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Abstract: In the present work, a sharp bound on the modulus of the initial coefficients for powers
of strongly Bazilević functions is obtained. As an application of these results, certain conditions
are investigated under which the Littlewood-Paley conjecture holds for strongly Bazilević functions
for large values of the parameters involved therein. Further, sharp estimate on the generalized
Fekete-Szegö functional is also derived. Relevant connections of our results with the existing ones
are also made.
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1. Introduction

Let A be the class of analytic functions f defined in the unit disk D = {z : |z| < 1} having Taylor
series expansion

f (z) = z +
∞

∑
n=2

anzn. (1)

Let S be the subclass of A consisting of univalent functions in D. The famous Bieberbach
conjecture (now de Branges’s theorem [1]) states that the coefficient of functions in the class S satisfy
|an| ≤ n with equality in case of the Koebe function k(z) = z/(1− z)2. Denote, by S∗, the subclass of
S consisting of starlike functions, so that Re(z f ′(z)/ f (z)) > 0 for z ∈ D).

The class of strongly starlike functions of order β (0 < β ≤ 1) is defined by

SS∗(β) :=
{

f ∈ S :
∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣ ≤ βπ

2
, z ∈ D

}
.

This class was introduced by Brannan and Kirwan [2].
Kaplan [3] introduce the class C of close-to-convex functions consisting of the functions f ∈ S

satisfying Re (z f ′(z)/g(z)) > 0 (z ∈ D), where g ∈ S∗. The class Bα is a generalization of the
class of starlike functions and was considered by Thomas [4] in 1967. For a starlike function g,
Thomas [4] defined a class Bα consisting of functions f ∈ S and satisfying the condition
Re(z f ′(z) f (z)α−1/g(z)α) > 0 (z ∈ D) and called it as the class of Bazilevič functions of type α

and it has been proved that the functions in this class are univalent. Clearly B1 =: C.
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Singh [5], in 1973, considered a special case of the class Bα, by setting g(z) = z. For α ≥ 0,
let B1(α) be the subclass of Bα of Bazilevič functions defined by

B1(α) :=

{
f ∈ A : Re f ′(z)

(
f (z)

z

)α−1

> 0, z ∈ D
}

.

For f ∈ B1(α), Singh gave sharp estimates for the first four coefficients, together with other
results, and in 2017 Marjono et al. [6] obtained sharp estimates for the fifth and sixth coefficients for
some values of α and conjectured that when α ≥ 1

|an| ≤
2

n− 1 + α

for n ≥ 2.
The above conjecture has recently been verified by Cho and Kumar [7] when n = 5 and n = 6 for

a certain range of α, and other coefficient results for f ∈ B1(α) been obtained by Thomas [8]. For other
results concerning concerning Bazilevič functions, see [4,9–18].

Let γ > 0, f be given by (1), and k(z) = z/(1− z)2. Write

(
f (z)

z

) 1
γ

= 1 +
∞

∑
n=1

an(γ)zn (2)

and (
k(z)

z

) 1
γ

= 1 +
∞

∑
n=1

bn(γ)zn. (3)

Equating coefficients in (2) and (3), we obtain

a1(γ) =
1
γ

a2, a2(γ) =
1
γ

(
a3 −

γ− 1
2γ

a2
2

)
(4)

and

bn(γ) =
2(2 + γ)(2 + 2γ) · · · (2 + (n− 1)γ)

(n!)γn . (5)

We now consider the validity of the inequality

|an(γ)| ≤ bn(γ), (6)

whenever f ∈ S .
First note that when γ = 1, (6) becomes de Branges theorem, and when γ = 2, (6) reduces to the

Littlewood-Paley conjecture [19], which was shown to be false by Fekete and Szegö [20].
When f ∈ S and γ ≤ 1 Hayman and Hummel [21] showed that (6) is true, but false when γ > 1.

On the other hand (6) is true for γ > 0 when f ∈ S∗ [22,23].
In the case of close-to-convex functions, Jahangiri [22] showed that (6) is valid when n = 2

provided 0 < γ ≤ 3, but is false when γ > 1. Similar problems were considered by Darus and Thomas
in [24].

We now introduce the class of strongly Bazilević functions as follows.

