
mathematics

Article

Finite Automata Capturing Winning Sequences for
All Possible Variants of the PQ Penny Flip Game

Theodore Andronikos 1,*, Alla Sirokofskich 2, Kalliopi Kastampolidou 1,* ID ,
Magdalini Varvouzou 1, Konstantinos Giannakis 1,* ID and Alexander Singh 1 ID

1 Department of Informatics, Ionian University, 7 Tsirigoti Square, Corfu 49100, Greece;
p14varv@ionio.gr (M.V.); p13sing@ionio.gr (A.S.)

2 Department of History and Philosophy of Sciences, National and Kapodistrian University of Athens,
Athens 15771, Greece; asirokof@math.uoa.gr

* Correspondence: andronikos@ionio.gr (T.A.); c16kast@ionio.gr (K.K.); kgiann@ionio.gr (K.G.);
Tel.: +30-2661-087712 (T.A.)

Received: 29 October 2017; Accepted: 26 January 2018; Published: 1 February 2018

Abstract: The meticulous study of finite automata has produced many important and useful results.
Automata are simple yet efficient finite state machines that can be utilized in a plethora of situations.
It comes, therefore, as no surprise that they have been used in classic game theory in order to model
players and their actions. Game theory has recently been influenced by ideas from the field of
quantum computation. As a result, quantum versions of classic games have already been introduced
and studied. The PQ penny flip game is a famous quantum game introduced by Meyer in 1999.
In this paper, we investigate all possible finite games that can be played between the two players Q
and Picard of the original PQ game. For this purpose, we establish a rigorous connection between
finite automata and the PQ game along with all its possible variations. Starting from the automaton
that corresponds to the original game, we construct more elaborate automata for certain extensions
of the game, before finally presenting a semiautomaton that captures the intrinsic behavior of all
possible variants of the PQ game. What this means is that, from the semiautomaton in question,
by setting appropriate initial and accepting states, one can construct deterministic automata able
to capture every possible finite game that can be played between the two players Q and Picard.
Moreover, we introduce the new concepts of a winning automaton and complete automaton for
either player.

Keywords: finite automata; games; PQ penny flip game; game variants; winning sequences

1. Introduction

Game theory studies conflict and cooperation between rational players. To this end, a sophisticated
mathematical machinery has been developed that facilitates this reasoning. There are numerous
textbooks that can serve as an excellent introduction to this field. In this paper, we shall use just a
few fundamental concepts and we refer to [1,2] as accessible and user-friendly references, whereas [3]
is a more rigorous exposition. The landmark work “Theory of Games and Economic Behavior” [4]
by John Von Neumann and Oskar Morgenstern is usually credited as being the one responsible for
the creation this field. Since then, Game theory has been broadly investigated due to its numerous
applications, both in theory and practice. It would not be an exaggeration to claim that today the
use of Game theory is pervasive in economics, political and social sciences. It has even been used in
such diverse fields as biology and psychology. In every case where at least two entities are either in
conflict or cooperate, Game theory provides the proper tools to analyze the situation. The entities
are called players, each player has his own goals and the actions of every player affect the other
players. Every player has at his disposal a set of actions, from which his set of strategies is determined.
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The outcome of the game from the point of view of each player is quantitatively assessed by a function
that is called utility or payoff function. The players are assumed to be rational, i.e., every player acts so
as to maximize his payoff.

Quantum computation is a relatively new field that was initially envisioned by Richard Feynman
in the early 1980s. Today, there is a wide interest in this area and, more importantly, actual efforts for
the building practical commercial quantum computing machines or at least quantum components.
One could argue that quantum computing perceives the actual computation process as a natural
phenomenon, in contrast to the known binary logic of classical systems. Technically, a quantum
computer is expected to use qubits as the basic unit of computation instead of the classical bit.
The transitions among quantum states will be achieved through the application of unitary matrices.
It is hoped that the use of quantum or quantum-inspired computing machines will lead to an increase
in computational capabilities and efficiency, since the quantum world is inherently probabilistic and
non-classical phenomena, such as superposition and entanglement, occur. Up to now, the superiority
of quantum methods over classical ones has only been proven for particular classes of problems;
nevertheless the performance gains in such cases are tremendous. In the PQ penny flip game described
by Meyer in [5], the quantum player Q has an overwhelming advantage over the classical player
Picard. The recent field of quantum game theory is devoted to the study of quantum techniques in
classical games, such as the coin flipping, the prisoners’ dilemma and many others.

