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Abstract: In this paper, we introduce a new concept of random α-proximal admissible and random
α-Z-contraction. Then we establish random best proximity point theorems for such mapping in
complete separable metric spaces.
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1. Introduction

Some well known random fixed point theorems are generalizations of classical fixed point
theorems. Random fixed point theorems for contraction mapping in a Polish space, i.e., a separable
complete metric space, were proved by Špaček [1], Hanš [2,3]. In 1966, Mukhejea [4] proved the
random fixed point theorem of Schauder’s type in an atomic probability measure space. In 1976,
Bharuch-Reid [5] introduced the random fixed point theorems that have been used to establish the
uniqueness, existence, and measurability of solutions of random operator equations. In 1977. Itoh [6]
extended some random fixed point theorems of Špaček and Hanš for a multivalued contraction
mapping in separable complete metric spaces and solved some random differential equations with
random fixed point theorems in Banach spaces. In 1984, Sehgal and Waters [7] proved the random fixed
point theorem of the classical Rothe’s fixed point theorem. After that, many authors have extended,
generalized and improved random fixed point theorems in several ways [8–16].

In 2012, Samet et al. [17] introduced a new class of α-ψ-contractive type mapping and establish
fixed point theorems for such mapping in complete metric spaces. Afterwards, Jleli and Samet [18]
introduced a new class of α-ψ-contractive type mapping to the case of non-selfmapping and establish
best proximity point theorems for such mapping in complete metric spaces. Recently, several authors
have investigated the existence and applications of fixed point and best proximity point theorems for
α-ψ-contractive mapping; see [19–23] and the references therein.

In 2015, Khojasteh et al. [24] introduced the notion of simulation function and proved some
fixed point theorem in metric space. Later, Samet [25] and Tchier et al. [26] introduced the best
proximity point theorems involving simulation functions. In 2016, Karapinar [27] introduced the
notion of α-admissible, Z-contraction and proved fixed point theprems in complete metric space.
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In 2017, Karapinar and Khojasted [28] proved the existence of best proximity point theorems of certain
mapping via simulation function of complete metric space.

In 2017, Anh [29] introduced the concept of random best proximity point of a random operator.
Thereafter, many authors have focused on various existence theorems of random best proximity point;
for detail, see [30–32].

Recently, Tchier and Vetro [33] introduced the concepts of random α-admissible and random
α-ψ-contractive mappings and established random fixed point theorems.

The purpose of this paper is to present some random best proximity point theorems for certain
mapping via simulation functions in separable metric space.

2. Preliminaries

Throughout this paper, let (M, d) be a Polish space, and (Ω, Σ) be a measurable space, where Σ is
a σ-algebra of subsets of Ω. Let U and V are two nonempty subsets of M. The following notations will
be used herein:

dω(U, V) := inf{d(u(ω), v(ω)) : u : Ω→ U, v : Ω→ V, ω ∈ Ω};

U0 := {u : Ω→ U : d(u(ω), v(ω)) = dω(U, V) for some mapping v : Ω→ V};

V0 := {v : Ω→ V : d(u(ω), v(ω)) = dω(U, V) for some mapping u : Ω→ U}.

Definition 1. A mapping T : Ω→ M is called Σ-measurable if for any open subset N of M, the set

T−1(N) = {ω ∈ Ω : T(ω) ∈ N} ∈ Σ.

Notice that when we say that a set A is measurable we mean that A is Σ-measurable.

Definition 2. A mapping T : Ω→ M is called a random operator if T(·, x) is a measurable for any x ∈ X.

Definition 3. A measurable mapping ξ : Ω→ M is called a random fixed point of T : Ω→ M if

ξ(ω) = T(ω, ξ(ω)),

for all ω ∈ Ω.

Definition 4. Let U, V be two closed subsets of a Polish space M and T : Ω×U → V a random operator.
A measurable mapping ξ : Ω→ U is called a random best proximity point of T if

d(ξ(ω), T(ω, ξ(ω))) = dω(U, V),

for any ω ∈ Ω.

