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Abstract: The Ambartsumian equation, a linear differential equation involving a proportional delay
term, is used in the theory of surface brightness in the Milky Way. In this paper, the Laplace-transform
was first applied to this equation, and then the decomposition method was implemented to establish
a closed-form solution. The present closed-form solution is reported for the first time for the
Ambartsumian equation. Numerically, the calculations have demonstrated a rapid rate of convergence
of the obtained approximate solutions, which are displayed in several graphs. It has also been shown
that only a few terms of the new approximate solution were sufficient to achieve extremely accurate
numerical results. Furthermore, comparisons of the present results with the existing methods in the
literature were introduced.

Keywords: Adomian decomposition method; Ambartsumian equation; Laplace-transform;
analytic solution

1. Introduction

In this paper, we consider the Ambartsumian equation [1,2], given by

y′(t) = −y(t) +
1
q

y
(

t
q

)
, q > 1, (1)

where q is a constant for the given model and Equation (1) is subjected to the initial condition:

y(0) = λ, (2)

where λ is also a constant. It is interesting to mention that Equation (1) (with q > 1) was derived
more than 25 years earlier by Ambartsumian [1] to describe the absorption of light by the interstellar
matter. Its existence and uniqueness have been proved and discussed by Kato and McLeod [3]. It is of
great importance to search for accurate solutions to Equations (1) and (2) due to their application in
Astronomy. Very recently, Patade and Bhalekar [2] obtained a power series solution for this system
by applying the Daftardar-Gejji and Jafari Method [4]. They proved the convergence for all |q|> 1 ,
however, their solution is not valid in the whole domain as will be shown in this paper. In order to
overcome such difficulties, in this paper, a new exact solution was derived using the Laplace-transform
and Adomian decomposition method (ADM).
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The ADM was applied to solving algebraic/transcendental/matrix equations [5–9], nonlinear
integral/differential equations and both of initial and boundary value problems (IVPs/BVPs), even for
irregular boundary contours [10–24]. The solution for this method is an infinite series, which converges
when choosing an appropriate canonical form. Hence, a few terms achieve good accuracy for the
model under consideration. This paper considers the idea of obtaining the exact solution of a delay
differential equation via the Laplace-transform and ADM. This methodit is not similar to work in
Reference [12] or other published works, hence, the present techniques are new. In addition, theoretical
analysis for the convergence of Adomian’s method to differential equations has been discussed earlier
by Abbaoui and Cherruault [25]. We remark that a significant advantage of the ADM in solving
differential equations is that it neither invokes the fixed-point theorem to prove convergence, nor is
the Adomian solution algorithm developed under this premise. The speed of convergence and the
general error estimation of the series solution using the standard ADM have been previously reported
by Cherruault and Adomian [26]. Moreover, Rach [27] introduced an extensive bibliography of the
theory, technique, and applications of the Adomian decomposition method.

The objective of this work was to reinvestigate the Ambartsumian delay equation by applying
both of the Laplace-transform and the ADM. The obtained analytic closed-form solution can be viewed
as a new type of solution for the current problem. It will also be numerically demonstrated that the
sequence of the approximate solutions converge faster than the one in the literature [2]. Furthermore,
comparisons of the present exact results with those approximately obtained in Reference [2] by using
the Daftarday-Gejji and Jafari technique, and [28] by using the homotopy analysis transform method
(HATM) will be introduced.

2. Application of the Laplace-Transform and Decomposition Method

Applying Laplace-transform on Equation (1), yields

sY(s)− λ = −Y(s) + Y(qs), (3)

where Y(s) is the Laplace-transform of y(t) and Y(qs) is the Laplace-transform of
(

1
q y
(

t
q

))
. In order

to apply the ADM, we rewrite Equation (3) in the following canonical form:

Y(s) =
λ

s + 1
+

Y(qs)
s + 1

. (4)

Now, we search for a series solution of Equation (4), which leads to a closed-form. The ADM was
applied here to achieve this task. It is well-known that the ADM assumes the solution Y(s) as

Y(s) =
∞

∑
i=0

Yi(s). (5)

On inserting Equation (5) into Equation (4), we then get

∞

∑
i=0

Yi(s) =
λ

s + 1
+

1
s + 1

∞

∑
i=0

Yi(qs), (6)

and hence, the following recurrence scheme is established [12,25–27]:

Y0(s) = λ
s+1 ,

Yi(s) =
Yi−1(qs)

s+1 , i ≥ 1. (7)

The recurrence scheme in Equation (7) was implemented here to obtain a general form of the
Yi(s)-component (i > 1). From Equation (7) at i = 1, we have
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Y1(s) = Y0(qs)
s+1 ,

