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Abstract: Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant
fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered
along with its occurrence probability. These assigned probabilities give more details about the level
of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation
operators, in this manuscript, we have proposed several weighted and ordered weighted averaging
and geometric aggregation operators by using Einstein norm operations, where the preferences
related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable
properties and relations are also investigated in details. Also, we have proposed two distance
measures and its based maximum deviation method to compute the weight vector of the different
criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed
operators and the presented algorithm is explained with the help of the numerical example.
The reliability of the presented decision-making method is explored with the help of testing criteria
and by comparing the results of the example with several prevailing studies.

Keywords: probabilistic dual hesitant fuzzy sets; distance measures; aggregation operators;
consumer behavior; multi-criteria decision-making; maximum deviation method

1. Introduction

With growing advancements in economic, socio-cultural as well as technical aspects of the world,
uncertainties have started playing a dominant part in decision-making (DM) processes. The nature
of DM problems is becoming more and more complex and the data available for the evaluation of
these problems is increasingly having uncertain pieces of unprocessed information [1,2]. Such data
content leads to inaccurate results and increase the risks by many folds. To decrease the risks and to
reach the accurate results, decision-making has attained the attention of a large number of researchers.
In the complex decision-making systems, often large cost and computational efforts are required to
address the information, to evaluate it to form accurate results. In such situations, the major aim of the
decision makers remain to decrease the computational overheads and to reach the desired objective in
less space of time.

Time-to-time such DM techniques are framed which captures the uncertain information in an
efficient way and results are calculated in such a manner that they comply easily to the real-life
situations. From the crisp set theory, an analysis was shifted towards the fuzzy sets (FSs) and further
Atanassov [3] extended the FS theory given by Zadeh [4] to Intuitionistic FSs (IFSs) by acknowledging
the measures of disagreeness along with measures of agreeness. Afterward, Atanassov and Gargov [5]
extended the IFS to the Interval-valued intuitionistic fuzzy sets (IVIFSs) which contain the degrees
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of agreeness and disagreeness as interval values instead of single digits. As it is quite a common
phenomenon that different attributes play a vital part during the selection of best alternative among
the available ones, so suitable aggregation operators to evaluate the data are to be chosen carefully
by the experts to address the nature of the DM problem. In these approaches, preferences are given
as falsity and truth membership values in the crisp or interval number respectively such that the
corresponding degrees altogether sum to be less than or equal to one. In above-stated environments,
various researchers have constructed their methodologies for solving the DM problems focussing on
information measures, aggregation operators etc. For instance, Xu [6] presented some weighted
averaging aggregation operators (AOs) for intuitionistic fuzzy numbers (IFNs). Wang et al. [7]
presented some AOs to aggregate various interval-valued intuitionistic fuzzy (IVIF) numbers (IVIFNs).
Garg [8,9] presented some improved interactive AOs for IFNs. Wang and Liu [10] gave interval-valued
intuitionistic fuzzy hybrid weighted AOs based on Einstein operations. Wang and Liu [11] presented
some hybrid weighted AOs using Einstein norm operations. Garg [12] presented a generalized AOs
using Einstein norm operations for Pythagorean fuzzy sets. Garg and Kumar [13] presented some
new similarity measures for IVIFNs based on the connection number of the set pair analysis theory.
However, apart from these, a comprehensive overview of the different approaches under the IFSs
and/or IVIFSs to solve MCDM problems are summarized in [14–24]. In the above theories, it is difficult
to capture cases where the preferences related to different objects are given in the form of the multiple
numbers of possible membership entities. To handle it, Torra [25] came up with the idea of hesitant
fuzzy sets (HFSs). Zhu et al. [26] enhanced it to the dual hesitant fuzzy sets (DHFSs) by assigning
equal importance to the possible non-membership values as that of possible membership values in the
HFSs. In the field of AOs, Xia and Xu [27] established different operators to aggregated their values.
Garg and Arora [28] presented some AOs under the dual hesitant fuzzy soft set environment and
applied them to solve the MCDM problems. Wei and Zhao [29] presented some induced hesitant AOs
for IVIFNs. Apart from these, some other kinds of the algorithms for solving the decision-making
problems are investigated by the authors [30–38] under the hesitant fuzzy environments.

Although, these approaches are able to capture the uncertainties in an efficient way, yet these
works are unable to model the situations in which the refusal of an expert in providing the decision
plays a dominant role. For example, suppose a panel of 6 experts is approached to select the
best candidate during the recruitment process and 2 of them refused to provide any decision.
While evaluating the informational data using the existing approaches, the number of decision
makers is considered to be 4 instead of 6 i.e., the refusal providing experts are completely ignored
and the decision is framed using the preferences given by the 4 decision-providing experts only.
This cause a significant loss of information and may lead to inadequate results. In order to address
such refusal-oriented cases, Zhu and Xu [39] corroborated probabilistic hesitant fuzzy sets (PHFSs).
Wu et al. [40] gave the notion of AOs on interval-valued PHFSs (IVPHFSs) whereas Zhang et al. [41]
worked on preference relations based on IVPHFSs and accessed the findings by applying to real life
decision scenarios. Hao et al. [42] corroborated the concept of PDHFSs. Later on, Li et al. [43] presented
the concept of dominance degrees and presents a DM approach based on the best-worst method
under the PHFFSs. Li and Wang [44] comprehensively expressed way to address their vague and
uncertain information. Lin and Xu [45] determined various probabilistic linguistic distance measures.
Apart from them, several researchers [46–52] have shown a keen interest in applying probabilistic
hesitant fuzzy set environments to different decision making approaches. Based on these existing
studies, the primary motivation of this paper is summarized as below:

(i) In the existing DHFSs, each and every membership value has equal probability. For instance,
suppose a person has to buy a commodity X, and he is confused that either he is 10% sure or
20% sure to buy it, and is uncertain about 30% or 40% in not buying it. Thus, under DHFS
environment, this information is captured as ({0.10, 0.20}, {0.30, 0.40}). Here, in dual hesitant
fuzzy set, each hesitant value is assumed to have probability 0.5. So, mentioning the same
probability value repeatedly is omitted in DHFSs. But, if the buyer is more confident about
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10% agreeness than that of 20% i.e., suppose he is certain that his agreeness towards buying the
commodity is 70% towards 10% and 30% towards 20% and similarly, for the non-membership
case, he is 60% favoring to the 40% rejection level and 40% favoring the 30% rejection level. Thus,
probabilistic dual hesitant fuzzy set is formulated as

(
{0.10

∣∣0.70, 0.20
∣∣0.30}, {0.30

∣∣0.4, 0.40
∣∣0.6}

)
.

So, to address such cases, in which even the hesitation has a some preference over the another
hesitant value, DHFS acts as an efficient tool to model them.

(ii) In the multi-expert DM problems, there may often arise conflicts in the preferences given
by different experts. These issues can easily be resolved using DHFSs. For example, let A
and B be two experts giving their opinion about buying a commodity X. Suppose opinion
provided by A is noted in form of DHFS as ({0.20, 0.30}, {0.10, 0.15}) and similarly B gave
opinion as ({0.20, 0.25}, {0.10}). Now, both the experts are providing different opinions
regarding the same commodity X. This is a common problem that arises in the real
life DM scenarios. To address this case, the information is combined into PDHFS by
analyzing the probabilities of decision given by both the experts. The PDHFS, thus formed,
is given as

({
0.20

∣∣ 0.5+0.5
2 , 0.30

∣∣ 0.5
2 , 0.25

∣∣ 0.5
2
}

,
{

0.10
∣∣ 0.5+1

2 , 0.15
∣∣ 0.5

2

})
. In simple form, it is({

0.20
∣∣0.5, 0.30

∣∣0.25, 0.25
∣∣0.25

}
,
{

0.10
∣∣0.75, 0.15

∣∣0.25
})

. Thus, this paper is motivated by the
need of capturing the more favorable values among the hesitant values.

(iii) The existing decision-making approaches based on DHFS environment are numerically more
complex and time consuming because of redundancy of the membership (non-membership)
values to match the length of one set to another. This manuscript is motivated by the fact of
reducing this data redundancy and making the DM approach more time-efficient.

Motivated by the aforementioned points regarding shortcomings in the existing approaches,
this paper focusses on eradicating them by developing a series of AOs. In order to do so, the supreme
objectives are listed below:

(i) To consider the PDHFS environment to capture the information.
(ii) To propose two novel distance measures on PDHFSs.

(iii) To capture some weighted information regarding the available information by solving a non-linear
mathematical model.

(iv) To develop average and geometric Einstein AOs based on the PDHFS environment.
(v) To propose a DM approach relying on the developed operators.

(vi) To check numerical applicability of the approach to a real-life case and to compare the outcomes
with prevailing approaches.

To achieve the first objective and to provide more degrees of freedom to practitioners, in this article,
we consider PDHFS environment to extract data. For achieving the second objective, two distance
measures are proposed; one in which the size of two PDHFSs should be the same whereas in the
second one the size may vary. For achieving the third objective, a non-linear model is solved to capture
the weighted information. For achieving fourth objective average and geometric Einstein AOs are
proposed. To attain the fifth and sixth objective a real-life based case-study is conducted and its
comparative analysis with the prevailing environments is carried out.

The rest of this paper is organized as follows: Section 2 highlights the basic definitions related
to DHFSs, PHFSs, and PDHFSs. Section 3 introduces the two distance measures for PDHFSs along
with their desirable properties. Section 4 introduces some Einstein operational laws on PDHFSs
with the investigation of some properties. In Section 5, some averaging and geometric weighted
Einstein AOs are proposed. A non-linear programming model for weights determination is elicited
in Section 6. In Section 7, an approach is constructed to address the DM problems and includes
the real-life marketing problem including a comparative analysis with the existing ones. Finally,
concluding remarks are given in Section 8.
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2. Preliminaries

This section emphasizes on basic definitions regarding the DHFSs, PHFSs and PDHFSs.

Definition 1. On the universal set X, Zhu et al. [26] defined dual hesitant fuzzy set as:

α = {(x, h(x), g(x)) | x ∈ X} (1)

where the sets h(x) and g(x) have values in [0, 1], which signifies possible membership and non-membership
degrees for x ∈ X. Also,

0 ≤ γ, η ≤ 1; 0 ≤ γ+ + η+ ≤ 1 (2)

in which, γ ∈ h(x); η ∈ g(x) ; γ+ ∈ h+(x) =
⋃

γ∈h(x)
max{γ} and η+ ∈ g+(x) =

⋃
η∈g(x)

max{η}

Definition 2. Let X be a reference set, then a probabilistic hesitant fuzzy set (PHFS) [39] P on X is given as

P = {〈x, hx(px)〉 | x ∈ X} (3)

Here, the set hx contains several values in [0, 1], and described by the probability distribution px.
Also, hx denotes membership degree of x in X. For simplicity, hx(px) is called a probabilistic hesitant fuzzy
element (PHFE), denoted as h(p) and is given as

h(p) = {γi(pi) | i = 1, 2, . . . , #H},

where pi satisfying
#H
∑

i=1
pi ≤ 1, is the probability of the possible value γi and #H is the number of all γi(pi).