Clearly, the random best proximity point of a random fixed point of T if U ∩V 6= ∅. This means
that the concept of a random best proximity point is an extension of the concept of random fixed point.

Definition 5. Let (Ω, Σ) be a measurable space, X and Y be two metric spaces. A mapping h : Ω× X → Y is
called Carathéodory if, for all x ∈ X, the mapping ω → h(ω, x) is Σ-measurable and for all ω ∈ Ω, the mapping
x → h(ω, x) is continuous.

Definition 6 ([24]). A simulation function is a mapping ζ : [0, ∞) × [0, ∞) → R satisfying the
following conditions:

(ζ1) ζ(0, 0) = 0;



Mathematics 2018, 6, 262 3 of 12

(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Denote with Z the family of all simulation functions ζ : [0, ∞)× [0, ∞) → R. Due to the axiom
(ζ2), we have

ζ(t, t) < 0, for all t > 0.

Denote with Ψ the family of non-decreasing functions ψ : [0, ∞)→ [0, ∞) satisfying the following
conditions:

(i1) ψ(t) < t, for any t ∈ R+;
(i2) ψ is continuous at 0.

Lemma 1 ([34]). Let (X, d) be a metric space and let {yn} be a sequence in X such that d(yn+1, yn) is
nonincreasing and that

lim
n→∞

d(yn+1, yn) = 0.

If {y2n} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk} and {nk} of positive
integers such that the following four sequences tend to ε when k→ ∞:

d(y2mk , y2nk ), d(y2mk , y2nk+1), d(y2mk−1, y2nk ), d(y2mk−1, y2nk+1).

3. Main Results

We start with the following definition.

Definition 7. Let T : Ω×M → M and α : Ω×M×M → [0, ∞). We say that T is a random triangular
weak-α-admissible if

α(ω, x(ω), y(ω)) ≥ 1 and α(ω, y(ω), z(ω)) ≥ 1⇒ α(ω, x(ω), z(ω)) ≥ 1,

for all x, y, z ∈ M and ω ∈ Ω.

Definition 8. Let (Ω, Σ) be a measurable space, (M, d) be a separable metric space, U and V are two nonempty
subsets of M, T : Ω × U → V and α : Ω × U × U → [0, ∞). We say that T is a random α-proximal
admissible if

α(ω, x(ω), y(ω)) ≥ 1
d(u(ω), T(ω, x(ω))) = dω(U, V)

d(v(ω), T(ω, y(ω))) = dω(U, V)

⇒ α(ω, u(ω), v(ω)) ≥ 1,

for all x, y, u, v ∈ M and ω ∈ Ω.

Definition 9. Let (Ω, Σ) be a measurable space, (M, d) be a separable metric space, U and V are two
nonempty subsets of M, ψ ∈ Ψ, and α : Ω × M × M → [0, ∞). We say that T : Ω × U → V is a
random α-ψ-Z-contraction with respect to ζ ∈ Z if T is a random α-proximal admissible and

α(ω, x(ω), y(ω)) ≥ 1
d(u(ω), T(ω, x(ω))) = dω(U, V)

d(v(ω), T(ω, y(ω))) = dω(U, V)

⇒ ζ(d(u(ω), v(ω)), ψ(d(x(ω), y(ω)))) ≥ 0,

for all x, y, u, v ∈ M and ω ∈ Ω.
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Definition 10. Let (Ω, Σ) be a measurable space, (M, d) be a separable metric space, U and V are two nonempty
subsets of M, and α : Ω×M×M→ [0, ∞). We say that T : Ω×U → V is a random α-Z-contraction with
respect to ζ ∈ Z if T is a random α-proximal admissible and

α(ω, x(ω), y(ω)) ≥ 1
d(u(ω), T(ω, x(ω))) = dω(U, V)

d(v(ω), T(ω, y(ω))) = dω(U, V)

⇒ ζ(d(u(ω), v(ω)), d(x(ω), y(ω))) ≥ 0,

for all x, y, u, v ∈ M and ω ∈ Ω.