= λ
(s+1)(qs+1) ,

= λ
1
∏

k=0
(qks+1)

.
(8)

At i = 2, we obtain
Y2(s) = λ

(s+1)(qs+1)(q2s+1) ,

= λ
2
∏

k=0
(qks+1)

. (9)

Similarly, Y3(s) and Y4(s) were obtained, respectively, as

Y3(s) = λ
(s+1)(qs+1)(q2s+1)(q3s+1) ,

= λ
3
∏

k=0
(qks+1)

, (10)

and
Y4(s) = λ

(s+1)(qs+1)(q2s+1)(q3s+1)(q4s+1) ,

= λ
4
∏

k=0
(qks+1)

. (11)

Therefore, the general term Yi(s) is given by

Yi(s) = λ
(s+1)(qs+1)(q2s+1)......(qis+1) ,

= λ
i

∏
k=0

(qks+1)
. (12)

Hence, the solution of the transformed Equation (5) is obtained by

Y(s) =
∞

∑
i=0

λ
i

∏
k=0

(
qks + 1

) . (13)

On applying the inverse Laplace transform to Equation (13), we obtain

y(t) = λ
∞
∑

i=0
L−1

 1
i

∏
k=0

(qks+1)

,

= λ
∞
∑

i=0
L−1

[
P(s)
Qi(s)

]
,

(14)

where the two polynomials P(s) (a constant polynomial) and Qi(s) (a polynomial of degree (i + 1) in
s) are defined by

P(s) = 1, Qi(s) =
i

∏
k=0

(
qks + 1

)
. (15)

Here, it is important to note that Qi(s) is a polynomial with distinct (i + 1) zeros. In order to
calculate the inverse Laplace transform in Equation (14), we used the Heaviside’s expansion formula
([29], p. 46):

L−1
[

P(s)
Qi(s)

]
=

i

∑
k=0

P(αk)

Q′i(αk)
× eαkt, (16)
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where αk = −q−k, (k = 0, 1, 2, . . . i) are the distinct zeros of the algebraic equation Qi(s) = 0, hence,
Equation (16) becomes

L−1
[

P(s)
Qi(s)

]
=

i

∑
k=0

e−q−kt

Q′i(−q−k)
. (17)

Therefore, the closed form solution for Equation (14) is finally written as

y(t) = λ
∞

∑
i=0

i

∑
k=0

e−q−kt

Q′i(−q−k)
. (18)

The n-term approximate solution is given by

Φn(t) = λ
n−1

∑
i=0

i

∑
k=0

e−q−kt

Q′i(−q−k)
. (19)

It can be easily checked that the n-term approximate solution for Equation (19) satisfies the initial
condition Φn(0) = λ, ∀n ≥ 1. At t = 0, Equation (19) becomes

Φn(0) = λ
n−1

∑
i=0

i

∑
k=0

1
Q′i(−q−k)

. (20)

For illustration, we took n = 2 as an example and it will be shown that Φ2(0) = λ. Implementing
(20) at n = 2 leads to

Φ2(0) = λ
1

∑
i=0

i

∑
k=0

1
Q′i(−q−k)

, (21)

= λ

(
0

∑
k=0

1
Q′0(−q−k)

+
1

∑
k=0

1
Q′1(−q−k)

)
, (22)

= λ

(
1

Q′0(−1)
+

1
Q′1(−1)

+
1

Q′1(−q−1)

)
. (23)

The values of Q′0(−1), Q′1(−1), and Q′1(−q−1) can be calculated from Equation (15) as follows:

Q0(s) = s + 1, Q1(s) = qs2 + (q + 1)s + 1, (24)

Q′0(s) = 1, Q′1(s) = 2qs + (q + 1), (25)

Q′0(−1) = 1, Q′1(−1) = −q + 1, (26)

Subsitituting Equation (26) into Equation (23), we have

Φ2(0) = λ

(
1 +

1
−q + 1

+
1

q− 1

)
, (27)

= λ. (28)

In this section, the Laplace transform and the ADM were applied to obtain the closed form
solution for Equation (19) for the Ambartsumian equation. The obtained approximate solutions are
investigated in the next section to stand on their domains of applicability and validity.