Definition 3 ([49]). A probabilistic dual hesitant fuzzy set (PDHFS) on X is defined as:

α = {(x, h(x)|p(x), g(x)|q(x)) | x ∈ X} (4)

Here, the sets h(x)|p(x) and g(x)|q(x) contains possible elements where h(x) and g(x) represent the
hesitant fuzzy membership and non-membership degrees x ∈ X, respectively. Also, p(x) and q(x) are their
associated probabilistic information. Moreover,

0 ≤ γ, η ≤ 1; 0 ≤ γ+ + η+ ≤ 1 (5)

and

pi ∈ [0, 1], qj ∈ [0, 1],
#h

∑
i=1

pi = 1,
#g

∑
j=1

qj = 1 (6)

where γ ∈ h(x); η ∈ g(x); γ+ ∈ h+(x) =
⋃

γ∈h(x)
max{γ}; η+ ∈ g+(x) =

⋃
η∈g(x)

max{η}. The symbols #h

and #g are total values in (h(x)|p(x)) and (g(x)|q(x)) respectively. For sake of convenience, we shall denote it
as (h|p, g|q) and name it as probabilistic dual hesitant fuzzy element (PDHFE).
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Definition 4 ([49]). For a PDHFE α, defined over a universal set X, the complement is defined as

αc =



⋃
γ∈h,η∈g

({
η
∣∣ qη

}
,
{

γ
∣∣ pγ

})
, if g 6= φ and h 6= φ⋃

γ∈h
({1− γ} , {φ}) , if g = φ and h 6= φ⋃

η∈g
({φ} , {1− η}) , if h = φ and g 6= φ

(7)

Definition 5 ([49]). Let α = (h|p, g|q) be a PDHFE, then the score function is defined as:

S(α) =
#h

∑
i=1

γi · pi −
#g

∑
j=1

ηj · qj (8)

where #h and #g are total numbers of elements in the components (h|p) and (g|q) respectively and γ ∈ h,
η ∈ g. For two PDHFEs α1 and α2, if S(α1) > S(α2), then the PDHFE α1 is regarded more superior to α2 and
is denoted as α1 � α2.

3. Proposed Distance Measures for PDHFEs

In this section, we propose some measures to calculate the distance between two PDHFEs
defined over a universal set X = {x1, x2, . . . , xn}. Throughout this paper, the main notations used are
listed below:

Notations Meaning Notations Meaning

n number of elements in the universal set NA number of elements in gA
hA hesitant membership values of set A pA probability for hesitant membership of set A
gA hesitant non-membership values of set A qA probability for hesitant non-membership of set A
MA number of elements in hA ω weight vector

Let A =
{(

x, hAi (x)
∣∣pAi (x), gAj(x)

∣∣qAj(x)
)
| x ∈ X

}
and B ={(

x, hBi′
(x)
∣∣pBi′

(x), gBj′
(x)
∣∣qBj′

(x)
)
| x ∈ X

}
where i = 1, 2, . . . , MA; j = 1, 2, . . . , NA; i′ =

1, 2, . . . , MB and j′ = 1, 2, . . . , NB, be two PDHFSs. Also, let M = max{MA, MB}, N = max{NA, NB},
be two real numbers, then for a real-number λ > 0, we define distance between A and B as:

d1(A, B) =


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣λ




1
λ

(9)

where γAi ∈ hAi , γBi ∈ hBi′
, ηAi ∈ gAi , ηBi ∈ gBi′

. It is noticeable that, there may arise the cases in
which MA 6= MB as well as NA 6= NB. Under such situations, for operating distance d1, the lengths
of these elements should be equal to each other. To achieve this, under the hesitant environments,
the experts repeat the least or the greatest values among all the hesitant values, in the smaller set,
till the length of both A and B becomes equal. In other words, if MA > MB, then repeat the smallest
value in set hB till MB becomes equal to MA and if MA < MB, then repeat the smallest value in set
hA till MA becomes equal to MB. Alike the smallest values, the largest values may also be repeated.
This choice of the smallest or largest value’s repetition entirely depends on decision-makers optimistic
or pessimistic approach. If the expert opts for the optimistic approach then he will expect the highest
membership values and thus will repeat the largest values. However, if the expert chooses to follow
the pessimistic approach, then he will expect the least favoring values and will go with repeating the
smallest values till the same length is achieved. But sometimes, length of A and B cannot be matched
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by increasing the numbers of elements, then in such cases, the distance d1 can be unappropriate for the
data evaluations. To handle such cases, we propose another distance measure d2 in which there is no
need to repeat the values for matching the length of the elements under consideration. This distance
d2 is calculated as:

d2(A, B) =


n

∑
k=1

1
n



∣∣∣∣∣ 1
MA

MA
∑

i=1

(
γAi (xk)pAi (xk)

)
− 1

MB

MB
∑

i′=1

(
γB′i

(xk)pB′i
(xk)

)∣∣∣∣∣
λ

2

+

∣∣∣∣∣ 1
NA

NA
∑

j=1

(
ηAj(xk)qAj(xk)

)
− 1

NB

NB
∑

j′=1

(
ηB′j

(xk)qB′j
(xk)

)∣∣∣∣∣
λ

2





1
λ

(10)

The distance measures proposed above satisfy the axiomatic statement given below:

Theorem 1. Let A and B be two PDHFSs, then the distance measure d1 satisfies the following conditions:

(P1) 0 ≤ d1(A, B) ≤ 1;
(P2) d1(A, B) = d1(B, A);
(P3) d1(A, B) = 0 if A = B;
(P4) If A ⊆ B ⊆ C, then d1(A, B) ≤ d1(A, C) and d1(B, C) ≤ d1(A, C).

Proof. Let X = {x1, x2, . . . , xn} be the universal set and A, B be two PDHFSs defined over X. Then for
each xk, k = 1, 2, . . . , n, we have

(P1) Since, 0 ≤ γAi (xk) ≤ 1 and 0 ≤ pAi (xk) ≤ 1, for all i = 1, 2, . . . , M,
this implies that 0 ≤ γAi (xk)pAi (xk) ≤ 1 and 0 ≤ γBi (xk)pBi (xk) ≤ 1.

Thus, for any λ > 0, we have 0 ≤
∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)

∣∣λ ≤ 1.

Further,
M
∑

i=1
0 ≤

M
∑

i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ ≤

M
∑

i=1
1 which leads

to 0 ≤
M
∑

i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ ≤ M. Similarly, for j = 1, 2, . . . , N,

0 ≤
N
∑

j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ ≤ N which yields

0 ≤
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ +

N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ ≤ M + N.

Thus,

0 ≤


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣λ




1
λ

≤ 1,

which clearly implies that 0 ≤ d1(A, B) ≤ 1.
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(P2) Since

d1(A, B) =


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ




1
λ

=


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣γBi (xk)pBi (xk)− γAi (xk)pAi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηBj(xk)qBj(xk)− ηAj(xk)qAj(xk)
∣∣∣λ




1
λ

= d1(B, A)

Hence, the distance measure d1 possess a symmetric nature.
(P3) For A = B, we have γAi (xk) = γBi (xk) and pAi (xk) = pBi (xk). Also, ηAj(xk) = ηBj(xk)

and qAj(xk) = qBj(xk). Thus, we have
∣∣γAi (xk)pAi (xk)− γAi (xk)pAi (xk)

∣∣λ = 0 and∣∣∣ηAj(xk)qAj(xk)− ηAj(xk)qAj(xk)
∣∣∣λ = 0. Hence, it implies that


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ




1
λ

= 0

⇒ d1(A, B) = 0.

(P4) Since, A ⊆ B ⊆ C, then γAi (xk)pAi (xk) ≤ γBi (xk)pBi (xk) ≤ γCi (xk)pCi (xk)

and ηAj(xk)qAj(xk) ≥ ηBj(xk)qBj(xk) ≥ ηCj(xk)qCj(xk). Further,∣∣γAi (xk)pAi (xk)− γBi (xk)qBi (xk)
∣∣λ ≤

∣∣γAi (xk)pAi (xk)− γCi (xk)qCi (xk)
∣∣λ and∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)

∣∣∣λ ≥
∣∣∣ηAj(xk)qAj(xk)− ηCj(xk)qCj(xk)

∣∣∣λ. Therefore,
d1(A, B) ≤ d1(A, C) and d1(B, C) ≤ d1(A, C).

Theorem 2. Let A and B be two PDHFSs, then the distance measure d2 satisfies the following conditions:

(P1) 0 ≤ d2(A, B) ≤ 1;
(P2) d2(A, B) = d2(B, A);
(P3) d2(A, B) = 0 if A = B;
(P4) If A ⊆ B ⊆ C, then d2(A, B) ≤ d2(A, C) and d2(B, C) ≤ d2(A, C).

Proof. The proof is similar to Theorem 1, so we omit it here.

4. Einstein Aggregation Operational laws for PDHFSs

In this section, we propose some operational laws and the investigate some of their properties
associated with PDHFEs.

Definition 6. Let α, α1 and α2 be three PDHFEs such that α =
(
h|ph, g|qg

)
, α1 =

(
h1|ph1 , g1|qg1

)
and

α2 =
(
h2|ph2 , g2|qg2

)
. Then, for λ > 0, we define the Einstein operational laws for them as follows:
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(i) α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1− η1)(1− η2)

∣∣∣ qη1 qη2

})
;

(ii) α1 ⊗ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1γ2

1 + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

}
,
{

η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

})
;

(iii) λα =
⋃

γ∈h,
η∈g

({
(1+γ)λ−(1−γ)λ

(1+γ)λ+(1−γ)λ

∣∣ pγ

}
,
{

2(η)λ

(2−η)λ+(η)λ

∣∣ qη

})
;

(iv) αλ =
⋃

γ∈h,
η∈g

({
2(γ)λ

(2−γ)λ+(γ)λ

∣∣ pγ

}
,
{

(1+η)λ−(1−η)λ

(1+η)λ+(1−η)λ

∣∣ qη

})

Theorem 3. For real value λ > 0, the operational laws for PDHFEs given in Definition 6 that is α1 ⊕ α2 ,
α1 ⊗ α2, λα, and αλ are also PDHFEs.

Proof. For two PDHFEs α1 and α2, we have

α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1− η1)(1− η2)

∣∣∣ qη1 qη2

})

As 0 ≤ γ1, γ2, η1, η2 ≤ 1, thus it is evident that 0 ≤ γ1 + γ2 ≤ 2 and 1 ≤ 1 + γ1γ2 ≤ 2, thus it
follows that 0 ≤ γ1+γ2

1+γ1γ2
≤ 1. On the other hand, 0 ≤ η1η2 ≤ 1 and 1 ≤ 1 + (1− η1)(1− η2) ≤ 2. Thus,

0 ≤ η1η2
1+(1−η1)(1−η2)

≤ 1 Also, since 0 ≤ pγ1 , pγ2 , qη1 , qη2 ≤ 1, thus 0 ≤ pγ1 pγ2 ≤ 1 and 0 ≤ qη1 qη2 ≤ 1.

Similarly, α1 ⊗ α2 , λα and αλ are also PDHFEs.

