, s0

N

nzo[(l—ani(l—ﬁn)g( St Lo . (% +en> ’) — 2|y — P2 -
A0 g, | |21 4o, — pif] < 30 — pI? — [z — I < llxo — I
Then
ngo{(l—a%l—ﬁn)g( LIRE ER _]rn<% +en) D 20|, — |2
ot Cbod ey | - | 2232 + ¢ — pl| < oo,
So we get

lim [ UtfiPulg (|| ot g oy, (B850 e ) |) = 28 fn = I~

n—»00 I+an

1—ay)(1—PBy ntXy _
UotplQbol e, |- || 2502 e, — pl| | =0

. Xn+Xy Xn+Xp —
and then nh_r)rolog(H”f+1 +en—Jr, (% + en) ||> =

From the property of g, so we get nlgr.}oﬂ Il 4 gy — ., (% + en) | =o.
We also have

X0 = Trpxnll < |lxn — (”% + ey )H + || Bt g, — ]rn<% +en)||
i (255 + e ) =
< 2 — (25 ey )|+ 25 ey — J, (252 4y )|

< [t = xnsll + 2llenl] + 20520 + ey = Jr, (221 4 ey )|

o
Then from step 2 and Y ||ex|| < oo, we get lim ||x, — J;, x| = 0.
n=0 n—o0
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Step 4: Show that 1211 lyn — Sya|| = 0.
n—oo

lyn = Syall < Bull 255252 — Syl + (1= Ba) 1, (255252 + ) — Syl
<[22 — Syl + (1= Ba) leal|
(1= B, (25552 o) — (2520 ey )|
< | B — |+ 1 — Syl + (1= Bullen]
(1= B, (2552 e ) — (2520 ey )|
< Hlxn = a1l 4l fxn = Syl + (1= B) e
+(1 = Bu)llJr (%—Fen) - (% +€n)||.

o
From step 1, step 2, step 3, lima, = 0and Y |lex|| < oo, we get lim ||y, — Syx|| = 0.
n—00 =0 n—00
Step 5: Show that nlgn X — ynul = 0.
xn =yull - < llxn = Xng1ll + X1 = Syull + [1Syn — yall
= [lxn — xnga || + anll fxn = Synll + |Syn — ynll-
From step1, step 2, step 4 and ;}E{}o“” =0, we get nlglgonn —yul| =0.

Step 6: Show that nlglgoHyn — Jr,ynll = 0.

lyn = Traynll < llyn = xull + 120 = JrgXull + [ Xn = Jruynll
< 20|yn = xnll + llxn = Jr, xnl-
From steps 3 and 5, we get nlgr.}oﬂyn — Jr,ynll = 0.
Step 7: Show that nlgx;lonn — Sxp|| = 0.
lxn = Sxull < llxn = yull + [yn — Synll + [Syn — Sxu]|
< 2|xn = yull + lyn — Syall-
From steps 4 and 5, we get nlgrgoﬂxn — Sx,|| = 0.

Step 8: Show that nlgx;)”yn — Jrya|| = 0.

lyn = Jeynll < llyn = Jnayull + 1 Truyn — Jryal|
= llyn = Jruyull + ||]r(7;3/n + (1 - ﬁ)]rn]/n) = Jrynll

< Ny = Trayall + [1= | - Woyn = vl
From step 6 and r}ggcrn =r, we get nlgl(}OHyn — Jrynll = 0.

Step 9: Show that nlgn lxn — Jrxnl| = 0.

llxn = Trxnll - < llxn —yull + lyn = Trynll + 1 Jryn — Jrxnl|
< 2[|xn = yull + lyn — Jrynl-

From steps 5 and 8, we get nlgn | — Jrxn|| = O.

14 of 19
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Step 10: Show that limsup(q — fq,J (g — x»)) = 0.

n—o0

From Theorem 1, we have that {x;} converges strongly to q € Pr(s)n(a)fq, which is also the
unique solution of the variational inequality (g — fg,J(9 — p)) <0,Vp € F(S)NN(A).
We have

e — x> = (1= £)(Sxt — Sxy + Sxn — X, J(x — X)) + (fxr — x¢ 4+ ¢ — 2%, J (x4 — %))
< (=) |lxe — x>+ (1= £)|Sxn — x| - |3 — 20| + Hllxe — 20| >+ £{Fxe — 30, (61 — xn))
= [|xe — 21> + (1 = £) 1820 — x| - [lxe — 2| + £l 2r = 2ul|® + £ — 20, J (31 — x0))-

It follows that (fx; — x;, J(xt — x4)) < 12[Sxy — x4 - ||x¢ — x4 ||. From step 1 and step 7, we get
limsup(q — fq,](q — xn)) = 0.

n—oo

Step 11: Show that ,}5’;”"" —q| =0.
From Lemma 4, we have
(1= )2 1Sy — q1 + 2000 (f — 4, T(tns1 — )
(1= &)’ lyn = ql1* + 2kallxn = qll - X1 = qll + 200 (fg = 4, (xns1 — )
< (1= ) (Ml —qll + Ylixss —all + llewll)” + Zkealln — gl - s — gl
+200(fq —q, ] (Xns1—9))
= (% “") I =l + (52) s — g2+ (1 = )2l
5Py — gl nsr = qll + (1= )0 — g1l - e
+(1 = )1 = gl - llew ]l + 2kaullxn —qll - 041 ]
20 (fq = q, ] (Xns1 — 7))
< (52) M =l + (52) s —al®
+ [0 k] (llvn = gl + 11 = 1) + (1= wa)?eal
+(1 = ) leull (0 = qll + a1 — qll) + 20 (g — 4, ] (a1 — q)-