Contribution. The main contribution of this work lies in establishing a rigorous connection
between finite automata and the PQ game with all its finite variations. Starting from the automaton
that corresponds to the original PQ game, we construct automata for various interesting variations
of the game, before finally presenting a semiautomaton in Section 7.1 that captures the “essence” of
the PQ game. By this we mean that this semiautomaton serves as a template for building automata
(by designating appropriate initial and accepting states) that cover all possible finite games that can be
played between Q and Picard. We point out that the resulting automata are almost identical, since they
differ only in the initial state and/or their accepting states; however, these minor differences have a
profound effect on the accepting language.

Furthermore, we introduce two novel notions, that of a winning automaton and that of a complete
automaton for either player. A winning automaton for either Q or Picard accepts only those words that
correspond to actions that allow him to win the game with probability 1.0 and a complete automaton
(for Q or Picard) accepts all such words. This is a powerful tool because it allows us to determine
whether or not an arbitrary long sequence of actions guarantees that one of the two players will surely
win just be checking if the corresponding word is accepted or not by the complete automaton for
that player.

We clarify that the automata we construct do more than simply accept dominant strategies.
They are specifically designed to accept sequences of actions by both players, i.e., sequences that
contain the actions of both players. This gives a global overview of the evolution of the game from the
point of view of both players. Moreover, no information is lost and, in case one wishes to focus only on
dominant strategies for a specific player, this can be simply achieved by considering a substring from
each accepted word; this substring will contain only the actions of the specific player, disregarding all
actions by the other player.

The paper is organized as follows: Section 2 discusses related work; Section 3 explains the notation
and definitions used throughout the rest of the paper; Section 4 lays the necessary groundwork for
the connection of games with automata; Section 5 describes the automaton that corresponds to the
standard PQ game; Section 6 analyzes how one may construct automata that correspond to specific
variants of the PQ game; Section 7 contains the most important results of this work: the semiautomaton
in Section 7.1 that captures all possible finite games between Q and Picard, and the concepts of winning
and complete automata for Q or Picard; and Section 8 summarizes our results and conclusions and
points to directions for future work.
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2. Related Work

In 1999, Mayer [5] introduced the quantum version of the penny flip game with two players and
a two dimensional coin. In the original, game the two players are named Q and Picard (from a popular
tv series). Picard is restricted to classic strategies, whereas Q is able to use quantum strategies. As a
result, Q is able to apply unitary transformations in every possible state of the game. Mayer identifies
a winning strategy for Q that boils down to the application of the Hadamard transform. Picard, on the
other hand, who can either leave the coin as is or flip it, is bound to lose in every case.

Many articles extended the aforementioned game to an n-state quantum roulette using various
techniques. Salimi et al. [6] used permutation matrices and the Fourier matrix as a representation
of the symmetric group Sn. They viewed quantum roulette as a typical n-state quantum system and
developed a methodology that allowed them to solve this quantum game for arbitrary n. As an
example, they employed their technique for a quantum roulette with n = 3. Wang et al. [7] also
generalized the coin tossing game to an n-state game. Ren et al. [8] developed specific methods
that enabled them to solve the problem of quantum coin-tossing in a roulette game. Specifically,
they used two methods, which they called analogy and isolation methods respectively, to tackle
the above problem. All the previously mentioned articles focused on the expansion of states,
essentially converting the coin into a roulette.