Theorem 4. Let α1, α2, α3 be three PDHFEs and λ, λ1, λ2 > 0 be three real numbers, then following
results hold:

(i) α1 ⊕ α2 = α2 ⊕ α1;
(ii) α1 ⊗ α2 = α2 ⊗ α1;

(iii) (α1 ⊕ α2)⊕ α3 = α1 ⊕ (α2 ⊕ α3);
(iv) (α1 ⊗ α2)⊗ α3 = α1 ⊗ (α2 ⊗ α3);
(v) λ(α1 ⊕ α2) = λα1 ⊕ λα2;

(vi) αλ
1 ⊗ αλ

1 = (α1 ⊗ α2)
λ.

Proof. Let α1 =
(
h1|ph1 , g1|qg1

)
, α2 =

(
h2|ph2 , g2|qg2

)
, α3 =

(
h3|ph3 , g3|qg3

)
be three PDHFEs. Then,

we have

(i) For two PDHFEs α1 and α2, from Definition 6, we have

α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1− η1)(1− η2)

∣∣∣ qη1 qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ2 + γ1

1 + γ2γ1

∣∣∣ pγ2 pγ1

}
,
{

η2η1

1 + (1− η2)(1− η1)

∣∣∣ qη2 qη1

})

= α2 ⊕ α1

(ii) Proof is obvious so we omit it here.
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(iii) For three PDHFEs α1, α2 and α3, consider L.H.S. i.e.,

(α1 ⊕ α2)⊕ α3

=

 ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1− η1)(1− η2)

∣∣∣ qη1 qη2

})⊕ α3

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ1 + γ2 + γ3 + γ1γ2γ3

1 + γ1γ2 + γ2γ3 + γ3γ1

∣∣∣ pγ1 pγ2 pγ3

}
,
{

η1η2η3

4− 2η1 − 2η2 − 2η3 + η1η2 + η2η3 + η1η3

∣∣∣ qη1 qη2 qη3

})
(11)

Also, on considering the R.H.S., we have

α1 ⊕ (α2 ⊕ α3)

= α1 ⊕

 ⋃
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ2 + γ3

1 + γ2γ3

∣∣∣ pγ2 pγ3

}
,
{

η2η3

1 + (1− η2)(1− η3)

∣∣∣ qη2 qη3

})

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ1 + γ2 + γ3 + γ1γ2γ3

1 + γ1γ2 + γ2γ3 + γ3γ1

∣∣∣ pγ1 pγ2 pγ3

}
,
{

η1η2η3

4− 2η1 − 2η2 − 2η3 + η1η2 + η2η3 + η1η3

∣∣∣ qη1 qη2 qη3

})
(12)

From Equations (11) and (12), the required result is obtained.
(iv) Proof is obvious so we omit it here.
(v) For λ > 0, consider

λ(α1 ⊕ α2) = λ

 ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1 + γ1)(1 + γ2)− (1− γ1)(1− γ2)

(1 + γ1)(1 + γ2) + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

}
,
{

2η1η2

(2− η1)(2− η2) + η1η2

∣∣∣ qη1 qη2

})

For sake of convenience, put (1 + γ1)(1 + γ2) = a ; (1 − γ1)(1 − γ2) = b; η1η2 = c and
(2− η1)(2− η2) = d. This implies

λ(α1 ⊕ α2) = λ
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
a− b
a + b

∣∣∣ pγ1 pγ2 ,
}{

2c
d + c

∣∣∣ qη1 qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2



(

1 +
a− b
a + b

)λ

−
(

1− a− b
a + b

)λ

(
1 +

a− b
a + b

)λ

+
(

1− a− b
a + b

)λ

∣∣∣∣∣ pγ1 pγ2

,


2
(

2c
d + c

)λ

(
2− 2c

d + c

)λ

+
(

2c
d + c

)λ

∣∣∣∣∣ qη1 qη2




=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2



(

2a
a + b

)λ

−
(

2b
a + b

)λ

(
2a

a + b

)λ

+
(

2b
a + b

)λ

∣∣∣∣∣ pγ1 pγ2

,


2
(

2c
d + c

)λ

(
2d

d + c

)λ

+
(

2a
d + c

)λ

∣∣∣∣∣ qη1 qη2




=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(aλ − bλ)

(aλ + bλ)

∣∣∣ pγ1 pγ2

}
,
{

2cλ

dλ + cλ

∣∣∣ qη1 qη2

})

Re-substituting a, b, c and d we have

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1 + γ1)

λ (1 + γ2)
λ − (1− γ1)

λ (1− γ2)
λ

(1 + γ1)
λ (1 + γ2)

λ + (1− γ1)
λ (1− γ2)

λ

∣∣∣ pγ1 pγ2

}
,

{
2 (η1η2)

λ

(2− η1)
λ (2− η2)

λ + η1η2

∣∣∣ qη1 qη2

})

= λα1 ⊕ λα2
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(vi) For λ > 0,

(α1 ⊗ α2)
λ =

 ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2γ1γ2

1 + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

}
,
{
(1 + η1) (1 + η2)− (1− η1) (1− η2)

(1 + η1) (1 + η2) + (1− η1) (1− η2)

∣∣∣ qη1 qη2

})
λ

For sake of convenience, put

γ1γ2 = a; (2− γ1) (2− γ2) = b; (1 + η1) (1 + η2) = c and (1− η1) (1− η2) = d

So we obtain

(α1 ⊗ α2)
λ =

 ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2a

b + a
∣∣ pγ1 pγ2

}
,
{

c− d
c + d

∣∣∣ qη1 qη2

})
λ

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2




2
(

2a
b + a

)λ

(
2− 2a

b + a

)λ

+
(

2a
b + a

)λ

∣∣∣∣∣ pγ1 pγ2

,


(

1 +
c− d
c + d

)λ

−
(

1− c− d
c + d

)λ

(
1 +

c− d
c + d

)λ

+
(

1− c− d
c + d

)λ

∣∣∣∣∣ qη1 qη2




=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2




2
(

2a
b + a

)λ

(
2b

b + a

)λ

+
(

2a
b + a

)λ

∣∣∣∣∣ pγ1γ2

,


(

2c
c + d

)λ

−
(

2d
c + d

)λ

(
2c

c + d

)λ

+
(

2d
c + d

)λ

∣∣∣∣∣ qη1 qη2




=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2aλ

bλ + aλ

∣∣∣ pγ1 pγ2

}
,
{

cλ − dλ

cλ + dλ

∣∣∣ qη1 qη2

})

Re-substituting values of a, b, c and d we get

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2 (γ1γ2)

λ

(2− γ1)
λ (2− γ2)

λ + (γ1γ2)
λ

∣∣∣ pγ1 pγ2

}
,

{
(1 + η1)

λ (1 + η2)
λ − (1− η1)

λ (1− η2)
λ

(1 + η1)
λ (1 + η2)

λ + (1− η1)
λ (1− η2)

λ

∣∣∣ qη1 qη2

})

= αλ
1 ⊗ αλ

2

Theorem 5. Let α =
(
h|ph, g|qg

)
α1 =

(
h1|ph1 , g1|qg1

)
, and α2 =

(
h2|ph2 , g2|qg2

)
be three PDHFEs,

and λ > 0 be a real number, then

(i) (αc)λ = λαc;
(ii) λ(αc) = (αλ)c;

(iii) αc
1 ⊕ αc

2 = (α1 ⊗ α2)
c;

(iv) αc
1 ⊗ αc

2 = (α1 ⊕ α2)
c.

Proof. (i) Let α =
(
h|ph, g|qg

)
be a PDHFE, then using Definition 4, the proof for the three possible

cases is given as:

(Case 1) If h 6= φ; g 6= φ then for a PDHFE α =
(
h|ph, g|qg

)
, from Equation (7) we have

(αc)λ =

⋃
γ∈h
η∈g

({
η
∣∣∣ qη

}
,
{

γ
∣∣∣ pγ

})
λ

=
⋃
γ∈h
η∈g

({
2(η)λ

(2− η)λ + (η)λ

∣∣∣ qη ,
}

,
{
(1 + γ)λ − (1− γ)λ

(1 + γ)λ + (1− γ)λ

∣∣∣ pγ

})
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=

⋃
γ∈h
η∈g

({
(1 + γ)λ − (1− γ)λ

(1 + γ)λ + (1− γ)λ

∣∣∣ pγ

}
,
{

2(η)λ

(2− η)λ + (η)λ

∣∣∣ qη

})
c

=

λ

⋃
γ∈p
η∈q

{
γ
∣∣∣ pγ

}
,
{

η
∣∣∣ qη

}


c

= (λα)c

(Case 2) If g = φ, h 6= φ, then

(αc)λ =

⋃
γ∈h

({
1− γ

∣∣∣ pγ

}
, {φ}

)λ

=
⋃

γ∈h

({
2(1− γ)λ

(2− (1− γ))λ + (1− γ)λ

∣∣∣ pγ

}
, {φ}

)
= (λα)c

(Case 3) If h = φ, g = φ, then

(αc)λ =

(⋃
η∈g

(
{φ} ,

{
1− η

∣∣∣ qη

}))λ

=
⋃

η∈g

(
{φ} ,

{
(1 + (1− η))λ − (1− (1− η))λ

(1 + (1− η))λ + (1− (1− η))λ

∣∣∣ qη

})

=

(⋃
η∈g

({
(2− η)λ − (η)λ

(2− η)λ + (η)λ

∣∣∣ qη

}
, {φ}

))c

=

(
λ
⋃

η∈g

{
(1− η)

∣∣∣ qη

}
, {φ}

)c

= (λα)c

(ii) Similar to above, so it is omitted.
(iii) For two PDHFEs α1, α2 and a real number λ > 0, using Definitions 4 and 6 we have,

(Case 1) If h1 6= φ, g1 6= φ, h2 6= φ and g2 6= φ

αc
1 ⊕ αc

2

=
⋃

γ1∈h1
η1∈g1

({
η1

∣∣∣ qη1

}
,
{

γ1

∣∣∣ pγ1

})
⊕

⋃
γ2∈h2
η2∈g2

({
η2

∣∣∣ qη2

}
,
{

γ2

∣∣∣ pγ2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

}
,
{

γ1γ2

1 + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1γ2

1 + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

}
,
{

η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

})c

= (α1 ⊗ α2)
c
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(Case 2) If h1 6= φ, g1 = φ, h2 6= φ and g2 = φ, then

αc
1 ⊕ αc

2 =
⋃

γ1∈h1,
η1∈g1

({
1− γ1

∣∣∣ pγ1

}
, {φ}

)
⊕

⋃
γ2∈h2,
η2∈g2

({
1− γ2

∣∣∣ pγ2

}
, {φ}

)

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1− γ1) + (1− γ2)

1 + (1− γ1)(1− γ2)

∣∣∣ pγ1 pγ2

}
, {φ}

)

= (α1 ⊗ α2)
c

(Case 3) If h1 = φ, g1 6= φ, h2 = φ, g2 6= φ

αc
1 ⊕ αc

2 =
⋃

γ1∈h1
η1∈g1

(
{φ} ,

{
1− η1

∣∣∣ qη1

})
⊕

⋃
γ2∈h2
η2∈g2

(
{φ} ,

{
1− η2

∣∣∣ qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

(
{φ} ,

{
(1− η1)(1− η2)

1 + η1η2

∣∣∣ qη1 qη2

})

= (α1 ⊗ α2)
c

(iv) Similar, so we omit it here.

5. Probabilistic Dual Hesitant Weighted Einstein AOs

In this section, we have defined some weighted aggregation operators by using aforementioned
laws for a collection of PDHFEs. For it, let Ω be the family of PDHFEs.