Definition 1. A function f defined by (1) belongs to the class B(α, β) if there exists a normalized analytic
function g ∈ S∗ such that∣∣∣∣arg

z f ′(z) f α−1(z)
gα(z)

∣∣∣∣ ≤ πβ

2
(z ∈ D, 0 < α, 0 < β ≤ 1).
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All powers in the above definition are understood to be the principal ones. Clearly B(0, 1) = S∗
and B(1, 1) = C. Also B(α, β) is a subclass of Bα and hence contains only univalent functions.

In this paper we will obtain some sharp upper bounds for |a1(γ)|, |a2(γ)| and M(γ) for
f ∈ B(α, β). Our results will infer that when f ∈ B(α, β), (6) holds for some large values of γ,
thus extending the work of several authors, e.g., Jahangiri [22], London [25], Eenigenberg, Silvia [26],
Keogh, Merkes [27] and Abdel-Gawad, Thomas [28].

2. Powers of Bazilević Functions

First we prove the following theorem, which gives sharp estimates of |a1(γ)| and |a2(γ)|.
These estimates will be later used to discuss the Littlewood-Paley conjecture for functions in the
class B(α, β).

Theorem 1. Let f ∈ B(α, β) (0 < α, 0 < β ≤ 1) and an(γ) (n = 1, 2) be given by (4). Then the following
sharp bounds hold.

|a1(γ)| ≤
2(α + β)

γ(α + 1)
(0 < γ)

and

|a2(γ)| ≤


τ

(α+1)2(α+2)γ2 , 0 < γ ≤ (2+α)(α+β)
α2+α−β+1 ;

υ
γ(α+2)((α+1)2γ−β(α+γ+2)) , γ ≥ (2+α)(α+β)

α2+α−β+1 ,

where
τ := α3(γ + 2) + 4α2(β + γ + 1) + α

(
2β2 + 4β(γ + 2) + γ

)
+ 2β2(γ + 2)

and

υ := α3(γ + 2) + α2(2βγ− β + 4γ + 4) + α
(
−2β2 + β(3γ− 2) + γ

)
+ 2β(γ− β(γ + 2)).

We note that the above theorem generalizes many existing results in literature. For example,
for α = 1 = β, the above theorem gives the following result due to Jahangiri [22].

Corollary 1. [22] (Theorem 1, p. 1141) Let f ∈ C and an(γ) (n = 1, 2) be as given in (4). Then the following
sharp bounds hold.

|a1(γ)| ≤
2
γ

(0 < γ)

and

|a2(γ)| ≤
{ 2+γ

γ2 , 0 < γ ≤ 3;
11γ−3

9γ(γ−1) , γ ≥ 3.

Remark 1. First note from (5) that b1(γ) = 2/γ and b2(γ) = (2 + γ)/γ2. Obviously |a1(γ)| ≤ b1(γ)

holds for all 0 < α ≤ 1, 0 < β ≤ 1 and γ > 0. This verifies the Littlewood-Paley conjecture for n = 1 and all
γ > 0. We now consider the case when n = 2 and γ = 1. For this case we have

|a2(γ)| ≤
{

S1,
(

0 < α < 1, 1−α
α+3 ≤ β ≤ 1

)
or (α ≥ 1, 0 < β ≤ 1);

T1, 0 < α < 1, 0 < β < 1−α
α+3 ,

where

S1 :=
3α3 + 4α2(β + 2) + α

(
2β2 + 12β + 1

)
+ 6β2

(α + 1)2(α + 2)

and

T1 :=
3α3 + α2(β + 8) + α

(
−2β2 + β + 1

)
+ 2β(1− 3β)

(α + 2) (α2 − α(β− 2)− 3β + 1)
.
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It is easy to verify that S1 ≤ 3 = b2(1) holds for (0 < α < 1 and (1− α)/(α + 3) ≤ β ≤ 1) or
(α ≥ 1 and 0 < β ≤ 1) and T1 ≤ 3 = b2(1) holds for 0 < α < 1and 0 < β < (1− α)/(α + 3).
Thus |a2(1)| ≤ b2(1) is true for all 0 < α and 0 < β ≤ 1.

