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Abstract: The convergence order of numerous iterative methods is obtained using derivatives of a
higher order, although these derivatives are not involved in the methods. Therefore, these methods
cannot be used to solve equations with functions that do not have such high-order derivatives, since
their convergence is not guaranteed. The convergence in this paper is shown, relying only on the first
derivative. That is how we expand the applicability of some popular methods.
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1. Introduction

Let B1 and B2 be Banach spaces and Ω be a convex subset of B1. Further, suppose that L(B1, B2)

is the set of bounded linear operators from B1 into B2. In applied mathematics many problems can be
modeled in the form

F(x) = 0, (1)

wherein F: Ω ⊂ B1 → B2 is a Fréchet differentiable operator. Most of the methods for finding a
solution x∗ of Equation (1) are iterative, since closed form solutions can be found only in some special
cases (see [1,2]). In this paper, we study the local convergence of the method defined by

yn = xn − F′(xn)−1F(xn)

zn = yn −
(

13
4 I −Q(xn)(

7
2 I − 5

4 Q(xn))
)

F′(xn)−1F(yn)

xn+1 = zn −
(

7
2 I −Q(xn)(4I − 3

2 Q(xn))
)

F′(xn)−1F(zn)

(2)

where Q(xn) = F′(xn)−1F′(yn). Method (2) was studied in [3], when B1 = B2 = Rm, where m is a
positive integer. The method was compared favorably to existing higher-order methods.

The eighth-order convergence of Equation (2) was shown in [3] using Taylor expansions and
assumptions on F(i), i = 1, 2, ...., 8. Such assumptions restrict the applicability of this method, especially
since only the first derivative is used in the method. As a motivational example, define function F on
Ω = [− 5

2 , 2] and B1 = B2 = R, by

F(x) =

{
x3 log(π2x2) + x5sin 1

x , x 6= 0
0, x = 0

.
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We have that

F′(x) = 2 x2 − x3cos
( 1

x

)
+ 3 x2 log(π2x2) + 5 x4sin

( 1
x

)
F′′(x) =− 8 x2cos

( 1
x

)
+ 2 x(5 + 3 log(π2x2)) + x(20 x2 − 1)sin

( 1
x

)
and

F′′′(x) =
1
x

[
(1− 36 x2)cos

( 1
x

)
+ x
(

22 + 6 log(π2x2) + (60 x2 − 9)sin
( 1

x

))]
.

Notice that F′′′(x) is not bounded on Ω, so earlier results cannot be applied. In this work, our
goal is to weaken the assumptions considered in [3]. Consequently, we study the local convergence of
Method (2) using hypotheses on the first Fréchet-derivative only by taking advantage of the Lipschitz
continuity of the first Fréchet-derivative. There exist many studies which deal with the local and
semilocal convergence of iterative methods (see, for example, [2,4–16]). In particular, relevant work
can be found in [17] for the special case B1 = B2 = R.

The rest of the paper is structured as follows. In Section 2, the local convergence analysis is
studied. In the analysis, we also provide a radius of convergence, error bounds, and a uniqueness
result of Method (2). Some numerical examples are presented in Section 3. Concluding remarks are
given in Section 4.

2. Local Convergence Analysis

We shall introduce some scalar functions and parameters that appear in the local convergence of
Method (2). Let ϕ0: [0,+∞)→ [0,+∞) be an increasing and continuous function satisfying ϕ0(0) = 0.
Suppose that equation

ϕ0(t) = 1, (3)

has at least one positive solution. Denote by δ0 the smallest such solution. Let ϕ: [0, δ0)→ [0,+∞) and
ϕ1: [0, δ0)→ [0,+∞) be increasing and continuous functions with ϕ(0) = 0. Define functions ψ1 and
ψ̄1 on the interval [0, δ0) by

ψ1(t) =

∫ 1
0 ϕ((1− θ)t)dθ

1− ϕ0(t)

and
ψ̄1(t) = ψ1(t)− 1.