Definition 7. Let Ω be the family of PDHFEs αi (i = 1, 2, . . . , n) with the corresponding weights

ω = (ω1, ω2, . . . , ωn)T , such that ωi > 0 and
n
∑

i=1
ωi = 1. If PDHFWEA: Ωn → Ω, is a mapping defined by

PDHFWEA(α1, α2, . . . , αn) = ω1α1 ⊕ω2α2 ⊕ . . .⊕ωnαn (13)

then, PDHFWEA is called probabilistic dual hesitant fuzzy weighted Einstein average operator.

Theorem 6. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the aggregated value obtained

by using PDHFWEA operator is still a PDHFE and is given as

PDHFWEA(α1, α2, . . . , αn) =
⋃

γi∈hi
ηi∈gi




n
∏
i=1

(1 + γi)
ωi −

n
∏
i=1

(1− γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1− γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

 ,


2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(2− ηi)ωi +
n
∏
i=1

(ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi




(14)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. We will prove the Equation (14) by following the steps mathematical induction on n, and the
proof is executed as below:
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(Step 1) For n = 2, we have α1 =
(

h1

∣∣∣ ph1 , g1

∣∣∣ qg1

)
and α2 =

(
h2

∣∣∣ ph2 , g2

∣∣∣ qg2

)
. Using operational

laws on PDHFEs as stated in Definition 6 we get

ω1α1 =
⋃

γ1∈h1,η1∈g1


{
(1 + γ1)

ω1 − (1− γ1)
ω1

(1 + γ1)ω1 + (1− γ1)ω1

∣∣∣ pγ1

}
,{

2(η1)
ω1

(2− η1)ω1 + (η1)ω1

∣∣∣ qη1

}


and ω2α2 =
⋃

γ2∈h2,η2∈g2


{
(1 + γ2)

ω2 − (1− γ2)
ω2

(1 + γ2)ω2 + (1− γ2)ω2

∣∣∣ pγ2

}
,{

2(η2)
ω2

(2− η2)ω2 + (η2)ω2

∣∣∣ qη2

}


Hence, by addition of PDHFEs, we get

PDHFWEA(α1, α2) = ω1α1 ⊕ω2α2

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2




2

∏
i=1

(1 + γi)
ωi −

2
∏
i=1

(1− γi)
ωi

2
∏
i=1

(1 + γi)ωi +
2

∏
i=1

(1− γi)ωi

∣∣∣∣∣ 2

∏
i=1

pγi

 ,


2

2
∏
i=1

(ηi)
ωi

2
∏
i=1

(2− ηi)ωi +
2

∏
i=1

(ηi)ωi

∣∣∣∣∣ 2

∏
i=1

qηi




Thus, the result holds for n = 2.

(Step 2) If Equation (14) holds for n = k, then for n = k + 1, we have

PDHFWEA(α1, α2, . . . , αk+1) =

(
k⊕

i=1

ωiαi

)
⊕ (ωk+1αk+1)

=
⋃

γi∈hi ,ηi∈gi




k
∏
i=1

(1 + γi)
ωi −

k
∏
i=1

(1− γi)
ωi

k
∏
i=1

(1 + γi)ωi +
k

∏
i=1

(1− γi)ωi

∣∣∣∣∣ k

∏
i=1

pγi

,


2

k
∏
i=1

(ηi)
ωi

k
∏
i=1

(2− ηi)ωi +
k

∏
i=1

(ηi)ωi

∣∣∣∣∣ k

∏
i=1

qηi




⊕ ⋃
γk+1∈hk+1,
ηk+1∈gk+1

({
(1 + γk+1)

ωk+1 − (1− γk+1)
ωk+1

(1 + γk+1)
ωk+1 + (1− γk+1)

ωk+1

∣∣∣ pγk+1 ,
}

,
{

2(ηk+1)
ωk+1

(2− ηk+1)
ωk+1 + (ηk+1)

ωk+1

∣∣∣ qηk+1

})

=
⋃

γi∈hi ,ηi∈gi




k+1
∏
i=1

(1 + γi)
ωi −

k+1
∏
i=1

(1− γi)
ωi

k+1
∏
i=1

(1 + γi)ωi +
k+1
∏
i=1

(1− γi)ωi

∣∣∣∣∣ k+1

∏
i=1

pγi

,


2

k+1
∏
i=1

(ηi)
ωi

k+1
∏
i=1

(2− ηi)ωi +
k+1
∏
i=1

(ηi)ωi

∣∣∣∣∣ k+1

∏
i=1

qηi




Thus,

PDHFWEA(α1, α2, . . . , αn)

=
⋃

γi∈hi
ηi∈gi




n
∏
i=1

(1 + γi)
ωi −

n
∏
i=1

(1− γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1− γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

 ,


2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(2− ηi)ωi +
n
∏
i=1

(ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi




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which completes the proof.

Further, it is observed that the proposed PDHFWEA operator satisfies the properties of
boundedness and monotonicity, for a family of PDHFEs αi, (i = 1, 2, . . . , n) which can be demonstrated
as follows:

Property 1. (Boundedness) For αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n),

let α− =
(

min(hi)
∣∣∣ min(phi

) , max(gi)
∣∣∣ max(qgi )

)
=
({

γmin

∣∣∣ pmin

}
,
{

ηmax

∣∣∣ qmax

})
and

α+ =
(

max(hi)
∣∣∣ max(phi

), min(gi)
∣∣∣ min(qgi )

)
=
({

γmax

∣∣∣ pmax

}
,
{

ηmin

∣∣∣ qmin

})
be PDHFEs,

then α− ≤ PDHFWEA(α1, α2, . . . , αn) ≤ α+.

Proof. Since each αi is a PDHFE, it is obvious that min(hi) ≤ hi ≤ max(hi), min(gi) ≤ gi ≤
max(gi), pmin ≤ pi ≤ pmax and qmin ≤ qi ≤ qmax. Let f (x) = 1−x

1+x , x ∈ [0, 1], f ′(x) = −2
(1+x)2 < 0

i.e., f (x) is a decreasing function. Since, γmin ≤ γi ≤ γmax, for all i, then f (γmax) ≤ f (γi) ≤ f (γmin)

i.e., 1−γmax
1+γmax

≤ 1−γi
1+γi

≤ 1−γmax
1+γmax

. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of (α1, α2, . . . , αn) such

that each ωi ∈ (0, 1) and
n
∑

i=1
ωi = 1, then we have

(
1− γmax

1 + γmax

)ωi

≤
(

1− γi
1 + γi

)ωi

≤
(

1− γmin

1 + γmin

)ωi

Thus, we get

1 +
(

1− γmax

1 + γmax

)
≤ 1 +

n

∏
i=1

(
1− γi
1 + γi

)ωi

≤ 1 +
(

1− γmin

1 + γmin

)

⇒ 2
1 + γmax

≤

n
∏
i=1

(1 + γi)
ωi +

n
∏
i=1

(1− γi)
ωi

n
∏
i=1

(1 + γi)ωi

≤ 2
1 + γmin

⇒ γmin ≤
1−

n
∏
i=1

(
1−γi
1+γi

)ωi

1 +
n
∏
i=1

(
1−γi
1+γi

)ωi
≤ γmax

⇒ γmin ≤

n
∏
i=1

(1 + γi)
ωi −

n
∏
i=1

(1− γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1− γi)ωi

≤ γmax

Hence, we obtain the required result for membership values.
Now, for non-membership, let c(y) = 2−y

y , y ∈ (0, 1], then c′(y) < 0 i.e., c(y) is the decreasing

function. Since, ηmin ≤ ηi ≤ ηmax, then for all i, we have c(ηmax) ≤ c(ηi) ≤ c(ηmin), that is 2−ηmax
ηmax

≤
2−ηi

ηi
≤ 2−ηmin

ηmin
. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of (α1, α2, . . . , αn) such that ωi ∈ (0, 1)

and
n
∑

i=1
ωi = 1, then
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(
2− ηmax

ηmax

)ωi

≤
(

2− ηi
ηi

)ωi

≤
(

2− ηmin

ηmin

)ωi

Thus,
n

∏
i=1

(
2− ηmax

ηmax

)ωi

≤
n

∏
i=1

(
2− ηi

ηi

)ωi

≤
n

∏
i=1

(
2− ηmin

ηmin

)ωi

⇒ 2
ηmin

≤ 1

1 +
n
∏
i=1

(
2−ηi

ηi

)ωi
≤ 2

ηmax

⇒ ηmin ≤
2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(ηi)ωi +
n
∏
i=1

(2− ηi)ωi

≤ ηmax

Hence, the required for non-membership values is obtained.
Now, for probabilities, since pmin ≤ pi ≤ pmax and qmin ≤ qi ≤ qmax this implies that

n
∏
i=1

pmin ≤
n
∏
i=1

pi ≤
n
∏
i=1

pmax and
n
∏
i=1

qmin ≤
n
∏
i=1

qi ≤
n
∏
i=1

qmax. According to the score function,

as defined in Definition 5, we obtain S(α−) ≤ S(α) ≤ S(α+). Hence, from all the above notions,
α− ≤ PDHFWEA(α1, α2, . . . , αn) ≤ α+.

Property 2. (Monotonicity) Let αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
and α∗i =

(
h∗i
∣∣∣ ph∗i

, g∗i
∣∣∣ qg∗i

)
, for all

i = (1, 2, . . . , n) be two families of PDHFEs where for each element in αi and α∗i , there are γαi ≤ γα∗i
and

ηαi ≥ ηα∗i
while the probabilities remain the same i.e., phi

= ph∗i
, qgi = qg∗i

then PDHFWEA(α1, α2, . . . , αn) ≤
PDHFWEA(α∗1 , α∗2 , . . . , α∗n).

Proof. Similar to that of Property 1, so we omit it here.

However, the PDHFWEA operator does not satisfy the idempotency. To illustrate this, we give
the following example:

Example 1. Let α1 = α2 =
({

0.3
∣∣0.25, 0.4

∣∣0.75
}

,
{

0.2
∣∣0.4, 0.3

∣∣0.6
})

be two PDHFEs and ω = (0.2, 0.8)T

be the weight vector, then for (i = 1, 2) the aggregated value using PDHFWEA operator is obtained as

PDHFWEA(α1, α2) =
⋃

γi∈hi
ηi∈gi




2

∏
i=1

(1 + γi)
ωi −

2
∏
i=1

(1− γi)
ωi

n
∏
i=1

(1 + γi)ωi +
2

∏
i=1

(1− γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

 ,


2

2
∏
i=1

(ηi)
ωi

2
∏
i=1

(2− ηi)ωi +
2

∏
i=1

(ηi)ωi

∣∣∣∣∣ 2

∏
i=1

qηi





=


{

0.3
∣∣0.625, 0.3807

∣∣0.1875, 0.3206
∣∣0.1875, 0.4

∣∣0.5625
}

,{
0.2
∣∣0.16, 0.2772

∣∣0.24, 0.2173
∣∣0.24, 0.30

∣∣0.36
}


which clearly shows that PDHFWEA(α1, α1) 6= α1. Thus, it does not satisfy idempotency.