Consider the case when n = 2 and γ = 2. For this case we have

|a2(γ)| ≤
{

S2,
(

0 < α < 2, α2+2
α+4 ≤ β ≤ 1

)
or (α = 2, β = 1);

T2, (α, β) ∈ Ω,

where Ω is the set of (α, β) such that either of

0 < α ≤ 2 and 0 < β <
α2 + 2
α + 4

or

α > 2 and 0 < β ≤ 5α2 + 16α + 20
4(α + 4)

− 1
4

√
25α4 + 128α3 + 184α2 + 144

(α + 4)2

holds, where S2 and T2 are given by

S2 :=
4α3 + 4α2(β + 3) + α

(
2β2 + 16β + 2

)
+ 8β2

4(α + 1)2(α + 2)

and

T2 :=
4α3 + α2(3β + 12) + α

(
−2β2 + 4β + 2

)
+ 2β(2− 4β)

2(α + 2) (2(α + 1)2 − (α + 4)β)
.

It is a simple matter to check that if
(
0 < α < 2 and (α2 + 2)/(α + 4) ≤ β ≤ 1

)
or (α = 2 and β = 1),

then S2 ≤ 1 = b2(2) and if (α, β) ∈ Ω, then T2 ≤ 1 = b2(2). Thus under certain conditions the
Littlewood-Paley conjecture is also true for n = 2 = γ.

Next assume that n = 2 and γ = 3. In this case we see that |a2(3)| ≤ 5/9 = b2(3) holds if either of
the conditions (

0 < α < 1 and
2α2 + α + 3

α + 5
≤ β ≤ 1

)
or (α = 1 and β = 1)

or

0 < α ≤ 1 and 0 < β <
2α2 + α + 3

α + 5
or

α > 1 and 0 < β ≤ 5α2 + 14α + 17
3(α + 5)

− 1
3

√
25α4 + 122α3 + 177α2 − 64α + 64

(α + 5)2

is true. In a similar way we can check that for n = 2 and γ = 4, the inequality |a2(4)| ≤ 3/8 = b2(4) holds if
either of the following conditions is true.(

0 < α <
2
3

and
3α2 + 2α + 4

α + 6
≤ β ≤ 1

)
or
(

α =
2
3

and β = 1
)

or

0 < α ≤ 2
3

and 0 < β <
3α2 + 2α + 4

α + 6
or

α >
2
3

and 0 < β ≤ 17α2 + 44α + 52
8(α + 6)

− 1
8

√
289α4 + 1368α3 + 2104α2 − 800α + 400

(α + 6)2 .

It should be noted that inequality (6) in many cases is not true for large values of γ, for example
the case of close-to-convex functions it does not hold for value of γ > 3. Another example can be
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found in [29] (Equation (23), p. 93) due to Farahmand and Jahangiri. They proved that for a subclass
of close-to-convex function the inequality |a2(γ)| ≤ b2(γ) not even true for γ = 4. It is therefore
interesting to investigate the cases for which this inequality holds for large values of γ. The following
corollary describes certain conditions under which inequality (6) holds for large values of γ for
functions f ∈ B(α, β).

3. Proof of Theorems

Corollary 2. Let f ∈ B(α, β) and a2(γ) and b2(γ) be given by (4) and (5), respectively. Then |a2(γ)| ≤ b2(γ)

is true if either of the following sets of conditions holds:

α > 0, 0 < β ≤ 1 and 0 < γ ≤ (α + 2)(α + β)

α2 + α− β + 1

or

α > 0, 0 < β ≤ 1
2

(
α2 + 2α + 2

)
− 1

2

√
α4 + 4α3 + 8α2 and γ >

(α + 2)(α + β)

α2 + α− β + 1

or

α > 0,
1
2

(
α2 + 2α + 2

)
− 1

2

√
α4 + 4α3 + 8α2 < β < 1 and

(α + 2)(α + β)

α2 + α− β + 1
< γ ≤ γ0,

where

γ0 :=
2α2 + α

(
β2 − 2β + 5

)
+ 2(β− 1)2

2α2β + 4α(β− 1)− 2(β− 1)2 +
1
2

√
(α + 2)2 (1− β2) (4α2 + 4α− β2 + 1)

(α2β + 2α(β− 1)− (β− 1)2)
2 .

To establish Theorem 1, we need the following lemma. The inequality (7) was proved by
Carathéodory [30] (see also Duren [31], p. 41) and the inequality (8) can be found in [22] (Lemma 1,
p. 142).

Lemma 1. Let p ∈ P , the class of functions satisfying Re p(z) > 0 for z ∈ D, with p(z) = 1 + ∑∞
n=1 pnzn.