Quantum protocols from the fields of quantum and post-quantum cryptography are widely
studied in the framework of quantum game theory. Several cryptographic protocols have been
developed in order to provide reliable communication between two separate players regarding the
coin-tossing game [9–12]. Nguyen et al. [9] analyzed how the performance of a quantum coin tossing
experiment should be compared to classical protocols, taking into account the inevitable experimental
imperfections. They designed an all-optical fiber experiment, in which a single coin is tossed whose
randomness is higher than that of any classical protocol. In the same paper, they presented some
easily realizable cheating strategies for Alice and Bob. Berlin et al. [10] introduced a quantum protocol
which they proved to be completely impervious to loss. The protocol is fair when both players have
the same probability for a successful cheating upon the outcome of the coin flip. They also gave
explicit and optimal cheating strategies for both players. Ambainis [11] devised a protocol in which a
dishonest party will not be able to ensure a specific result with probability greater than 0.75. For this
particular protocol, the use of parallelism will not lead to a decrease of its bias. In [12], Ambainis et al.
investigated similar protocols in a context of multiple parties, where it was shown that the coin may
not be fixed provided that a fraction of the players remain honest.

Many researchers have investigated turn-based versions of classical games such as the prisoners’
dilemma. One of the first works that associated finite automata with game theory was by Neyman [13],
where he studied how finite automata can be used to acquire the complexity of strategies available
to players. Rubinstein [14] studied a variation of the repeated prisoners’ dilemma, in which each
player is required to play using a Moore machine (a type of finite state transducer). Rubinstein and
Abreu [15] investigated the case of infinitely repeated games. They used the Nash equilibrium as a
solution concept, where players seek to maximize their profit and minimize the complexity of their
strategies. Inspired by the Abreu – Rubinstein style systems, Binmore and Samuelson [16] replaced the
solution concept of Nash equilibrium with that of the evolutionarily stable strategy. They showed that
such automata are efficient in the sense that they maximize the sum of the payoffs. Ben-Porath [17]
studied repeated games and the behavior of equilibrium payoffs for players using bounded complexity
strategies. The strategy complexity is measured in terms of the state size of the minimal automaton
that can implement it. They observed that when the size of the automata of both players tends to
infinity, the sequence of values converges to a particular value for each game. Marks [18] also studied
repeated games with the assistance of finite automata.

An important work in the field of quantum game theory by Eisert et al. [19] examined the
application of quantum techniques in the prisoners’ dilemma game. Their work was later debated
by others, such as Benjamin and Hayden in [20] and Zhang in [21], where it was pointed out that
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players in the game setting of [19] were restricted and therefore the resulting Nash equilibria were not
correct. The work in [22] gave an elegant introduction to quantum game theory, along with a review
of the relevant literature for the first years of this newborn field. Parrondo games and quantum
algorithms were discussed in [23]. The relation between Parrondo games and a type of automata,
specifically quantum lattice gas automata, was the topic of [24]. Bertelle et al. [25] examined the
use of probabilistic automata, evolved from a genetic algorithm, for modeling adaptive behavior in
the prisoners’ dilemma game. Piotrowski et al. [26] provided a historic account and outlined the
basic ideas behind the recent development of quantum game theory. They also gave their assessment
about possible future developments in this field and their impact on information processing. Recently,
Suwais [27] examined different types of automata variants and reviewed the use for each one of them
in game theory. In a similar vein, Almanasra et al. [28] reported that finite automata are suitable for
simple strategies whereas adaptive and cellular automata can be applied in complex environments.

Variants of quantum finite automata, placing emphasis on hybrid models, were presented in [29]
by Li and Feng, where they obtained interesting theoretical results demonstrating the advantages of
these models. The use of such finite state machines for the representation of quantum games could,
perhaps, constitute an alternative to classical automata, particularly in view of some encouraging
results regarding their power and expressiveness (see [30–32]).