3. Comparisons and Numerical Validations

Usually, we begin by graphically demonstrating the convergence of the approximate solutions
Φn(t) in Equation (19). In Figures 1–3, the approximate solutions Φ7(t), Φ9(t), and Φ11(t) were plotted
at a fixed value of λ = 1 for different values of q, where q = 1.5 (Figure 1), q = 1.6 (Figure 2), and
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q = 2 (Figure 3). A rapid convergence was observed in these figures by using only a few terms of the
approximate solutions. The main notice here is that the rate of convergence was increased for higher
values of q, where at q ≥ 2 the seven-term, nine-term, and eleven-term were nearly identical.
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Figure 1. Convergence of the Adomian approximate solutions at 1=λ  and 5.1=q . Figure 1. Convergence of the Adomian approximate solutions at λ = 1 and q = 1.5.Mathematics 2018, 6, x 6 of 11 
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Hence, the eleven term approximate solution Φ11(t) of the present method was sufficient to
provide a remarkably accurate solution. This will be also demonstrated later by discussing the absolute
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residual errors |RE7|, |RE9|, and |RE11|. However, at the lower values of q (i.e., in the domain q ∈ (1, 2)),
higher-order approximate solutions such as Φn(t), n ≥ 11 were required to achieve high accuracy. In
addition, the present approximate solutions Φ7(t), Φ9(t) and Φ11(t) were valid in the whole domain
of the independent variable t(≥ 0). In the literature [2], the m-term approximate solution was given by

ψm(t) = λ

[
1 +

m

∑
i=1

(
i

∏
k=1

(
q−k − 1

)) ti

i!

]
, m ≥ 1. (29)

For purpose of comparisons with the results in the literature [2], ψ100 (Equation (29) at m = 100)
was compared with the current Φ11(t) and displayed in Figures 4–6 at several values of q.Mathematics 2018, 6, x 7 of 11 
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sufficient to achieve accurate numerical results, not only, but also in a wider range when compared 
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Figure 6. Comparison between the Adomian approximate solutions and power series solution at λ = 1
and q = 2.

The comparisons reveal that the present approach possesses some advantages over the previous
power series one [2]. This was due to the fact that a few terms of our approximations were sufficient
to achieve accurate numerical results, not only, but also in a wider range when compared with the
100-term of the previous power series solution for Equation (29).

The effects of the initial condition λ and the delay parameter q on the approximation Φ11(t) for
the fluctuations of the surface brightness y(t) are respectively depicted in Figures 7 and 8.
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It can be seen from Figure 7 that the surface brightness in the Milky Way was increased by
increasing the given initial condition λ. However, a rapid decrease in surface brightness was remarked
by increasing the delay parameter q. This latest notice revealed that the curve Φ11(t) tends faster to
zero at higher values of q. For further validations of the current numerical results, the absolute residual
error |REn| defined by

|REn(t)| =
∣∣∣∣Φ′n(t) + Φn(t)−

1
q

Φn

(
t
q

)∣∣∣∣, n ≥ 1. (30)

is depicted versus t in Figures 9 and 10 at different values of λ (when q = 2) and at different values of
q (when λ = 1), respectively.Mathematics 2018, 6, x 9 of 11 
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Figure 10. Effect of q on the absolute remainder error at λ = 1.

The obtained results confirmed the accuracy of the proposed method. Moreover, the absolute
residual error |RE11| approached zero even at higher values of the delay parameter q.

Table 1 presents the comparison of the present exact results with those approximately obtained in
Reference [2] by using Daftarday-Gejji and Jafari technique, and [28] by using the homotopy analysis
transform method (HATM). We observed from Table 1 that the approximate approach in [2,28] may be
close to the present exact results. This proves the several remarkable advantages of the current method
over the existing methods in the literature when dealing with the Ambartsumian equation.
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Table 1. Comparison of the present exact solution with the homotopy analysis transform method
(HATM) and Daftarday-Gejji and Jafari solutions.

t Daftarday-Gejji and Jafari Technique [2] HATM [28] Present: Exact

0.0 1 1 1
0.5 0.8727825992 0.8727825992 0.8729409265
1.0 0.7694328044 0.7694328044 0.7717847885
1.5 0.6788327993 0.6788327993 0.6899349261
2.0 0.5898647673 0.5898647673 0.6227083998

4. Conclusions

In this paper, an approach based on the Laplace-transform and the Adomian decomposition
method (ADM) were applied on the Ambartsumian equation. This equation describes the fluctuations
of surface brightness in the Milky Way. The obtained closed-form solution was reported for the first
time. Numerically, it has been graphically shown that the approximate solutions in the literature were
only valid in sub-domains while the present one was effective in the whole domain. Furthermore, the
absolute remainder errors using a few terms of the present method tended to zero, especially, for higher
values of the delay parameter q. Finally, the current approach deserves attention for higher-order linear
delay differential equations. Although, the present approach was effective to exactly solve linear delay
differential equations, it has limitations when it deals with non-linear delay differential equations.
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