Notice that Definition 9 dose not yield Definition 10. Indeed, for ψ(t) = t, the implication can be
happen but ψ(t) = t /∈ Ψ.

Definition 11. Let (Ω, Σ) be a measurable space, (M, d) be a separable metric space, U and V are two
nonempty subsets of M, and α : Ω×M×M→ [0, ∞). We say that T : Ω×U → V is a generalized random
α-Z-contraction with respect to ζ ∈ Z if T is a random α-proximal admissible and

α(ω, x(ω), y(ω)) ≥ 1
d(u(ω), T(ω, x(ω))) = dω(U, V)

d(v(ω), T(ω, y(ω))) = dω(U, V)

⇒ ζ(d(u(ω), v(ω)), r(x(ω), y(ω))) ≥ 0,

for all x, y, u, v ∈ M and ω ∈ Ω, with x(ω) 6= y(ω), where

r(x(ω), y(ω)) = max
{

d(x(ω), y(ω)),
d(x(ω), u(ω))d(y(ω), v(ω))

d(x(ω), y(ω))

}
.

We can now state the main result of this paper.

Theorem 1. Let (Ω, Σ) be a measurable space, let (M, d) be a Polish space, U and V are two nonempty subsets
of M and α : Ω×M×M → [0, ∞). Suppose that T : Ω×U → V is a random α-ψ-Z-contraction with
respect to ζ ∈ Z and ζ is non-decreasing with respect to second component. The hypotheses are the following:

(A1) T is a random triangular weak-α-admissible,
(A2) U is closed with respect to the topology induced by d,
(A3) T(Ω×U0) ⊂ V0,
(A4) there exist measurable mappings x0, x1 : Ω → U such that, for all ω ∈ Ω, d(x1(ω), T(ω, x0(ω))) =

d(U, V) and α(ω, x0(ω), x1(ω)) ≥ 1,
(A5) T is a Carathéodory mapping.

Then T has a random best proximity point, that is, there exists ξ : Ω→ U which is a measurable such that
d(ξ(ω), T(ω, ξ(ω))) = dω(U, V) for all ω ∈ Ω.

Proof of Theorem 1. By hypothese (A4), we have there exists measurable mapping x0, x1 : Ω → U
such that α(ω, x0(ω), x1(ω)) ≥ 1 and

d(x1(ω), T(ω, x0(ω))) = dω(U, V),

for all ω ∈ Ω. The hypthese (A3) implies that T(ω, x1(ω)) ∈ V0, which yields there exists measurable
mapping x2 : Ω→ U0 such that

d(x2(ω), T(ω, x1(ω))) = dω(U, V),
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for all ω ∈ Ω. Since α(ω, x0(ω), x1(ω)) ≥ 1 and T is a random α-proximal admissible, we have that
α(ω, x1(ω), x2(ω)) ≥ 1. Iteratively, a sequence {xn(ω)} ⊂ U0 can be constructed as follows:

d(xn+1(ω), T(ω, xn(ω))) = d(U, V), for all n ∈ N0, ω ∈ Ω, (1)

and
α(ω, xn(ω), xn+1(ω)) ≥ 1, for all n ∈ N0, ω ∈ Ω. (2)

If xn(ω) = xn+1(ω) for some n ∈ N0, ω ∈ Ω, then

d(xn(ω), T(ω, xn(ω))) = d(xn+1(ω), T(ω, xn(ω))) = dω(U, V),

that is xn(ω) is a random best proximity point. Assume that

xn(ω) 6= xn+1(ω) for all n ∈ N0, for one ω ∈ Ω. (3)

By combining (1)–(3), we get that

d(xn(ω), T(ω, xn−1(ω))) = d(xn+1(ω), T(ω, xn(ω))) = dω(U, V),

for all n ∈ N, ω ∈ Ω and

ζ(d(xn(ω), xn+1(ω)), ψ(d(xn−1(ω), xn(ω)))) ≥ 0, for all n ∈ N0, ω ∈ Ω. (4)