We have ψ̄1(0) = −1 and ψ̄1(t)→ ∞ as t→ δ−0 . The intermediate value theorem assures that the
equation ψ̄1(t) = 0 has at least one solution in (0, δ0). Denote by r1 the smallest such solution. Suppose
that the equation

ϕ0(ψ1(t)t) = 1, (4)

has at least one positive solution. Denote by δ1 the smallest such solution. Set δ2 = min{δ0, δ1}. Define
functions ψ2 and ψ̄2 on [0, δ2) by

ψ2(t) =
(∫ 1

0 ϕ((1− θ)ψ1(t)t)dθ

1− ϕ0(ψ1(t)t)
+

(ϕ0(ψ1(t)t) + ϕ0(t))
∫ 1

0 ϕ1(θψ1(t)t)dθ

(1− ϕ0(ψ1(t)t))(1− ϕ0(t))

+
1
4

[
9(ϕ0(ψ1(t)t) + ϕ0(t))

1− ϕ0(t)
+

5ϕ1(ψ1(t)t)(ϕ0(ψ1(t)t) + ϕ0(t))
(1− ϕ0(t))2

]∫ 1
0 ϕ1(θψ1(t)t)dθ

1− ϕ0(t)

)
ψ1(t)

and
ψ̄2(t) = ψ2(t)− 1.
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We obtain ψ̄2(0) = −1 and ψ̄2(t)→ ∞ as t→ δ−2 . Denote by r2 the smallest solution of Equation
ψ̄2(t) = 0 in (0, δ2). Suppose that equation

ϕ0(ψ2(t)t) = 1 (5)

has at least one positive solution. Denote by δ3 the smallest such solution. Set δ = min{δ2, δ3}. Define
functions ψ3 and ψ̄3 on the [0, δ) by

ψ3(t) =
(∫ 1

0 ϕ((1− θ)ψ2(t)t)dθ

1− ϕ0(ψ2(t)t)
+

(ϕ0(ψ2(t)t) + ϕ0(t))
∫ 1

0 ϕ1(θψ2(t)t)dθ

(1− ϕ0(ψ2(t)t))(1− ϕ0(t))

+
1
2

[
5(ϕ0(ψ2(t)t) + ϕ0(t))

1− ϕ0(t)
+

3ϕ1(ψ1(t)t)(ϕ0(ψ1(t)t) + ϕ0(t))
(1− ϕ0(t))2

]∫ 1
0 ϕ1(θψ2(t)t)dθ

1− ϕ0(t)

)
ψ2(t)

and
ψ̄3(t) = ψ3(t)− 1.

We obtain ψ̄3(0) = −1 and ψ̄3(t)→ ∞ as t→ $−. Denote by r3 the smallest solution of Equation
ψ̄3(t) = 0 in (0, δ). Define a radius of convergence r by

r = min{ri} i = 1, 2, 3, ....., (6)

it follows that for each t ∈ [0, r)
0 ≤ ϕ0(t) < 1, (7)

0 ≤ ϕ0(ψ1(t)t) < 1, (8)

0 ≤ ϕ0(ψ2(t)t) < 1 (9)

and
0 ≤ ψi(t) < 1. (10)

Denote by U(µ, a) the open ball in B1 with center µ ∈ B1 and of radius a > 0. Moreover, denote
by Ū(µ, a) the closure of U(µ, a).

The local convergence analysis of Method (2) uses the hypotheses (H) as follows:

(h1) F: Ω→ B2 is continuously differentiable operators in the sense of Frèchet and there exists x∗ ∈ Ω
such that F(x∗) = 0 and F′(x∗)−1 ∈ L(B2, B1).

(h2) There exists a function ϕ0: [0,+∞)→ [0,+∞) that is continuous and increasing with ϕ0(0) = 0
such that for each x ∈ Ω

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ϕ0(‖x− x∗‖)

and δ0 defined by Equation (3) exists. Set Ω0 = Ω ∩U(x∗, δ0).
(h3) There exist functions ϕ: [0, δ0) → [0, ∞) and ϕ1: [0, δ0) → [0, ∞) that are continuous and

increasing such that for each x, y ∈ Ω0

‖F′(x∗)−1(F′(y)− F′(x))‖ ≤ ϕ(‖y− x‖)

and
‖F′(x∗)−1F′(x)‖ ≤ ϕ1(‖x− x∗‖).