Definition 8. Let αi (i = 1, 2, . . . , n) be the collection of PDHFEs, and PDHFOWEA: Ωn → Ω, if

PDHFOWEA(α1, α2, . . . , αn) = ω1ασ(1) ⊕ω2ασ(2) ⊕ . . .⊕ωnασ(n) (15)
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where Ω is the set of PDHFEs and ω = (ω1, ω2, . . . , ωn)T is the weight vector of αi such that ωi > 0

and
n
∑

i=1
ωi = 1. (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that ασ(i−1) ≥ ασ(i) for

(i = 2, 3, . . . , n), then PDHFOWEA is called probabilistic dual hesitant fuzzy ordered weighted Einstein AO.

Theorem 7. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value obtained

by using PDHFOWEA operator is given as

PDHFOWEA(α1, α2, . . . , αn) =
⋃

γσ(i)∈hσ(i),
ησ(i)∈gσ(i)




n
∏
i=1

(1 + γσ(i))
ωσ(i) −

n
∏
i=1

(1− γσ(i))
ωσ(i)

n
∏
i=1

(1 + γσ(i))
ωσ(i) +

n
∏
i=1

(1− γσ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

pγσ(i)

,


2

n
∏
i=1

(ησ(i))
ωσ(i)

n
∏
i=1

(2− ησ(i))
ωσ(i) +

n
∏
i=1

(ησ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

qησ(i)




(16)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Similar to Theorem 6.

Property 3. For all PDHFEs, αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n) and for an associated weight

vector ω = (ω1, ω2, . . . , ωn)T , such that each ωi > 0 and
n
∑

i=1
ωi = 1, we have

(P1) (Boundedness) For αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n), let α− =(

min(hi)
∣∣∣ min(phi

), max(gi)
∣∣∣ max(qgi )

)
=

({
γmin

∣∣∣ pmin

}
,
{

ηmax

∣∣∣ qmax

})
and α+ =(

max(hi)
∣∣∣ max(phi

), min(gi)
∣∣∣ min(qgi )

)
=

({
γmax

∣∣∣ pmax

}
,
{

ηmin

∣∣∣ qmin

})
be PDHFEs,

then α− ≤ PDHFOWEA(α1, α2, . . . , αn) ≤ α+.

(P2) (Monotonicity) Let αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
and α∗i =

(
h∗i
∣∣∣ ph∗i

, g∗i
∣∣∣ qg∗i

)
, for all i = (1, 2, . . . , n)

be two families of PDHFEs where for each element in αi and α∗i , there are γαi ≤ γα∗i
and ηαi ≥ ηα∗i

while the probabilities remain the same i.e., phi
= ph∗i

, qgi = qg∗i
then PDHFOWEA(α1, α2, . . . , αn) ≤

PDHFOWEA(α∗1 , α∗2 , . . . , α∗n).

Proof. Similar to Properties 1 and 2.

Definition 9. Let Ω be a family of all PDHFEs αi (i = 1, 2, . . . , n) with the corresponding weights

ω = (ω1, ω2, . . . , ωn)T , such that ωi > 0 and
n
∑

i=1
ωi = 1. If PDHFWEG: Ωn → Ω, is a mapping defined by

PDHFWEG(α1, α2, . . . , αn) = αω1
1 ⊗ αω2

2 ⊗ . . .⊗ αωn
n (17)

then, PDHFWEG is called probabilistic dual hesitant fuzzy weighted Einstein geometric operator.

Theorem 8. For a collection of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value

obtained by using PDHFWEG operator is still a PDHFE and is given as
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PDHFWEG(α1, α2, . . . , αn)

=
⋃

γi∈hi ,ηi∈gi




2

n
∏
i=1

(γi)
ωi

n
∏
i=1

(2− γi)ωi +
n
∏
i=1

(γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

 ,


n
∏
i=1

(1 + ηi)
ωi −

n
∏
i=1

(1− ηi)
ωi

n
∏
i=1

(1 + ηi)ωi +
n
∏
i=1

(1− ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi




(18)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Same as Theorem 6.

Also, it has been seen that the PDHFWEG operator satisfies the properties of boundedness
and monotonicity.

Definition 10. Let αi (i = 1, 2, . . . , n) be the family of PDHFEs, and PDHFOWEG: Ωn → Ω, if

PDHFOWEG(α1, α2, . . . , αn) = αω1
σ(1) ⊕ αω2

σ(2) . . .⊕ αωn
σ(n) (19)

where Ω is the set of PDHFEs and ω = (ω1, ω2, . . . , ωn)T is the weight vector of αi such that ωi > 0

and
n
∑

i=1
ωi = 1. (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that ασ(i−1) ≥ ασ(i) for

(i = 2, 3, . . . , n), then PDHFOWEG is called probabilistic dual hesitant fuzzy ordered weighted Einstein
geometric operator.

Theorem 9. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value obtained

by using PDHFOWEG operator is given as

PDHFOWEG(α1, α2, . . . , αn)

⋃
γσ(i)∈hσ(i) ,
ησ(i)∈gσ(i)




2

n
∏
i=1

(γσ(i))
ωσ(i)

n
∏
i=1

(2− γσ(i))
ωσ(i) +

n
∏
i=1

(γσ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

pγσ(i)

 ,


n
∏
i=1

(1 + ησ(i))
ωσ(i) −

n
∏
i=1

(1− ησ(i))
ωσ(i)

n
∏
i=1

(1 + ησ(i))
ωσ(i) +

n
∏
i=1

(1− ησ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

qησ(i)




(20)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Similar to Theorem 6.

Also, it has been seen that the PDHFOWEG operator satisfies the properties of boundedness
and monotonicity.

6. Maximum Deviation Method for Determination the Weights

The choice of weights directly affects the performance of weighted aggregation operators. For this
purpose, in this subsection, the effective maximizing deviation method is adapted to calculate the
weights in MCDM when the weights are unknown or partially known.
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Given the set of alternatives A = {A1, A2, . . . , Am} and the set of criteria C = {C1, C2, . . . , Ct}
which is being evaluated by a decision maker under the PDHFS environment over the universal set
X = {x1, x2, . . . , xn}. Assume that the rating values corresponding to each alternative is expressed in
terms of PDHFEs as

Ar =

{
(C1, sr1) , (C2, sr2) , . . . , (Ct, srv)

}
, (21)

where srv =
(
hrv(xk)

∣∣prv(xk), grv(xk)
∣∣qrv(xk)

)
, where r = 1, 2, . . . , m; v = 1, 2, . . . , t, k = 1, 2, . . . , n.

Assume that the importance of each criterion are given in the form of weights as (ω1, ω2, . . . , ωt)

respectively such that 0 < ωv ≤ 1 and
t

∑
v=1

ωv = 1. Now, by using the proposed distances d1 in

Equation (9) or d2 in (10) ; the deviation measure between the alternative Ar and all other alternatives
with respect to the criteria Cv is given as:

Drv(ω) =
m

∑
b=1

wvD(srv, sbv) r = 1, 2, . . . , m; v = 1, 2, . . . , t (22)

In accordance to the notion of maximizing deviation method, if the distance between the
alternatives is smaller for a criteria, then it should have smaller weight. This one shows that the
alternatives are homologous to the criterion. Contrarily, it should have larger weights. Let,

Dv(ω) =
m

∑
r=1

Drv(ω) =
m

∑
r=1

m

∑
b=1

wvD(srv, sbv), v = 1, 2, . . . , t (23)

Here Dv(ω) represents the distance of all the alternatives to the other alternatives under the
criteria Cv ∈ C. Moreover, ‘D’ represents either distance d1 or d2 as given in Equations (9) and (10)
respectively. Based on the concept of maximum deviation, we have to choose a weight vector ‘ω’ to
maximize all the deviations measures for the criteria. For this, we construct a non-linear programming
model as given below:

max D(ω) =
t

∑
v=1

m
∑

r=1
Drv(ω) =

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)ωv

s.t. ωv > 0;
t

∑
v=1

ωv = 1; v = 1, 2, . . . , t
(24)

where ‘D’ can be either d1 or d2.
If D = d1, then for λ > 0, we have

D(ω) =
t

∑
v=1

m

∑
r=1

m

∑
b=1

ωv


n

∑
k=1

1
n

 1
M + N


M

∑
i=1

∣∣(γAi (xk)pAi (xk))(xrv)− (γBi (xk)pBi (xk))(xbv)
∣∣λ

+
N

∑
j=1

∣∣∣(ηAj(xk)qAj(xk))(xrv)− (ηBj(xk)qBj(xk))(xbv)
∣∣∣λ




1
λ

;

and if D = d2, then

D(ω) =
t

∑
v=1

m
∑

r=1

m
∑

b=1
ωv


n
∑

k=1

1
n



∣∣∣∣∣ 1
MA

MA
∑

i=1

(
γAi (xk)pAi (xk)

)
(xrv)− 1

MB

MB
∑

i′=1

(
γBi′

(xk)pBi′
(xk)

)
(xbv)

∣∣∣∣∣
λ

2

+

∣∣∣∣∣ 1
NA

NA
∑

j=1

(
ηAj(xk)qAj(xk)

)
(xrv)− 1

NB

NB
∑

j′=1

(
ηBj′

(xk)qBj′
(xk)

)
(xbv)

∣∣∣∣∣
λ

2





1
λ
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If the information about criteria weights is completely unknown, then another programming
method can be established as:

max D(ω) =
t

∑
v=1

m
∑

r=1
Drv(ω) =

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)ωv

s.t. ωv ≥ 0;
n
∑

v=1
ω2

v = 1; v = 1, 2, . . . , t
(25)

To solve this, a Lagrange’s function is constructed as

L(ω, ζ) =
t

∑
v=1

m

∑
r=1

m

∑
b=1

D(srv, sbv)ωv +
ζ

2

(
t

∑
v=1

ω2
v − 1

)
(26)

where ζ is the Lagrange’s parameter. Computing the partial derivatives of Lagrange’s function w.r.t
ωv as well as ζ and letting them equal to zero.

∂L
∂ωv

=
m
∑

r=1

m
∑

b=1
D(srv, sbv) + ζωv = 0; v = 1, 2, . . . , t

∂L
∂ζ =

t
∑

v=1
ω2

v − 1 = 0
(27)

Solving, Equation (27) we can obtain,

ωv =

m
∑

r=1

m
∑

b=1
D(srv, sbv)√

t
∑

v=1

(
m
∑

r=1

m
∑

b=1
D(srv, sbv)

)2
; v = 1, 2, . . . , t (28)

Normalizing Equation (28) we get

ωv =

m
∑

r=1

m
∑

b=1
D(srv, sbv)

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)

(29)

In DM process, the data values for evaluation are available as DHFSs or PDHFSs which are
integrated to form the PDHFSs. In order to gather the information, the probability values are assigned
to each possible membership or non-membership value. An algorithm followed for this information
fusion is outlined in Algorithm 1.
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Algorithm 1 Aggregating probabilities for more than one Probabilistic fuzzy sets.

Input: α(1), α(2), . . . , α(d) where α(d) =
(

h(d)
∣∣p(d)) where d = 1, 2, . . . , D such that D is the total

number of elements to be fused together.
Output: α(out) =

(
h(out)

∣∣p(out)
)

1: Let u = 1
D , be the normalized unit.