2
%1 =4

It follows that

(1—21171 )2+(1 an)? Tkay
1= () B2 ke,

+ ¥ 20ty — ,] x _
1— (17%)24,(1 )2 +ktxn <fq q ( n+1 q)>

2 2
%01 —4l” < 12 = 4]

1_ n n
e ;")ﬂ”e L (0 = g1 + 51 — g1l + lleal)
1- | (5 )+ 5 kay

172((1 ) +kan>
=1-————L | =gl
1_(7(1—§n) +kocn>

_ 2an B
= G L

l*n n
o Gewlllenl e — g+ s — gl + llenl])-
1,[%%
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172< (- “”> Tkay

Take t, = 1 <(1 an)?
— +kay

. From lim a,;, = 0, we have
n—,oo

EURY
ty > 12<(1(X”)+kzxn) =wa,(2—2k—ay) > a,(2—2k —¢)(Ve > 0).

2
From ) a, = co, we get Z t,;, = oo.
n=0
Take b, = qu q,](xy+1 — q)), then we have
1— | S5 +k

b _ 200(fq =, ] (Xne1 —q)) _ 20f7 =, ] (Xnt1 —q))

ty N 1_2[(1 ) _i_kan} N 2 —2k —ay

From Ji_r)r(}oocn = 0 and step 10, we get b, = o(t,).

N2
Take ¢ = — 8l (|, — gl| + [ — ]l + leul)), then
1— | " +kay,

20— wPle]
= T an@— 2k —ay) 0~ Al [ =gl =+ leall).

n

From k € (0,1) and o, € (0,1), we get a,(2 —2k —a,) > 0, and then ¢, <
2([lxn — gl + [[xn+1 — qll + llen ) llen]|- From Zollenll < oo, we get Zocn < oo,
n= n—
From Lemma 2, we get lim |xn — g|| = 0. This completes the proof. [J
n—oo
The results of Theorem 2 improve the related results in [15-17]. For example, the results of

Theorem 2 is can obtain the related results in [15-17]; the rate of convergence and computational
accuracy is better than their in [15-17].

4. Numerical Examples

We give four numerical examples to support the main results.
Example 1. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = £, S: R — R be
defined by S(x) = % and J,,x = "%, So F(T) = {0}. Let ay = 1, By = Land r, = 1 — 1, then they satisfy

the conditions of Theorem 1. {x,} is generated by (2). From Theorem 1, we can obtain {x,} converges strongly
to 0.

Next, we simplify the form of (2) and get

3— 9+ 912+ 3n° — 14n* N
3491 —9n2 —51n3 +6nt" "

Xn+1 = (10)

Next, we take x; = 1 into (10). Finally, we get the following numerical results in Figure 1.
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5 1016 1

5 q0l6 [ ]

0 10 20 30 40

—_

—_

(=}
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Figure 1. Numerical results.

Example 2. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = %, S: R — R be
defined by S(x) = % and J,,x = 5. So F(T) = {0}. Letay = L, Bu =L rp, =1—Lande, = nl—z,
then they satisfy the conditions of Theorem 2. {xy,} is generated by (6). From Theorem 2, we can obtain {x, }
converges strongly to 0.

Next, we simplify the form of (6) and get

N 2(n —1)*n* N
T T T 3 32 —17md L2t

(11)

Next, we take x; = 1 into (11). Finally, we get the following numerical results in Figure 2.

15 109F 1
10 1019F §

50 1018F ]

50 1018F ]

10 109F §

Figure 2. Numerical results.

Example 3. Let (-,-) : R® x R® — R be the inner product and defined by
(x,y) = X171 + x2y2 + X2Y3.

Let || - || : R® = R be the usual norm and defined by ||x|| = y/x3 + x3 + x3 for any x = (x1,x2, x3).

Forany x € R3, let f : R® — R be defined by f(x) = £, S: R®> — R3 be defined by S(x) = % and
Jr,x = 5. So F(T) = {0}. Let ay = L, By = Land r, =1 — 1, then they satisfy the conditions of Theorem
1. {xy} is generated by (2). From Theorem 1, we can obtain {x,} converges strongly to 0.
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Next, we simplify the form of (2) and get

o 379490 +3n° —l4nt
T 34 9n —9n2 — 51 fent

(12)

Next, we take x; = (1,2,3) into (12). Finally, we get the following numerical results in Figure 3.

1
2 1020} . IR
: . x;
0 '.! . xfl
2 1020 °
4 1020
0 10 20 30 40 50

Figure 3. Numerical results.

Example 4. Let {-,-) : R3 x R® — R be the inner product and defined by
(x,y) = x1y1 + x2y2 + X2¥3.

Let || - || : R® — R be the usual norm and defined by ||x|| = \/x3 + x3 4+ x3 for any x = (x1, %2, x3).

Forany x € R3, let f : R® — R3 be defined by f(x) = %, S: R®> — R3 be defined by S(x) = % and
Jr,x = % So F(T) = {0}. Let o, = %, Bn = %, rm=1-— % and e, = %, then they satisfy the conditions of
Theorem 2. {x,} is generated by (6). From Theorem 2, we can obtain {x, } converges strongly to 0.

Next, we simplify the form of (6) and get

M 2(n —1)*n* N
LT T T 3 — 302 —17m3 £ ot

(13)

Next, we take x; = (1,10,100) into (13). Finally, we get the following numerical results in Figure 4.

31
4 10°1} ] 1
L] xg
2 1031} . 1| ex
L] x;l
0 (]
d
311
4 103 | | - |
0 20 40 60 80

Figure 4. Numerical results.
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