(h4) Ū(x∗, r) ⊆ Ω and δ1 and δ2 exist and are given by Equations (4) and (5), respectively, and r is
defined by Equation (6).
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(h5) There exists r∗ ≥ r such that ∫ 1

0
ϕ0(θr∗)dθ < 1.

Set Ω1 = Ω ∩ Ū(x∗, r∗).

In the sequel, we present local convergence analysis of Method (2) using the preceding notation
and the hypotheses (H).

Theorem 1. Suppose that the hypotheses (H) hold and we choose x0 ∈ U(x∗, r∗)− {x∗}. Then, sequence
{xn} starting at x0 and generated by Method (2) is well defined, remains in U(x∗, r) for every n = 0, 1, 2......,
and converges to x∗. Additionally, the following error bounds hold

‖yn − x∗‖ ≤ ψ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (11)

‖zn − x∗‖ ≤ ψ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (12)

and

‖xn+1 − x∗‖ ≤ ψ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (13)

where functions ψi are given previously and r is defined in Equation (6). Furthermore, the limit point x∗ is only
a solution of the equation F(x) = 0 in Ω1 given in (h5).

Proof. Estimates (11)–(13) shall be shown using mathematical induction. Let x ∈ U(x∗, r)− {x∗}.
By Equation (6), (h1) and (h2), we have in turn that

‖F′(x∗)−1(F′(x)− F′(x∗)
)
‖ ≤ ϕ0(‖x− x∗‖) < ϕ0(r) ≤ 1. (14)

Estimate (14) and the Banach Lemma on invertible operators [2] assure that F′(x)−1 ∈ L(B2, B1) and

‖F′(x)−1F′(x∗)‖ ≤
1

1− ϕ0(‖x− x∗‖)
. (15)

It also follows that, for x = x0, iterates y0, z0, and x1 are well defined by Method (2) for n = 0.
We obtain from the first substep of Method (2) for n = 0 and (h1) that

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0), (16)

so by Equations (6), (10) (for i = 1), (h3), (15), and (16), we obtain in turn that

‖y0 − x∗‖ ≤ ‖F′(x0)
−1F′(x∗)‖

∥∥∥ ∫ 1

0
F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0))(x0 − x∗)dθ

∥∥∥
≤
∫ 1

0 ϕ((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− ϕ0(‖x0 − x∗‖)

= ψ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(17)

which shows Equation (11) for n = 0 and y0 ∈ U(x∗, r). The second substep of the method can be
written as

z0 − x∗ = (y0 − x∗ − F′(y0)
−1F(y0)) +

(
F′(y0)

−1 − F′(x0)
−1)F(y0)

− 1
4
[
9(I −Q(x0))− 5Q(x0)(I −Q(x0))

]
Q(x0).

(18)
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Then, by Equations (6), (10) (for i = 2), (15) (for i = 2), (17), and (18), we obtain in turn that

‖z0 − x∗‖ ≤‖y0 − x∗ − F′(y0)
−1F(y0) + (F′(y0)

−1 − F′(x0)
−1)F(y0)

+
1
4
[9(I −Q(x0)) + 5Q(x0)(I −Q(x0))]Q(x0)‖

≤‖y0 − x∗ − F′(y0)
−1F(y0)‖+ ‖F′(y0)

−1F′(x∗)‖
[
‖F′(x∗)−1(F′(y0)− F′(x∗))‖

+ ‖F′(x∗)−1(F′(x0)− F′(x∗))‖
]
‖F′(x0)

−1F′(x∗)‖

+
1
4

[
9‖I −Q(x0)‖+ 5‖Q(x0)‖‖I −Q(x0)‖

]
‖Q(x0)‖

≤
[∫ 1

0 ϕ((1− θ)‖y0 − x∗‖)dθ‖y0 − x∗‖
1− ϕ0(‖y0 − x∗‖)

+
(ϕ0(‖y0 − x∗‖) + ϕ0(‖x0 − x∗‖))

∫ 1
0 ϕ1(θ‖y0 − x∗‖)dθ‖y0 − x∗‖

(1− ϕ0(‖y0 − x∗‖))(1− ϕ0(‖x0 − x∗‖))