2: List all the probabilistic membership values in a set and represent it as M = {ml
∣∣sl}, where

ml
∣∣sl = h(d)

∣∣p(d), ∀d = 1, 2, . . . , D, and l = 1, 2, . . . , #L, such that #L is the total number of
probabilistic membership values of all the considered elements.

3: Set i = 1
4: Set me = mi

5: f (l)
(mem)

=

{
1, if me = ml

0, if me 6= ml

6: Set l = l + 1 and repeat 5, until l = #L
7: Set h(out) =

⋃
i

me

8: p(out) =

(
∑
l

(
f (l)
(mem)

· sl

)
· u
)

9: Set i = i + 1 and goto 4, until i = #L

To demonstrate the working of aforementioned algorithm, an example is given below.

Example 2. Let α(1) =
(
{0.1

∣∣0.1, 0.2
∣∣0.5, 0.3

∣∣0.4}, {0.5
∣∣1}); α(2) =

(
{0.2

∣∣0.4, 0.3
∣∣0.6} ,

{0.5
∣∣0.2, 0.6

∣∣0.8}
)

and α(3) =
(
{0.1

∣∣0.4, 0.2
∣∣0.4, 0.6

∣∣0.2}, {0.1
∣∣1}) be three

PDHFEs to be fused together. Since,
(

h(1), p(1)
)

=
(
{0.1

∣∣0.1, 0.2
∣∣0.5, 0.3

∣∣0.4}
)
,(

h(2), p(2)
)
=
(
{0.2

∣∣0.4, 0.3
∣∣0.6}

)
and

(
h(3), p(3)

)
=

(
{0.1

∣∣0.4, 0.2
∣∣0.4, 0.6

∣∣0.2}
)
, so we get

M = {0.1
∣∣0.1, 0.2

∣∣0.5, 0.3
∣∣0.4, 0.2

∣∣0.4, 0.3
∣∣0.6, 0.1

∣∣0.4, 0.2
∣∣0.4, 0.6

∣∣0.2} where #L = 8 and thus
l = 1, 2, . . . , 8. Clearly, here D = 3. Now, by following Algorithm 1 for both membership and
non-membership degrees, we obtained the final PDHFE as:

α(out) =
(
{0.1

∣∣0.1667, 0.2
∣∣0.4333, 0.3

∣∣0.3333, 0.6
∣∣0.066}, {0.5

∣∣0.4, 0.6
∣∣0.2666, 0.1

∣∣0.3333}
)

7. Decision Making Approach Using the Proposed Operators

In this section, a DM approach based on proposed AOs is given followed by a numerical example.

7.1. Approach Based on the Proposed Operators

Consider a set of m alternatives A = {A1, A2, . . . , Am} which are evaluated by the experts
classified under criteria information C = {C1, C2, . . . , Ct}. The ratings for each alternative in PDHFEs
are given as:

Ar =

{
(C1, αr1) , (C2, αr2) , . . . , (Ct, αrv)

}
, (30)

where αrv =
(
hrv
∣∣prv, grv

∣∣qrv
)
, where r = 1, 2, . . . , m; v = 1, 2, . . . , t. In order to get the best

alternative(s) for a problem, DM approach is summarized in the following steps by utilizing proposed
AOs as:
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Step 1: Construct decision matrices R(d) for ‘d’ number of decision makers in form of PDHFEs as:

R(d) =

C1 C2 . . . Ct


A1

(
h(d)11

∣∣p(d)11 , g(d)11

∣∣q(d)11

) (
h(d)12

∣∣p(d)12 , g(d)12

∣∣q(d)12

)
. . .

(
h(d)1t

∣∣p(d)1t , g(d)1t

∣∣q(d)1t

)
A2

(
h(d)21

∣∣p(d)21 , g(d)21

∣∣q(d)21

) (
h(d)22

∣∣p(d)22 , g(d)22

∣∣q(d)22

)
. . .

(
h(d)2t

∣∣p(d)2t , g(d)2t

∣∣q(d)2t

)
...

...
...

. . .
...

Am

(
h(d)m1

∣∣p(d)m1 , g(d)m1

∣∣q(d)m1

) (
h(d)m2

∣∣p(d)m2 , g(d)m2

∣∣q(d)m2

)
. . .

(
h(d)mt

∣∣p(d)mt , g(d)mt
∣∣q(d)mt

)

where
(

h(d)rv
∣∣p(d)rv , g(d)rv

∣∣q(d)rv

)
=
({

γ
(d)
rv
∣∣p(d)rv

}
,
{

η
(d)
rv
∣∣q(d)rv

})
, such that r = 1, 2, . . . , m and

v = 1, 2, . . . , t .
Step 2: If d = 1, then

(
h(d)rv

∣∣p(d)rv , g(d)rv
∣∣q(d)rv

)
is equal to

(
hrv
∣∣prv, grv

∣∣qrv
)

, where
(
hrv
∣∣prv, grv

∣∣qrv
)

=
({

γrv
∣∣prv

}
,
{

ηrv
∣∣qrv

})
; such that r = 1, 2, . . . , m and v = 1, 2, . . . , t and goto Section 7.1

Step 3. If d ≥ 2, then a matrix is formed by combining the probabilities in accordance to the
Algorithm 1. The comprehensive matrix so obtained is given as:

R =

C1 C2 . . . Ct


A1
(
h11
∣∣p11, g11

∣∣q11
) (

h12
∣∣p12, g12

∣∣q12
)

. . .
(
h1t
∣∣p1t, g1t

∣∣q1t
)

A2
(
h21
∣∣p21, g21

∣∣q21
) (

h22
∣∣p22, g22

∣∣q22
)

. . .
(
h2t
∣∣p2t, g2t

∣∣q2t
)

..
.

..
.

..
.

... ..
.

Am
(
hm1
∣∣pm1, gm1

∣∣qm1
) (

hm2
∣∣pm2, gm2

∣∣qm2
)

. . .
(
hmt
∣∣pmt, gmt

∣∣qmt
)

where
(
hrv
∣∣prv, grv

∣∣qrv
)
=
({

γrv
∣∣prv

}
,
{

ηrv
∣∣qrv

})
, where r = 1, 2, . . . , m and v = 1, 2, . . . , t.

Step 3: Choose the appropriate distance measure among d1 or d2 as given in Equations (9) and (10),
on the basis of need the expert. If the repeated values of the largest or smallest dual-hesitant
probabilistic values can be repeated according to the optimistic or pessimistic behavior of
the expert then choose measure d1 otherwise choose measure d2 and determine the weights
of different criteria using Equation (29).

Step 4: Compute the overall aggregated assessment ‘Qr’ of alternatives using PDHFWEA
or PDHFOWEA or PDHFWEG or PDHFOWEG operators as given below in
Equations (31)–(34) respectively.

Qr = PDHFWEA(αr1, αr2, . . . , αrv)

=
⋃

γrv∈hrv
ηrv∈grv




t

∏
v=1

(1 + γrv)ωv −
t

∏
v=1

(1− γrv)ωv

t
∏

v=1
(1 + γrv)ωv +

t
∏

v=1
(1− γrv)ωv

∣∣∣∣∣ t

∏
v=1

pγrv

 ,


2

t
∏

v=1
(ηrv)ωv

t
∏

v=1
(2− ηrv)ωv +

t
∏

v=1
(ηrv)ωv

∣∣∣∣∣ t

∏
v=1

qηrv




(31)
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or

Qr = PDHFOWEA(αr1, αr2, . . . , αrv)

=
⋃

γσ(rv)∈hσ(rv)
ησ(rv)∈gσ(rv)




t

∏
v=1

(1 + γσ(rv))
ωσ(v) −

t
∏

v=1
(1− γσ(rv))

ωσ(v)

t
∏

v=1
(1 + γσ(rv))

ωσ(v) +
t

∏
v=1

(1− γσ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

pγσ(rv)

 ,


2

t
∏

v=1
(ησ(rv))

ωσ(v)

t
∏

v=1
(2− ησ(rv))

ωσ(v) +
t

∏
v=1

(ησ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

qησ(rv)




(32)

or

Qr = PDHFWEG(αr1, αr2, . . . , αrv)

=
⋃

γrv∈hrv
ηrv∈grv




2

t
∏

v=1
(γrv)ωv

t
∏

v=1
(2− γrv)ωv +

t
∏

v=1
(γrv)ωv

∣∣∣∣∣ t

∏
v=1

pγrv

 ,


t

∏
v=1

(1 + ηrv)ωv −
t

∏
v=1

(1− ηrv)ωv

t
∏

v=1
(1 + ηrv)ωv +

t
∏

v=1
(1− ηrv)ωv

∣∣∣∣∣ t

∏
v=1

qηrv




(33)

or

Qr = PDHFOWEG(αr1, αr2, . . . , αrv)

=
⋃

γσ(rv)∈hσ(rv)
ησ(rv)∈gσ(rv)




2

t
∏

v=1
(γσ(rv))

ωσ(v)

t
∏

v=1
(2− γσ(rv))

ωσ(v) +
t

∏
v=1

(γσ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

pγσ(rv)

 ,


t

∏
v=1

(1 + ησ(rv))
ωσ(v) −

t
∏

v=1
(1− ησ(rv))

ωσ(v)

t
∏

v=1
(1 + ησ(rv))

ωσ(v) +
t

∏
v=1

(1− ησ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

qησ(rv)

 ,


(34)

Step 5: Utilize Definition 5 to rank the overall aggregated values and select the most desirable
alternative(s).

7.2. Illustrative Example

An illustrative example (based on consumer’s buying behavior) for eliciting the numerical
applicability of our proposed approach is given below:

In a company’s production oriented decision-making processes, consumers or buyers play a vital
role. In order to increase sales and to be in good books of every customer, every production company
pays a great attention to customer’s buying behavior. This consumer behavior is the main driving force
behind the change of trends, need of updation in the products etc., to which the production company
must remain in contact to have a great mutual relationship with the customers and to maintain a strong
position in the competitive market environment.

Suppose a multi-national company wants to launch the new products on the basis of different
consumers in different countries. For that, they have delegated works to the company heads of three
different countries viz. India, Canada, and Australia. The company heads of these countries have to
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analyze the customer’s buying behavior and for that, they have information available in the form of
PDHFEs. Each expert (d = 1, 2, 3) from the three different countries accessed the available information
oriented to four company products Ai’s where (i = 1, 2, 3, 4) classified under four criteria determining
the customer’s buying behavior namely C1 : ‘Suitability to cultural environment’; C2 : ‘Global trend
accordance’; C3 : ‘Suitability to weather conditions’ ; C4 : ‘Good quality after-sale services’. The aim of
the company is to access the main criteria which affect the customer’s buying behavior so as to figure
out which product among Ai’s (i = 1, 2, 3, 4) has to be launched first. Following steps are adopted to
find the most suitable product for the first launch.

Step 1: The preference information corresponding to three decision-makers (d = 1; 2; 3) is given in
Tables 1–3.

Table 1. Preference values provided by decision-maker 1.