Since T is a random α-ψ-Z-contraction with respect to ζ ∈ Z . Regarding (3) and (ζ2),
the inequality (4) yields that

d(xn(ω), xn+1(ω)) ≤ ψ(d(xn−1(ω), xn(ω)))

< d(xn−1(ω), xn(ω)),

for all n ∈ N, ω ∈ Ω. It follows that {d(xn(ω), xn+1(ω))} is a non-increasing sequence bounded below.
Then, there exists r ≥ 0 such that {d(xn(ω), xn+1(ω))} → r. We claim that r = 0. Assume on the
contrary that r > 0. Obviously,

lim
n→∞

d(xn(ω), xn+1(ω)) = lim
n→∞

d(xn−1(ω), xn(ω)) = r. (5)

From (5) and the property (ζ3) of simulation function and (i1) and ζ is non-decreasing with
respect to second component, we get

0 ≤ lim sup
n→∞

ζ(d(xn(ω), xn+1(ω)), ψ(d(xn−1(ω), xn(ω))))

≤ lim sup
n→∞

ζ(d(xn(ω), xn+1(ω)), d(xn−1(ω), xn(ω)))

< 0,

which is a contradiction, that is
lim

n→∞
d(xn(ω), xn+1(ω)) = 0.

Next, to prove that {xn(ω)} is a Cauchy sequence. Suppose, on the contrary, that {xn(ω)} is
not Cauchy sequence. Consequently, there exists ε > 0 and subsequences {xmk (ω)} and {xnk (ω)} of
{xn(ω)}, so that for nk > mk > k, we have

d(xmk (ω), xnk (ω)) ≥ ε,
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and
d(xmk (ω), xnk−1(ω)) < ε.

By Lemma (1), we have

lim
k→∞

d(xmk (ω), xnk (ω)) = lim
k→∞

d(xnk−1(ω), xmk−1(ω)) = ε. (6)

Since T is a random triangular weak-α-admissible, from (2) we have

α(ω, xn(ω), xm(ω)) ≥ 1, for all n, m ∈ N0, with n > m, ω ∈ Ω.

Thus, we have
α(ω, xmk (ω), xnk (ω)) ≥ 1,

and

d(xmk (ω), T(ω, xmk−1(ω))) = d(xnk (ω), T(ω, xnk−1(ω)))

= d(U, V) for all k ∈ N. (7)

Since T is a random α-ψ-Z-contraction with respect to ζ ∈ Z , the obtained expression (7) yields
the following inequality:

0 ≤ ζ(d(xmk (ω), xnk (ω)), ψ(d(xmk−1(ω), T(ω, xnk−1(ω))))), for all k ∈ N.

Letting k→ ∞ and keeping (6) and (ζ3) in mind, and regarding (ζ3), (i1) and ζ is non-decreasing
with respect to second component, we get

0 ≤ lim sup
n→∞

ζ(d(xmk (ω), xnk (ω)), ψ(d(xmk−1(ω), T(ω, xnk−1(ω)))))

≤ lim sup
n→∞

ζ(d(xmk (ω), xnk (ω)), d(xmk−1(ω), T(ω, xnk−1(ω))))

< 0,

which is a contradiction. Thus, we conclude that the sequence {xn(ω)} is a Cauchy sequence.
Since (M, d) is a complete and U is closed subset of (M, d) and T is a Carathéodory mapping,
there exists ξ : Ω→ U such that

{xn(ω)} → ξ(ω) as n→ +∞ for all ω ∈ Ω, (8)

it follows that xn is measurable for all n ∈ N and

xn+1(ω) = T(ω, xn(ω))→ T(ω, ξ(ω)) as n→ +∞ for all ω ∈ Ω. (9)

From (1), (8) and (9) we have

dω(U, V) = lim
n→∞

d(xn+1(ω), T(ω, xn(ω))) = d(ξ(ω), T(ω, ξ(ω))).

Therefore ξ is a random best proximity point.