]
+

1
4

[9(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))
1− ϕ0(‖x0 − x∗‖)

+
5ϕ1(‖y0 − x∗‖)(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

(1− ϕ0(‖x0 − x∗‖))2

]
×
∫ 1

0 ϕ1(θ‖y0 − x∗‖)dθ‖y0 − x∗‖
1− ϕ0(‖x0 − x∗‖)

≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖ < r,

(19)

which shows Equation (14) for n = 0 and z0 ∈ U(x∗, r), where we also used the definition of Q(x0)

and the estimates

‖Q(x0)‖‖I −Q(x0)‖ ≤‖F′(x0)
−1F′(x∗)‖‖F′(x∗)−1F′(y0)‖‖F′(x0)

−1F′(x∗)‖
×
[
‖F′(x∗)−1(F′(x0)− F′(x∗))‖+ ‖F′(x∗)−1(F′(y0)− F′(x∗))‖

]
.

Using the third substep of the method for n = 0, we can write

x1 − x∗ = (z0 − x∗ − F′(z0)
−1F(z0)) + (F′(z0)

−1 − F′(x0)
−1)F(z0)

−
[5

2
I −Q(x0)(4I − 3

2
Q(x0))

]
F′(x0)

−1F(z0)

= (z0 − x∗ − F′(z0)
−1F(z0)) + F′(z0)

−1
[
(F′(x0)− F′(x∗)) + (F′(x∗)− F′(z0))

]
F(z0)

− 1
2
[
5(I −Q(x0))− 3Q(x0)(I −Q(x0))

]
F′(x0)

−1F(z0).

(20)

Then, using Equations (6), (10) (for i = 3), (15) (for x = z0), (17), (19), and (20), we have in turn as
in Equation (19) that

‖x1 − x∗‖ ≤
(∫ 1

0 ϕ((1− θ)‖z0 − x∗‖)dθ

1− ϕ0(‖z0 − x∗‖)
+

(ϕ0(‖z0 − x∗‖) + ϕ0(‖x0 − x∗‖))
∫ 1

0 ϕ1(θ‖z0 − x∗‖)dθ

(1− ϕ0(‖z0 − x∗‖))(1− ϕ0(‖x0 − x∗‖))

+
1
2

[
5(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

1− ϕ0(‖x0 − x∗‖)
+

3ϕ1(‖y0 − x∗‖)(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))
(1− ϕ0(‖x0 − x∗‖))2

]
×
∫ 1

0 ϕ1(θ‖z0 − x∗‖)dθ

1− ϕ0(‖x0 − x∗‖)

)
‖z0 − x∗‖

≤ ψ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(21)

which shows Equation (2) for n = 0 and x1 ∈ U(x∗, r). The induction for Equations (11)–(13) is finished,
by simply replacing x0, y0, z0 and x1 by xm, ym, zm and xm+1 in the preceding estimates. Then, using
the estimate

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ < r (22)
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where c = ψ3(‖x0 − x∗‖) ∈ [0, 1), we deduce that limm→∞xm = x∗ and xm+1 ∈ U(x∗, r). Finally, in
order to show the uniqueness part, let y∗ ∈ Ω1 with F(y∗) = 0. Define G =

∫ 1
0 F′(x∗ + θ(y∗ − x∗))dθ.

Then, using (h2) and (h5) we obtain in turn that

‖F′(x∗)−1(G− F′(x∗))‖ ≤
∫ 1

0
ϕ0(θ‖x∗ − y∗‖)dθ

≤
∫ 1

0
ϕ0(θr)dθ < 1,

(23)

so G−1 ∈ L(B2, B1) by the identity

0 = F(y∗)− F(x∗) = G(y∗ − x∗). (24)

Hence, we conclude by Equation (24) that x∗ = y∗.

3. Numerical Results

Example 1. Consider the motivational example as given in the introduction of the paper. Note that x∗ = 1
π is

zero of this function. By conditions (h1)− (h3), we can choose ϕ0(t) = Lt, ϕ(t) = Lt, and ϕ1(t) = L
2 , where

L = 2
2π+1 (80 + 16π + (11 + 12 log 2)π2). Using the definition, we obtain the parameter values as

r1 = 7.5648× 10−3, r2 = 2.9838× 10−4, r3 = 7.0615× 10−5 and r = 7.0615× 10−5.