C1 C2 C3 C4

A1

({
0.2
∣∣0.4, 0.3

∣∣0.6
}{

0.4
∣∣1}

) ({
0.45

∣∣0.42, 0.60
∣∣0.58

}{
0.2
∣∣0.4, 0.3

∣∣0.6
} ) ({

0.9
∣∣1}{

0.1
∣∣1}
) ({

0.6
∣∣1}{

0.3
∣∣1}
)

A2

({
0.8
∣∣0.9, 0.6

∣∣0.1
}{

0.1
∣∣1}

) ({
0.30

∣∣1}{
0.6
∣∣1}

) ( {
0.6
∣∣1}{

0.2
∣∣0.5, 0.1

∣∣0.5
}) ({

0.2
∣∣1}{

0.8
∣∣1}
)

A3

({
0.05

∣∣0.7, 0.2
∣∣0.3

}{
0.5
∣∣1}

) ({
0.50

∣∣1}{
0.5
∣∣1}

) ({
0.8
∣∣0.6, 0.6

∣∣0.4
}{

0.15
∣∣1}

) ( {
0.12

∣∣1}{
0.7
∣∣0.9, 0.6

∣∣0.1
})

A4

( {
0.4
∣∣1}{

0.3
∣∣0.5, 0.2

∣∣0.5
}) ( {

0.50
∣∣1}{

0.2
∣∣0.3, 0.4

∣∣0.7
}) ({

0.3
∣∣1}{

0.65
∣∣1}
) ( {

0.5
∣∣1}{

0.2
∣∣0.3, 0.4

∣∣0.7
})

Table 2. Preference values provided by decision-maker 2.

C1 C2 C3 C4

A1

({
0.3
∣∣0.5, 0.5

∣∣0.5
}{

0.4
∣∣1}

) ({
0.20

∣∣1}{
0.7
∣∣0.1

}) ( {
0.2
∣∣1}{

0.4
∣∣0.8, 0.6

∣∣0.2
}) ({

0.6
∣∣0.7, 0.7

∣∣0.3
}{

0.25
∣∣1}

)

A2

({
0.2
∣∣1}{

0.7
∣∣1}
) ({

0.30
∣∣0.5, 0.2

∣∣0.5
}{

0.20
∣∣0.5, 0.15

∣∣0.5
}) ({

0.2
∣∣1}{

0.6
∣∣1}
) ({

0.2
∣∣0.3, 0.3

∣∣0.7
}{

0.6
∣∣1}

)

A3

({
0.4
∣∣0.4, 0.5

∣∣0.6
}{

0.5
∣∣1}

) ({
0.45

∣∣1}{
0.5
∣∣1}

) ({
0.8
∣∣0.4, 0.6

∣∣0.6
}{

0.2
∣∣0.7, 0.1

∣∣0.3
}) ( {

0.1
∣∣1}{

0.6
∣∣0.6, 0.8

∣∣0.4
})

A4

({
0.4
∣∣0.2, 0.5

∣∣0.8
}{

0.3
∣∣1}

) ({
0.2
∣∣0.4, 0.5

∣∣0.6
}{

0.4
∣∣0.2, 0.3

∣∣0.8
}) ({

0.4
∣∣0.1, 0.5

∣∣0.9
}{

0.3
∣∣1}

) ({
0.4
∣∣1}{

0.6
∣∣1}
)

Table 3. Preference values provided by decision-maker 3.

C1 C2 C3 C4

A1

({
0.75

∣∣1}{
0.2
∣∣1}

) ( {
0.50

∣∣1}{
0.2
∣∣0.5, 0.5

∣∣0.5
}) ({

0.3
∣∣1}{

0.6
∣∣1}
) ({

0.6
∣∣1}{

0.3
∣∣1}
)

A2

({
0.6
∣∣0.6, 0.8

∣∣0.4
}{

0.1
∣∣1}

) ({
0.20

∣∣1}{
0.7
∣∣1}

) ({
0.9
∣∣1}{

0.1
∣∣1}
) ( {

0.3
∣∣1}{

0.5
∣∣0.4, 0.6

∣∣0.6
})

A3

({
0.9
∣∣1}{

0.1
∣∣1}
) ( {

0.6
∣∣1}{

0.25
∣∣0.5, 0.1

∣∣0.5
}) ({

0.8
∣∣1}{

0.2
∣∣1}
) ({

0.2
∣∣1}{

0.8
∣∣1}
)

A4

({
0.3
∣∣0.7, 0.5

∣∣0.3
}{

0.4
∣∣0.6, 0.5

∣∣0.4
}) ({

0.1
∣∣1}{

0.8
∣∣1}
) ({

0.3
∣∣1}{

0.3
∣∣1}
) ({

0.35
∣∣1}{

0.6
∣∣1}

)
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Step 2: Since number of decision makers i.e., d ≥ 2, therefore, using Algorithm 1, the comprehensive
matrix obtained after integrating all the preferences given by the panel of experts is given in
Table 4.

Table 4. Comprehensive matrix.

C1 C2 C3 C4

A1


{

0.2
∣∣0.1333, 0.3

∣∣0.3667

0.5
∣∣0.1667, 0.75

∣∣0.3333

}
,{

0.4
∣∣0.6667, 0.2

∣∣0.3333
}



{

0.45
∣∣0.14, 0.6

∣∣0.1934

0.2
∣∣0.3333, 0.5

∣∣0.3333

}
,{

0.2
∣∣0.3, 0.3

∣∣0.2

0.7
∣∣0.3333, 0.5

∣∣0.1667

}



{

0.9
∣∣0.3333, 0.2

∣∣0.3333

0.3
∣∣0.3334

}
,{

0.1
∣∣0.3333, 0.4

∣∣0.2667

0.6
∣∣0.4

}


({
0.6
∣∣0.9, 0.7

∣∣0.1
}

,{
0.3
∣∣0.6667, 0.25

∣∣0.3333
})

A2


{

0.8
∣∣0.4333, 0.6

∣∣0.2334

0.2
∣∣0.3333

}
,{

0.1
∣∣0.6667, 0.7

∣∣0.3333
}



{

0.30
∣∣0.75, 0.2

∣∣0.5
}

,{
0.6
∣∣0.3333, 0.2

∣∣0.1667

0.15
∣∣0.1667, 0.7

∣∣0.3333

}

{

0.6
∣∣0.3333, 0.2

∣∣0.3334

0.9
∣∣0.3333

}
,{

0.2
∣∣0.1667, 0.1

∣∣0.6667

0.6
∣∣0.1666

}



{

0.2
∣∣0.4333, 0.3

∣∣0.5667
}

,{
0.8
∣∣0.3333, 0.6

∣∣0.3333

0.5
∣∣0.1333

}

A3




0.05
∣∣0.2334, 0.2

∣∣0.1

0.4
∣∣0.1333, 0.5

∣∣0.2

0.9
∣∣0.3333

 ,

{
0.5
∣∣0.6667, 0.1

∣∣0.3333
}



{

0.5
∣∣0.3333, 0.45

∣∣0.3333

0.6
∣∣0.3334

}
,{

0.5
∣∣0.6667, 0.2

∣∣0.1667

0.1
∣∣0.1666

}



{

0.8
∣∣0.6667, 0.6

∣∣0.3333
}

,{
0.15

∣∣0.3333, 0.2
∣∣0.5666

0.1
∣∣0.1

}

{

0.12
∣∣0.3333, 0.1

∣∣0.3333

0.2
∣∣0.3334

}
,{

0.7
∣∣0.3, 0.6

∣∣0.2333

0.8
∣∣0.4667

}


A4


{

0.4
∣∣0.4, 0.5

∣∣0.3667

0.3
∣∣0.2333

}
,{

0.3
∣∣0.5, 0.2

∣∣0.1667

0.4
∣∣0.2, 0.5

∣∣0.1333

}



{

0.5
∣∣0.5333, 0.2

∣∣0.1333

0.1
∣∣0.3334

}
,{

0.2
∣∣0.1, 0.4

∣∣0.3

0.3
∣∣0.2667, 0.8

∣∣0.3333

}



{

0.30
∣∣0.6667, 0.4

∣∣0.0333

0.5
∣∣0.3

}
,{

0.65
∣∣0.3333, 0.3

∣∣0.6667
}



{

0.5
∣∣0.3333, 0.4

∣∣0.3333

0.35
∣∣0.3334

}
,{

0.2
∣∣0.1, 0.4

∣∣0.2334

0.6
∣∣0.6666

}


Step 3: The experts chose to have an optimistic behavior towards the analysis and
thus utilizing distance d1 in Equation (29), the weights are determined as
ω = (0.4385, 0.1986, 0.1815, 0.1814)T .

Step 4: The aggregated values for each alternative Ai, i = (1, 2, 3, 4) by using PDHFWEA operator
as given in Equation (31) are :

Q1 =




0.5213
∣∣0.0056, 0.5439

∣∣0.0006,

0.5546
∣∣0.0154, 0.5760

∣∣0.0017,

. . . . . . . . . . . . , 0.6347
∣∣0.0037

 ,


0.2617

∣∣0.0444, 0.2531
∣∣0.0222,

0.1909
∣∣0.0222, 0.1844

∣∣0.0111,

. . . . . . . . . . . . , 0.3120
∣∣0.0074




Q2 =




0.6080
∣∣0.0469, 0.6201

∣∣0.0614,

0.4838
∣∣0.0253, 0.4985

∣∣0.0331,

. . . . . . . . . . . . , 0.4240
∣∣0.0157

 ,


0.2531

∣∣0.0123, 0.2359
∣∣0.0198,

0.2266
∣∣0.0049, 0.5372

∣∣0.0062,

. . . . . . . . . . . . , 0.6427
∣∣0.0025




Q3 =




0.3384
∣∣0.0173, 0.3352

∣∣0.0173,

0.3515
∣∣0.0173, 0.3963

∣∣0.0074,

. . . . . . . . . . . . , 0.7379
∣∣0.0123

 ,


0.4391

∣∣0.0444, 0.4251
∣∣0.0346,

0.4256
∣∣0.0691, 0.2226

∣∣0.0222,

. . . . . . . . . . . . , 0.1540
∣∣0.0026




Q4 =




0.4225
∣∣0.0474, 0.4036

∣∣0.0474,

0.3947
∣∣0.0474, 0.4667

∣∣0.0435,

. . . . . . . . . . . . , 0.3110
∣∣0.0078

 ,


0.3016

∣∣0.0017, 0.3413
∣∣0.0039,

0.3698
∣∣0.0111, 0.2533

∣∣0.0006,

. . . . . . . . . . . . , 0.5259
∣∣0.0197




Step 5: The score values are obtained as S(Q1) = 0.1810, S(Q2) = 0.1799, S(Q3) = 0.1739 and
S(Q4) = −0.0002

Step 6: Since, the ranking order is S(Q1) > S(Q2) > S(Q3) > S(Q4), thus the ranking is obtained
as A1 � A2 � A3 � A4.

Thus, it is clear that according to the experts product A1 should be launched first.
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However, on the other hand, if we utilize the PDHFWEG operator instead of PDHFWEA operator
to aggregate the different preferences, then the following steps of the proposed approach are executed
to reach the optimal alternative(s) as.