Theorem 2. Let (Ω, Σ) be a measurable space, let (M, d) be a Polish space, U and V are two nonempty
subsets of M and α : Ω×M×M → [0, ∞). Suppose that T : Ω×U → V is a random α-ψ-Z-contraction
mapping with respect to ζ ∈ Z and ζ is non-decreasing with respect to second component. The hypotheses are
the following:

(B1) T is a random triangular weak-α-admissible,
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(B2) U is closed with respect to the topology induced by d,
(B3) T(Ω×U0) ⊂ V0,
(B4) there exist measurable mappings x0, x1 : Ω → U such that, for all ω ∈ Ω, d(x1(ω), T(ω, x0(ω))) =

dω(U, V) and α(ω, x0(ω), x1(ω)) ≥ 1,
(B5) T is a sup-measurable,
(B6) if {un(ω)} is a sequence in U such that α(ω, un(ω), un+1(ω)) ≥ 1 for all n ∈ N ∪ {0}, ω ∈ Ω

and un(ω) → un(ω) as n → +∞, then there is a subsequence {unk (ω)} of {un(ω)} with
α(ω, unk (ω), u(ω)) ≥ 1 for all k, ω ∈ ω.

Then T has a random best proximity point, that is, there exists ξ : Ω → U is a measurable such that
d(ξ(ω), T(ω, ξ(ω))) = d(U, V) for all ω ∈ Ω.

Proof of Theorem 2. A similar reasoning as in the proof of Theorem 1 gives us that the sequence
{un(ω)} is a Cauchy sequence. This means that there exists ξ : Ω → U such that un(ω) → ξ(ω) as
n → +∞ for all ω ∈ Ω. Due to (B2), U0 is closed. Regarding (B3), we note that T(ω, ξ(ω)) ∈ V0

and hence
d(u1(ω), T(ω, ξ(ω))) = dω(U, V) for some u1 ∈ U0, ω ∈ Ω.

Notice that from (B6), we have

α(ω, xnk (ω), ξ(ω)) ≥ 1 for all k ∈ N, ω ∈ Ω.

Since T is a random α-proximal admissible, and

d(u1(ω), T(ω, ξ(ω))) = d(xnk+1(ω), T(ω, xnk (ω)))

= dω(U, V), (10)

we get that α(ω, xnk+1(ω), u1(ω)) ≥ 1 for all k ∈ N, ω ∈ Ω. Therefore,

ζ(d(u1(ω), xnk+1(ω)), ψ(d(ξ(ω), xnk (ω)))) ≥ 0.

Then (ζ2) imples that

d(u1(ω), xnk+1(ω)) ≤ ψ(d(ξ(ω), xnk (ω)))

< d(ξ(ω), xnk (ω)),

and so
lim
k→∞

d(u1(ω), xnk+1(ω))→ 0.

Thus, u1(ω) = ξ(ω) for all ω ∈ Ω and (10) we have

d(ξ(ω), T(ω, ξ(ω))) = dω(U, V).

The hypothesis (B5) that T is sub-measurable implies that un is measurable for all n ∈ N and
hence ξ is measurable. Then ξ is a random best proximity point.

Theorem 3. Let (Ω, Σ) be a measurable space, let (M, d) be a Polish space, U and V are two nonempty subsets
of M and α : Ω×M×M→ [0, ∞). Suppose that T : Ω×U → V is a generalized random α-Z-contraction
mapping with respect to ζ ∈ Z . The hypotheses are the following:

(C1) T is a random triangular weak-α-admissible,
(C2) U is closed with respect to the topology induced by d,
(C3) T(Ω×U0) ⊂ V0,
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(C4) there exist measurable mappings x0, x1 : Ω → U such that, for all ω ∈ Ω, d(x1(ω), T(ω, x0(ω))) =

d(U, V) and α(ω, x0(ω), x1(ω)) ≥ 1,
(C5) T is a Carathéodory mapping.

Then T has a random best proximity point, that is, there exists ξ : Ω → U is a measurable such that
d(ξ(ω), T(ω, ξ(ω))) = dω(U, V) for all ω ∈ Ω.