Then
|pn| ≤ 2 (7)

and ∣∣∣p2 + µp2
1

∣∣∣ ≤ 2 + µ|p1|2 (µ ≥ −1/2). (8)

Proof of Theorem 1. Since f ∈ B(α, β), it follows from the definition that there exist functions p
and q in P , with p(z) = 1 + ∑∞

n=1 pnzn, q(z) = 1 + ∑∞
n=1 qnzn and a function g ∈ S∗ with g(z) =

z + ∑∞
n=2 bnzn such that

z f ′(z) f α−1(z)
gα(z)

= pβ(z) and
zg′(z)
g(z)

= q(z). (9)

Equating coefficients in (9), we obtain

a2 =
1

α + 1
(αb2 + βp1), (10)

a3 =
1

α + 2

(
α(α− 1)
2(α + 1)2 b2

2 +
αβ(α + 3)
(α + 1)2 p1b2 +

β(β(α + 3)− (α + 1)2)

2(α + 1)2 p2
1 + βp2 + αb3

)
, (11)

b2 = q1 and b3 =
q2 + q2

1
2

. (12)
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Substituting for a2 and a3 from (10), (11) in (4) and using the relation (12), we have

a1(γ) =
1

γ(α + 1)
(αq1 + βp1) (13)

and

γa2(γ) =

(
α(α− 1)

2(α + 2)(α + 1)2 +
α2(1− γ)

2γ(α + 1)2

)
q2

1 +

(
αβ(α + 3)

(α + 2)(α + 1)2 +
αβ(1− γ)

γ(α + 1)2

)
p1q1

+
β

α + 2
p2 +

α

2(α + 2)
(q2 + q2

1) +

(
β(β(α + 3)− (α + 1)2)

2(α + 2)(α + 1)2 +
β2(1− γ)

2γ(α + 1)2

)
p2

1. (14)

The estimate for |a1(γ)| follows from (13) by applying triangle inequality and using the facts that
|p1| ≤ 2 and |q1| ≤ 2.

To obtain the estimate on |a2(γ)|, we rewrite a2(γ) as

γa2(γ) =
α

2(α + 2)
q2 +

(
α

2(α + 2)
+

α(α− 1)
2(α + 2)(α + 1)2 +

α2(1− γ)

2γ(α + 1)2

)
q2

1

+
β

α + 2
p2 +

(
β(β(α + 3)− (α + 1)2)

2(α + 2)(α + 1)2 +
β2(1− γ)

2γ(α + 1)2

)
p2

1

+

(
αβ(α + 3)

(α + 2)(α + 1)2 +
αβ(1− γ)

γ(α + 1)2

)
p1q1

=
α

2(α + 2)
q2 +

α2(α + γ + 2)
2(α + 1)2(α + 2)γ

q2
1 +

αβ(α + γ + 2)
(α + 1)2(α + 2)γ

p1q1

+
β

α + 2
p2 +

β
(

β(α + γ + 2)− (α + 1)2γ
)

2(α + 1)2(α + 2)γ
p2

1

=
α

2(α + 2)

(
q2 +

α(α + γ + 2)
(α + 1)2γ

q2
1

)
+

αβ(α + γ + 2)
(α + 1)2(α + 2)γ

p1q1

+
β

α + 2

(
p2 +

β(α + γ + 2)− (α + 1)2γ

2(α + 1)2γ
p2

1

)
. (15)

Applying triangle inequality in (15) and using |q1| ≤ 2, we get

γ|a2(γ)| ≤
α

2(α + 2)

∣∣∣∣q2 +
α(α + γ + 2)
(α + 1)2γ

q2
1

∣∣∣∣+ 2αβ(α + γ + 2)
(α + 1)2(α + 2)γ

|p1|

+
β

α + 2

∣∣∣∣p2 +
β(α + γ + 2)− (α + 1)2γ

2(α + 1)2γ
p2

1

∣∣∣∣ . (16)

It is clear that the coefficient of q2
1 in the above expression is positive for all 0 < γ, 0 < α and

0 < β ≤ 1. Also since β(α + γ + 2) > 0, it follows that the coefficient of p2
1 is also greater than −1/2.