Example 2. Let X = Y = R3, Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on Ω for w = (x, y, z)T by

F(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is given by

F′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Then, we have by conditions (h1)− (h3),

ϕ0(t) = (e− 1)t, ϕ(t) = e
1

e−1 t, ϕ1(t) = e
1

e−1 .

Using the definition of the radius of Equation (6), the parameter values are given as

r1 = 0.382692, r2 = 0.146424, r3 = 0.0971542 and r = 0.0971542.

Example 3. Consider function F defined on Ω = (−∞,+∞) by

F(x) = sin x.

Then, as in the previous examples, we have the following for x∗ = 0:

ϕ0(t) = t, ϕ(t) = t, ϕ1(t) = 1.

The parameter values are given as

r1 = 0.666667, r2 = 0.321702, r3 = 0.238606 and r = 0.238606.
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Example 4. Let B1 = B2 = C[0, 1] be the space of continuous functions defined on [0, 1] and equipped with
the max norm. Let Ω = Ū(0, 1). Define function F on Ω by

F(ϕ)(x) = ϕ(x)− 10
∫ 1

0
xθϕ(θ)3dθ.

We have that

F′(ϕ(ξ))(x) = ξ(x)− 30
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Similarly, to the previous examples, we get that x∗ = 0, ϕ0(t) = 15t, ϕ(t) = 30t, ϕ1(t) = 30.
Then, we obtain

r1 = 3.33333× 10−2, r2 = 1.78413× 10−3, r3 = 5.36379× 10−4 and r = 5.36379× 10−4.

4. Conclusions

In the forgoing study, we have studied the local convergence of an efficient eighth-order method
by assuming conditions only on the first derivative of the operator. The iterative scheme does not
use second or higher-order derivative of the considered function. However, in an earlier study of
convergence, the hypotheses used were based on Taylor series expansions reaching up to the eighth-
or higher-order derivatives of function, although the iterative scheme uses first-order derivative.
These conditions restrict the usage of the iterative scheme. We have extended the suitability of the
method by considering suppositions only on the first-order derivative. The local convergence we have
studied is also important in the sense that it provides estimates on the radius of convergence and
the error bounds of the solution. Such estimates are not provided in the procedures that use Taylor
expansions of higher derivatives, which may not exist or may be very expensive to compute. We have
also verified the theoretical results so derived on some numerical problems.
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12. Chun, C.; Stănică, P.; Neta, B. Third-order family of methods in Banach spaces. Comput. Math. Appl. 2011,
61, 1665–1675. [CrossRef]

13. Ezquerro, J.A.; Hernández, M.A. Recurrence relation for Chebyshev-type methods. Appl. Math. Optim. 2000,
41, 227–236. [CrossRef]

14. Gutiérrez, J.M.; Magreñán, A.A.; Romero, N. On the semilocal convergence of Newton-Kantrovich method
under center-Lipschitz conditions. Appl. Math. Comput. 2013, 221, 79–88.

15. Jaiswal, J.P. Semilocal convergence of an eighth-order method in Banach spaces and its computational
efficiency. Numer. Algorithms 2016, 71, 933–951. [CrossRef]

16. Ren, H.; Wu, Q. Convergence ball and error analysis of a family of iterative methods with cubic convergence.
Appl. Math. Comput. 2009, 209, 369–378. [CrossRef]

17. Bi, W.; Wu, Q.; Ren, H. A new family of eight-order iterative methods for solving nonlinear equations.
Appl. Math. Comput. 2009, 214, 236–245.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.24193/subbmath.2017.4.11
http://dx.doi.org/10.1016/j.amc.2007.11.009
http://dx.doi.org/10.1016/j.camwa.2011.01.034
http://dx.doi.org/10.1007/s002459911012
http://dx.doi.org/10.1007/s11075-015-0031-5
http://dx.doi.org/10.1016/j.amc.2008.12.057
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Local Convergence Analysis
	Numerical Results
	Conclusions
	References