Step 1: Similar as above Section 7.2 Step 1.
Step 2: Similar as above Section 7.2 Step 2.
Step 3: Similar as above Section 7.2 Step 3.
Step 4: The aggregated values for each alternative Ai, i = (1, 2, 3, 4) by using PDHFWEG operator

as given in Equation (33) are :

Q1 =




0.3959
∣∣0.0056, 0.4092

∣∣0.0006,

0.4642
∣∣0.0154, 0.4792

∣∣0.0017,

. . . . . . . . . . . . , 0.5908
∣∣0.0037

 ,


0.2917

∣∣0.0444, 0.2827
∣∣0.0222,

0.2008
∣∣0.0222, 0.1913

∣∣0.0111,

. . . . . . . . . . . . , 0.3541
∣∣0.0074




Q2 =




0.5090
∣∣0.0469, 0.5415

∣∣0.0614,

0.4391
∣∣0.0253, 0.4685

∣∣0.0331,

. . . . . . . . . . . . , 0.2959
∣∣0.0157

 ,


0.3950

∣∣0.0123, 0.3312
∣∣0.0198,

0.3078
∣∣0.0049, 0.6376

∣∣0.0062,

. . . . . . . . . . . . , 0.6516
∣∣0.0025




Q3 =




0.1667
∣∣0.0173, 0.1615

∣∣0.0173,

0.1828
∣∣0.0173, 0.2950

∣∣0.0074,

. . . . . . . . . . . . , 0.6164
∣∣0.0123

 ,


0.4890

∣∣0.0444, 0.4646
∣∣0.0346,

0.5203
∣∣0.0691, 0.3256

∣∣0.0222,

. . . . . . . . . . . . , 0.2742
∣∣0.0026




Q4 =




0.4150
∣∣0.0474, 0.3981

∣∣0.0474,

0.3886
∣∣0.0474, 0.4580

∣∣0.0435,

. . . . . . . . . . . . , 0.2774
∣∣0.0078

 ,


0.3395

∣∣0.0017, 0.3744
∣∣0.0039,

0.4157
∣∣0.0111, 0.2974

∣∣0.0006,

. . . . . . . . . . . . , 0.5656
∣∣0.0197




Step 5: The score values are obtained as S(Q1) = 0.0937, S(Q2) = −0.0073, S(Q3) = −0.0202 and
S(Q4) = −0.0545

Step 6: Since, the ranking order is S(Q1) > S(Q3) > S(Q2) > S(Q4), thus the ranking is obtained
as A1 � A2 � A3 � A4.

The most desirable alternative is A1.
If we analyze the impact of the all the proposed operators along with the distance d1 and d2 onto

the final ranking order of the alternative, we perform an experiment where the steps of the proposed
algorithms are executed. The final score values of each alternative Ai (i = 1, 2, 3, 4), are obtained and
are summarized in Table 5. It is seen that utilizing different distance measures i.e., d1 and d2 do not
affect the best alternative A1 in most of the cases. Moreover, the score values obtained by the proposed
operators namely: PDHFWEA, PDHFWEG, and PDHFOWEG represent the same alternative A1 as the
best alternative which is to be launched first while the operator PDHOWEA represents the alternative
A3 as the best one. However, it can be seen that corresponding average PDHFWEA, PDHFOWEA
score values are greater than that of PDHFWEG, PDHFOWEG aggregation operators showing that the
average aggregation operators offer the decision maker more optimistic score-values as compared to
the geometric ones. Also, it can be seen that both the distances, despite providing, a huge variation in
numerical evaluation and data processing flexibility lead to the same result as A1 as the best choice in
most of the cases among the alternatives to be launched first.
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Table 5. Score values of proposed approach.

Operator A1 A2 A3 A4 Ranking

D
is

ta
nc

e
d 1 PDHFWEA 0.1810 0.1799 0.1739 −0.0002 A1 � A2 � A3 � A4

PDHFOWEA 0.2293 0.2239 0.2940 0.0013 A3 � A1 � A2 � A4
PDHFWEG 0.0937 −0.0073 −0.0202 −0.0545 A1 � A2 � A3 � A4

PDHFOWEG 0.1458 0.0283 0.0856 −0.0515 A1 � A3 � A2 � A4

D
is

ta
nc

e
d 2 PDHFWEA 0.1968 0.0754 0.1213 −0.0459 A1 � A3 � A2 � A4

PDHFOWEA 0.1684 0.0832 0.0971 −0.0472 A1 � A3 � A2 � A4
PDHFWEG 0.1006 −0.1189 −0.1072 −0.1056 A1 � A4 � A3 � A2

PDHFOWEG 0.0691 −0.1118 −0.1268 −0.1091 A1 � A4 � A2 � A3

7.3. Comparative Studies

In order to analyze the alignment of the proposed approach’s results with the existing theories
and to validate our proposed results, the score values corresponding to different operators are given
in Table 6. The operators in the considered existing theories are: probabilistic dual hesitant fuzzy
weighted average (PDHFWA) by Hao et al. [42], hesitant probabilistic fuzzy Einstein weighted average
and Einstein weighted geometric (HPFEWEA, HPFEWEG) by Park et al. [50] and hesitant probabilistic
fuzzy weighted average (HPFWA), hesitant probabilistic fuzzy weighted geometric (HPFWG),
hesitant probabilistic fuzzy ordered weighted average (HPFOWA) , hesitant probabilistic fuzzy ordered
weighted geometric (HPFOWG) aggregation operators by Xu and Zhou [48]. Noticeably, the approach
outlined by Hao et al. [42] by utilizing PDHFWA operator figures out A2 as the best alternative and the
least preferred alternative A4 remains same as that of our proposed approach. However, if we consider
only the probabilistic hesitant fuzzy information and ignores the non-membership probabilistic
hesitant values, then the best alternative starts fluctuating among A1 and A3 by varying the different
aggregation operators and the least preferred alternative remains same as A4, which coincides the
outcomes of our proposed approach. This variation is due to the negligence of the non-membership
values and their corresponding probabilities. Thus, the proposed approach is advantageous among
the traditional approaches because it remains firm on the same output ranking for different operators.
Moreover, the best alternative chosen by the proposed approach remains the same as that with that of
the existing approaches signifies that the proposed approach is the valid one.

Further, a deep insight into the comparison of our method with the existing ones is given by
comparing the characteristics of all the approaches with the proposed one. In Table 7, it can be seen
that the approaches put-forth by Hao et al. [42] and Xu and Zhou [48] considers multiple experts in
analysis process whereas Park et al. [50] does not consider the multi-expert problems. All the existing
approaches are the probabilistic approaches so they consider probabilities corresponding to their
considered membership or non-membership values. Moreover, it is analyzed that the method proposed
by [42] considers the non-membership probabilistic information but the rest two only considers the
hesitant values and their probabilities. In all the three existing approaches, the weights are not
derived by using any non-linear technique such as maximum deviation method for determination
of weights but the weights corresponding to two different distance measures are considered in the
proposed methodology.

In addition to above comparison studies, we elicit some characteristic comparison of our approach
with existing DM methods proposed in [42,48,50] which are tabulated in Table 7.

In Table 7, the symbol ‘X’ describes that the corresponding DM approach considers more than
one decision maker, handles probabilities, accounts for non-membership entities and has weights
derived by the non-linear approach, whereas the symbol ‘×’ means that the associated method
fails. The symbols tabulated in Table 7 depicts that the MCDM mentioned in [42] as well as [48]
consider multiple multiple decision-makers whereas the approach utilized by [50] consists of preference
evaluations through single expert. It is seen that all the three considered approaches considers the
probabilities along with their respective fuzzy environments whereas only [42] considers only the
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non-membership values along with the membership ones while the other two considers only the
membership value ratings. On the other hand, none of the existing approach among the specified ones,
adopt a non-linear weight determination technique. Thus, it is analyzed that our proposed approach
consists of all the four said characteristics and thus it deals with the real life situations, more efficiently
as compared to the existing approaches [42,48,50].

Table 6. Comparison of overall rating values and ranking order of alternatives.

Existing Approaches Operators
Score Values

A1 A2 A3 A4 Ranking

Hao et al. [42] PDHFWA 0.1985 0.2135 0.2061 0.0098 A2 � A3 � A1 � A4

Park et al. [50] HPFEWA 0.5131 0.4915 0.5243 0.3917 A3 � A1 � A2 � A4
HPFEWG 0.4569 0.4094 0.4056 0.3723 A1 � A2 � A3 � A4

Xu and Zhou [48]

HPFWA 0.5253 0.5091 0.5445 0.3953 A3 � A1 � A2 � A4
HPFWG 0.4457 0.3937 0.3837 0.3685 A1 � A2 � A3 � A4

HPFOWA 0.5585 0.5215 0.6078 0.3957 A3 � A1 � A2 � A4
HPFOWG 0.4826 0.3998 0.4385 0.3699 A1 � A3 � A2 � A4

Table 7. Characteristic comparison of the proposed approach with different methods.

Methods Whether Consider More Whether Considers Whether Considers Weights Derived By
Than One Decision Maker Probabilities Non-Membership Non-Linear Approach

Hao et al. [42] X X X ×
Park et al. [50] × X × ×

Xu and Zhou [48] X X × ×
Our proposed approach X X X X

8. Conclusions

In this manuscript, we have utilized the concept of PDHFS to handle the uncertainty in the data
so as to capture the information with some more degree of freedom. For it, we have defined some new
distance measures based on the size of two PDHFSs. Further, by focussing on the advantages of the
aggregation operators into the decision-making process, we propose some series of weighted averaging
and geometric aggregation operators by using Einstein norm operations. The major advantages of the
proposed operators are that it considers the probability information to each dual hesitant membership
degrees which give more information and help for the decision maker to take a decision more clearly.
Further, since the decision makers are more sensitive to the loss and their bounded rationality, so there
is a need for the probabilistic information into the analysis to solve the related MCDM problems.
Also, its prominent characteristic is that it can consider the decision makers psychological behavior.
The primary contribution of this paper is summarized as follows:

(1) To introduce the two new distance measures between the pairs of the PDFHEs and explore their
properties. Further, some basic operational laws for this proposed structure are discussed and
explore the various relationships among them using Einstein norm operations.

(2) To obtain the optimal selection in the group decision making (GDM) under the probabilistic dual
hesitant fuzzy environment, we have proposed a maximum deviation method (MDM) algorithm
and developed several weighted aggregation operators. In this case, the MDM method has been
used to determine the optimal weight of each criterion.

(3) Four new aggregation operators, namely, the PDHFWEA, PDHFOWEA, PDHFWEG,
and PDHFOWEG operators have been developed to aggregate the PDHFE information.
In addition to it, on a comprehensive scrutiny of DHFSs and PDHFSs, we have devised an
algorithm to formulate PDHFSs from the given probabilistic fuzzy information. Based on the
decision maker preferences in order to optimize their desired goals, the person can choose the
required proposed distance measures and/or aggregation operators.
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(4) Finally, the presented group decision-making approach is explained with the help of numerical
example and an extensive comparative analysis has been conducted with the existing decision
making theories [42,48,50] to show the advantages of the proposed approach.

Thus, we can conclude that the proposed notion about the PDHFSs is widely used in the different
scenarios such as when a person provides the information about the fact that ‘how much he/she sure
about the uncertain information evaluated by him/her?’; in the situations, when the evaluators
have no knowledge of the importance of their decision as well the considered criteria. Thus,
the proposed concepts are efficaciously applicable to the situation under uncertainties and expected
to have wide applications in complex DM problems. In the future, there is a scope of extending the
proposed method to some different environment and its application in the various fields related to
decision-theory [53–63].
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