Using the inequalities in Lemma 1 along with and using |qi| ≤ 2, we obtain

γ|a2(γ)| ≤
α

2(α + 2)

(
2 +

α(α + γ + 2)
(α + 1)2γ

|q1|2
)
+

2αβ(α + γ + 2)
(α + 1)2(α + 2)γ

|p1|

+
β

α + 2

(
2 +

β(α + γ + 2)− (α + 1)2γ

2(α + 1)2γ
|p1|2

)
≤ M +

2αβ(α + γ + 2)
(α + 1)2(α + 2)γ

s +
β(β(α + γ + 2)− (α + 1)2γ)

2(α + 2)(α + 1)2γ
s2 =: h(s), (17)
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where s := |p1| ∈ [0, 2] and M is given by

M :=
2α2(α + γ + 2)
(α + 1)2(α + 2)γ

+
2β

α + 2
+

α

α + 2

=
α3(γ + 2) + 2α2((β + 2)γ + 2) + α(4βγ + γ) + 2βγ

(α + 1)2(α + 2)γ
.

Now note that h(0) = M and

h(2) =
α3(γ + 2) + 4α2(β + γ + 1) + α

(
2β2 + 4β(γ + 2) + γ

)
+ 2β2(γ + 2)

(α + 1)2(α + 2)γ
.

For α > 0 and 0 < β ≤ 1, we have

max{h(0), h(2)} =
{

h(2), 0 < γ ≤ (α+2)(2α+β)
α2−β+1 =: γ0,

M = h(0), γ ≥ γ0.
(18)

We now consider the case when s ∈ (0, 2). In this case, we see that the unique root of the equation

h′(s) =
2αβ(α + γ + 2)
(α + 1)2(α + 2)γ

+
βs
(

β(α + γ + 2)− (α + 1)2γ
)

(α + 1)2(α + 2)γ

is given by

s0 := s =
2α(α + γ + 2)

(α + 1)2γ− β(α + γ + 2)
.

To prove the result we now consider the two cases:

(a) γ >
α2 + αβ + 2α + 2β

α2 + α− β + 1
=: γ∗ and (b) 0 < γ ≤ α2 + αβ + 2α + 2β

α2 + α− β + 1
= γ∗.

(a) It is easy to see that s0 ∈ (0, 2) if α > 0, 0 < β ≤ 1 and γ > γ∗. Further

h′′(s0) =
β
(

β(α + γ + 2)− (α + 1)2γ
)

(α + 1)2(α + 2)γ
< 0.

Thus h has a maximum at the point s0 and so h has maximum at s0. Now from (18), we see that

max{h(0), h(2), h(s0)} = h(s0)

=
υ

(α + 2) ((α + 1)2γ− β(α + γ + 2))
. (19)

(b) Next when 0 < γ ≤ γ∗, the critical point of h does not belongs to (0, 2) and so we consider the end
point for the maxima and minima. Since γ∗ ≤ γ0, it follows that

max{h(0), h(2)} = h(2) (0 < γ ≤ γ∗). (20)

Thus (19) and (20) together with (18) give the desired estimate.

For sharpness, we consider the function f defined by

z f ′(z) f (z)α−1 =
zα

(1− z)2α

(
1 + z
1− z

)β

. (21)
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Then it is easy to see that

a2 =
2α + 2β

α + 1
and a3 =

3α3 + 4α2(β + 2) + α
(
2β2 + 12β + 1

)
+ 6β2

(α + 1)2(α + 2)

these in turn give

a1(γ) =
2(α + β)

γ(α + 1)
(22)

and

a2(γ) =
α3(γ + 2) + 4α2(β + γ + 1) + α

(
2β2 + 4β(γ + 2) + γ

)
+ 2β2(γ + 2)

(α + 1)2(α + 2)γ2 . (23)

Thus (22) shows that the bound for |a1(γ)| is sharp when 0 < γ, 0 < α, 0 < β ≤ 1, and that (23)
shows that the bound for |a2(γ)| is sharp when 0 < γ ≤ γ∗.

On the other hand when γ > γ∗ the inequality for |a2(γ)| holds when f is given by

z f ′(z) f (z)α−1 =
zα

(1− z)2α

(
1 + s0z + z2

1− z2

)β

.