Proof of Theorem 3. By hypothesis (C4) we have there exists measurable mapping x0, x1 : Ω→ U0

such that α(ω, x0(ω), x1(ω)) ≥ 1 and

d(x1(ω), T(ω, x0(ω))) = dω(U, V),

for all ω ∈ Ω. Hypothesis (C3) implies that T(ω, x1(ω)) ∈ V0 which yields there exists measurable
mapping x2 : Ω→ U0 such that

d(x2(ω), T(ω, x1(ω))) = dω(U, V),

for all ω ∈ Ω. Since α(ω, x0(ω), x1(ω)) ≥ 1 and T is a random α-proximal admissible, we have that
α(ω, x1(ω), x2(ω)) ≥ 1. Iteratively, a sequence {xn(ω)} ⊂ U0 can be constructed as follows:

d(xn+1(ω), T(ω, xn(ω))) = dω(U, V), for all n ∈ N0, ω ∈ Ω, (11)

and
α(ω, xn(ω), xn+1(ω)) ≥ 1, for all n ∈ N0, ω ∈ Ω. (12)

If xn(ω) = xn+1(ω) for some n ∈ N0, ω ∈ Ω, then

d(xn(ω), T(ω, xn(ω))) = d(xn+1(ω), T(ω, xn(ω))) = dω(U, V),

that is xn(ω) is a random best proximity point. Assume that

xn(ω) 6= xn+1(ω) for all n ∈ N0, for one ω ∈ Ω. (13)

By combining (11)–(13), we get that

d(xn(ω), T(ω, xn−1(ω))) = d(xn+1(ω), T(ω, xn(ω))) = dω(U, V),

for all n ∈ N, ω ∈ Ω and

ζ(d(xn(ω), xn+1(ω)), r(xn−1(ω), xn(ω))) ≥ 0, for all n ∈ N0, ω ∈ Ω. (14)

We have

r(xn−1(ω), xn(ω)) = max
{

d(xn−1(ω), xn(ω))d(xn(ω), xn+1(ω))

d(xn−1(ω), xn(ω))
, d(xn−1(ω), xn(ω))

}
= max{d(xn+1(ω), xn(ω)), d(xn−1(ω), xn(ω))}.

Suppose that for some n0 = 1, 2, 3, . . . .

max{d(xn0+1(ω), xn0(ω)), d(xn0−1(ω), xn0(ω))} = d(xn0+1(ω), xn0(ω)).

On the other hand, since d(xn0(ω), xn0+1(ω)) > 0, using the property (ζ2) of a simulation function,
we obtain

ζ(d(xn0+1(ω), xn0(ω)), d(xn0+1(ω), xn0(ω))) < 0,
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which is a contradiction. As consequence,

r(xn−1(ω), xn(ω)) = d(xn−1(ω), xn(ω)),

for all n ∈ N, ω ∈ Ω. It means that

ζ(d(xn(ω), xn+1(ω)), d(xn−1(ω), xn(ω))) ≥ 0, for all n ∈ N, ω ∈ Ω.

Regarding (ζ2), the inequality (14) yields that

d(xn(ω), xn+1(ω)) ≤ d(xn−1(ω), xn(ω)) for all n ∈ N, ω ∈ Ω.

Hence, {d(xn(ω), xn+1(ω))} is a non-increasing sequence bounded below. Then, there exists a
r ≥ 0 such that {d(xn(ω), xn+1(ω))} → r. We claim that r = 0. Assume on the contrary that r > 0.
Taking lim sup of (14) as n→ ∞ and regarding (ζ3), we find

0 ≤ lim sup
n→∞

ζ(d(xn(ω), xn+1(ω)), d(xn−1(ω), xn(ω))) < 0,

which is a contradiction, that is
lim

n→∞
d(xn(ω), xn+1(ω)) = 0.

Next, to prove that {xn(ω)} is a Cauchy sequence. Suppose, on the contrary, that {xn(ω)} is
not Cauchy sequence. Consequently, there exists ε > 0 and subsequences {xmk (ω)} and {xnk (ω)} of
{xn(ω)}, so that for nk > mk > k, we have

d(xmk (ω), xnk (ω)) ≥ ε,

and
d(xmk (ω), xnk−1(ω)) < ε.