Here

a2 =
2α(α + 1)γ

(α + 1)2γ− β(α + γ + 2)
and a3 =

8â + βb̂ + 6(α + 1)2α + 4(α− 1)α
2(α + 1)2(α + 2)

,

where

â =
(α + 3)α2β(α + γ + 2)

(α + 1)2γ− β(α + γ + 2)
and b̂ = 4(α + 1)2 −

4α2 ((α + 1)2 − (α + 3)β
)
(α + γ + 2)2

((α + 1)2γ− β(α + γ + 2))2

The expressions for a2 and a3 along with (4) give

a2(γ) =
υ

γ(α + 2) ((α + 1)2γ− β(α + γ + 2))
.

Thus the inequalities are sharp, which complete the proof of the theorem.

4. A Fekete-Szegö Inequality

For brevity we define σi for i = 1, 2, 3 and τj for j = 1, 2, 3, 4 by

σ1 :=
(α + β)[γ(α + 3) + (α + 2)(1− γ)]− γ(α + 1)2

2(α + 2)(α + β)
, σ2 :=

α + γ + 2
2(α + 2)

σ3 :=
(α + β)[γ(α + 3) + (α + 2)(1− γ)] + γ(α + 1)2

2(α + 2)(α + β)
,

τ1 := α +
(
(α + γ + 2)− 2(α + 2)µ

) 2(α + β)2

γ(α + 1)2 ,

τ2 := α + 2β +
2α2[γ(α + 3) + (α + 2)(1− γ− 2µ)]

γ(α + 1)2 − β[γ(α + 3) + (α + 2)(1− γ− 2µ)]
, τ3 := α + 2β,

and

τ4 := −α +
(

2(α + 2)µ− (α + γ + 2)
) 2(α + β)2

γ(α + 1)2 .

The following theorem provides sharp upper bound for the Fekete-Szegö functional M(γ) for
function f ∈ B(α, β).
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Theorem 2. Let f ∈ B(α, β) and an(γ) (n = 1, 2) be given by (4). Then the following sharp bound holds.

|a2(γ)− µa2
1(γ)| ≤


1

(α+2)γ τ1, µ ≤ σ1;
1

(α+2)γ τ2, σ1 ≤ µ ≤ σ2;
1

(α+2)γ τ3, σ2 ≤ µ ≤ σ3;
1

(α+2)γ τ4, µ ≥ σ3.

Remark 2. Note that when α = γ = 1, we obtain the result in [25,27,28]. Also when β = 1, we obtain the
result in [26].

Proof of Theorem 2. Proceeding as in the proof of Theorem 1 and using (13) and (14), we get

(α + 2)γ(a2(γ)− µa2
1(γ)) =

α

2

(
q2 +

α(γ(α + 3) + (α + 2)(1− γ− 2µ))

γ(α + 1)2 q2
1

)
+ β

(
p2 +

γ(β(α + 3)− (α + 1)2) + (α + 2)(1− γ− 2µ)β

2γ(α + 1)2 p2
1

)
+

αβ(γ(α + 3) + (α + 2)(1− γ− 2µ))

γ(α + 1)2 p1q1.

So, with the notation

x :=
γ(α + 3) + (α + 2)(1− γ− 2µ)

γ(α + 1)2 ,

we can write

(α + 2)γ(a2(γ)− µa2
1(γ)) =

α

2

(
q2 + αxq2

1

)
+ β

(
p2 +

1
2
(βx− 1)p2

1

)
+ αβxp1q1. (24)

Since rotations of f also belong to B(α, β), we assume that a2(γ)− µa2
1(γ) is positive.

Assume that q1 = 2ρeiφ and p1 = 2reiθ with r, ρ ∈ [0, 1] and φ, θ ∈ [0, 2π]. Now using Lemma 1,
we have

1
2

Re
(

q2 + αxq2
1

)
=

1
2

Re
(

q2 −
1
2

q2
1

)
+

1
4
(1 + 2αx)Re q2

1

≤ 1− ρ2 + (1 + 2αx)ρ2 cos 2φ (25)

and

Re
(

p2 +
1
2
(βx− 1)p2

1

)
= Re

(
p2 −

1
2

p2
1

)
+

1
2

βx Re p2
1

≤ 2(1− r2) + 2βxr2 cos 2θ. (26)

From (24), (25) and (26), we obtain

Re (α + 2)γ(a2(γ)− µa2
1(γ)) ≤ α(1− ρ2 + (1 + 2αx)ρ2 cos 2φ) + 2β(1− r2 + r2βx cos 2θ

+ 4αβxrρ cos(θ + φ) =: ψ(x). (27)

We shall use the notation ψ(x) when all parameters except x are held constant. Thus we need to
find the maximum of the right-hand side of (27).

First, we assume that σ1 ≤ µ ≤ σ2 and so we must have 0 ≤ x ≤ 1/(α + β). Under this
assumption, we can write (27) as

Re (α + 2)γ(a2(γ)− µa2
1(γ)) ≤ α(2αx + 1) + 2β(−r2 + r2βx cos 2θ + xr). (28)
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Further computation shows that the expression κ(r) := 2αxr− r2 + r2βx cos 2θ has its maximum
at r0 = r = αx/(1− βx cos 2θ) and

2αxr− r2 + r2βx cos 2θ ≤ κ(r0) =
α2x2

1− βx cos 2θ

≤ α2x2

1− βx
.

Therefore from (28), we get

Re (α + 2)γ(a2(γ)− µa2
1(γ)) ≤ (2αx + 1)α + 2β

(
1 +

α2x2

1− βx

)
= α + 2β +

2α2(γ(α + 3) + (α + 2)(1− γ− 2µ))

γ(α + 1)2 − β((α + 3) + (α + 2)(1− γ− 2µ))
.

This establishes the second inequality of theorem. Equality occurs only if

p1 =
2α(γ(α + 3) + (α + 2)(1− γ− 2µ))

γ(α + 1)2 − β((α + 3) + (α + 2)(1− γ− 2µ))
, p2 = q1 = q2 = 2,

and the corresponding function f is defined by

z f ′(z) f α−1(z) =
zα

(1− z)2α

(
1 + χ0z + z2

1− z2

)β

,

with

χ0 =
2α(γ(α + 3) + (α + 2)(1− γ− 2µ))

γ(α + 1)2 − β((α + 3) + (α + 2)(1− γ− 2µ))
.

We now prove the first inequality. Assume that µ ≤ σ1. This implies that x ≥ 1/(α + β). Let
x0 = x = 1/(α + β). Then it can be verified that ψ(x0) ≤ α + 2β. Further, we have

ψ(x) = ψ(x0) + 2(x− x0)(α
2ρ2 cos 2φ + β2r2 cos 2θ + 2αβρr cos(θ + φ))

≤ ψ(x0) + 2(x− x0)(α + β)2

≤ α + (2 + γ + α− 2(α + 2)µ)
2(α + β)2

γ(α + 1)2

as required. Equality occurs only if p1 = p2 = q1 = q2 = 2, and the corresponding function f is
defined by (21).

For x1 = x = −1/(α + β), it is a simple matter to check that ψ(x1) ≤ α + 2β. Using an argument
similar to above, if x ≤ x1, which is equivalent to the condition µ ≥ σ3, then

ψ(x) ≤ ψ(x1) + 2|x− x1|(α + β)2

≤ −α + [2(α + 2)µ− (γ + α + 2)]
2(α + β)2

γ(α + 1)2 .

Equality occurs only if p1 = q1 = 2i, p2 = q2 = −2, and the corresponding function f is
defined by

z f ′(z) f α−1(z) =
zα

(1− iz)2α

(
1 + iz
1− iz

)β

.

Also, for 0 ≤ λ ≤ 1,
ψ(λx1) = λψ(x1) + (1− λ)ψ(0) ≤ α + 2β,
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so ψ(x) ≤ α + 2β for x1 ≤ x ≤ 0, i.e.,

σ2 =:
α + γ + 2
2(α + 2)

≤ µ ≤ (α + β)(γ(α + 3) + (α + 2)(1− γ)) + γ(α + 1)2

2(α + 2)(α + β)
=: σ3.

Equality occurs only if p1 = q1 = 0, p2 = q2 = 2, and the corresponding function f is defined by

z f ′(z) f α−1(z) =
zα

(1− z2)α

(
1 + z2

1− z2

)β

.

This completes the proof.

5. Conclusions

In this paper, we have investigated the sharp upper bound for |a1(γ)|, |a2(γ)| and M(γ) for f ∈
B(α, β). In general, it is not easy to verify |an(γ)| ≤ bn(γ) to hold for many subclasses of normalized
univalent functions. However, in this work it has been verified that the inequality |an(γ)| ≤ bn(γ)

holds for larger values of γ, which is rare for many subclasses of normalized univalent functions.
The sharp estimate on the generalized Fekete-Szegö functional is also derived. Special cases are
also discussed.
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