By Lemma (1), we have

lim
k→∞

d(xmk (ω), xnk (ω)) = lim
k→∞

d(xnk−1(ω), xmk−1(ω)) = ε. (15)

Also, by Lemma (1), we have

lim
k→∞

d(xmk−1(ω), xnk (ω)) = lim
k→∞

d(xnk−1(ω), xmk (ω)) = ε.

Since T is a random triangular weak-α-admissible, from (12) we have

α(ω, xn(ω), xm(ω)) ≥ 1, for all n, m ∈ N0, with n > m, ω ∈ Ω.

Thus, we have
α(ω, xmk (ω), xnk (ω)) ≥ 1,

and

d(xmk (ω), T(ω, xmk−1(ω))) = d(xnk (ω), T(ω, xnk−1(ω)))

= dω(U, V) for all k ∈ N. (16)

Since T is a generalized random α-Z-contraction with respect to ζ ∈ Z , the obtained
expression (16) yields the following inequality:

0 ≤ ζ(d(xmk (ω), xnk (ω)), r(xmk−1(ω), xnk−1(ω))), for all k ∈ N.
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Since,

r(xmk−1(ω), xnk−1(ω))

= max
{

d(xmk−1(ω), xmk (ω))d(xnk−1(ω), xnk (ω))

d(xmk−1(ω), xnk−1(ω))
, d(xmk−1(ω), xnk−1(ω))

}
. (17)

Taking limit from both sides of (17) concludes that

lim
k→∞

r(xmk−1(ω), xnk−1(ω)) = ε.

Letting k→ ∞ and keeping (15) and (ζ3) in mind, we get

0 ≤ lim sup
n→∞

ζ(d(xmk (ω), xnk (ω)), r(xmk−1(ω), xnk−1(ω))) < 0,

which is a contradiction. Thus, we conclude that the sequence {xn(ω)} is a Cauchy sequence.
Since (M, d) is a complete and U is closed subset of (M, d) and T is a Carathéodory mapping,
there exists ξ : Ω→ U such that

{xn(ω)} → ξ(ω) as n→ +∞ for all ω ∈ Ω, (18)

it follows that xn is measurable for all n ∈ N and

xn+1(ω) = T(ω, xn(ω))→ T(ω, ξ(ω)) as n→ +∞ for all ω ∈ Ω. (19)

From (11), (18) and (19) we have

dω(U, V) = lim
n→∞

d(xn+1(ω), T(ω, xn(ω))) = d(ξ(ω), T(ω, ξ(ω))).

Therefore ξ is a random best proximity point.

Corollary 1. Let (Ω, Σ) be a measurable space, let (M, d) be a Polish space, U and V are two nonempty subsets
of M and α : Ω×M×M→ [0, ∞). Suppose that T : Ω×U → V is a random α-Z-contraction with respect
to ζ ∈ Z . The hypotheses are the following:

(D1) T is a random triangular weak-α-admissible,
(D2) U is closed with respect to the topology induced by d,
(D3) T(Ω×U0) ⊂ V0,
(D4) there exist measurable mappings x0, x1 : Ω → U such that, for all ω ∈ Ω, d(x1(ω), T(ω, x0(ω))) =

dω(U, V) and α(ω, x0(ω), x1(ω)) ≥ 1,
(D5) T is a Carathéodory mapping.

Then T has a random best proximity point, that is, there exists ξ : Ω → U is a measurable such that
d(ξ(ω), T(ω, ξ(ω))) = dω(U, V) for all ω ∈ Ω.

4. Conclusions

We introduce the new concept of generalized α-Z-contraction, so-called a generalized random
α-Z-contraction, in separable metric spaces and also proved its existence theorems in complete
separable metric spaces. In particular, our results extend, generalize and improve the results given of
Karapinar and Khojasted, in [28].
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