The relation of quantum games with finite automata was also studied in [33]. In that work,
quantum automata accepting infinite words were associated with winning strategies for abstract
quantum games. The current paper differs from [33] in the following aspects: (i) the focus is in the PQ
penny flip game and all its variations; (ii) the automata are either deterministic or nondeterministic
finite automata; and (iii) the words accepted by the automata correspond to moves by both players.

3. Preliminary Definitions

3.1. The PQ Game

Meyer in his landmark paper [5] introduced the penny flip game. This game is played by two
players named Q and Picard. The names are inspired from a successful science fiction TV show.
Picard is a classical, probabilistic, player, in that he can only perform one of two actions:

• leave the coin as is, which we denote by I, after the “identity” operator; or
• flip the coin, which we denote by F, after the “flip” operator.

Q on the other hand is a quantum player, in that he can affect the coin not only in a classical sense,
but also through the application of unitary transformations, such as the Hadamard operator, which is
denoted by H. The game is played with the coin prepared in the initial state heads up. The two players
act on the coin always following a specific order: Q plays first, then its Picard’s turn, and, finally,
Q plays one last time. Q wins if the coin is found heads up when the game is over; otherwise, Picard
wins. Mayer presents a dominant strategy for Q based on the application of the Hadamard transform
H: Q starts by applying the H operator, which in a sense makes Picard’s move irrelevant. After Picard
makes his move, Q applies once more the H operator, which restores the coin to its initial state,
granting him victory.

The game can be rephrased in a linear algebraic form:

• The coin is a two-dimensional quantum system. The state of the coin is represented by a ray in
the two-dimensional complex Hilbert spaceH2 (see [34] for details). A ray is an equivalence class
of vectors whose elements differ by a multiplicative complex scalar. In the Dirac terminology and
notation, which we follow in this work, vectors are called kets and are denoted by |v〉. Hence,
in this case, a ray contains kets of the form a |v〉, for some |v〉 ∈ H2, and a 6= 0 ranging over
C. The standard convection dictates that a normalized ket |v〉, i.e., a of unit length, is chosen as
a ray representative. This representation of coin states by normalized kets greatly simplifies
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computations. Let us emphasize that the kets |v〉 and eiθ |v〉, where θ ∈ R, represent the same
state because |eiθ | = 1.

• The arbitrary state of the quantum coin can be expressed as

|v〉 = a |heads〉+ b |tails〉 . (1)

The fact that |v〉 is normalized implies that the complex probability amplitudes a and b satisfy the
relation |a|2 + |b|2 = 1. The kets |heads〉 and |tails〉 describe the situation where the coin is heads
up or tails up, respectively. These two kets are orthogonal unit vector in the two-dimensional
complex Hilbert space H2, and, as such, constitute an orthonormal basis of H2. It is customary
to denote by {|0〉 , |1〉} the standard orthonormal basis of H2. Therefore, in this work, we shall
interchangeably write |heads〉 instead of |0〉 and |tails〉 instead of |1〉 to emphasize that the coin is
heads up or tails up, respectively. To avoid any possible source of confusion, we summarize our
conventions below.

|heads〉 = |0〉 =
[
1 0

]T
, |tails〉 = |1〉 =

[
0 1

]T
. (2)

• The possible actions of the two players I, F, H are represented by unitary operators. Specifically,
sinceH2 is two-dimensional, the operators can be represented by the following 2× 2 matrices:

I =

[
1 0
0 1

]
, F =

[
0 1
1 0

]
, and H =

[ √
2

2

√
2

2√
2

2 −
√

2
2

]
. (3)

• The state of the quantum coin |v〉 is measured with respect to the orthonormal basis
{|heads〉 , |tails〉}. After the measurement, the state of the coin will either be |heads〉 with
probability |a|2, or |tails〉 with probability |b|2. In our context, this means that after the
measurement the coin will turn out either heads up or tails up and this will be known to
both players.

In the rest of this paper, we shall refer to the PQ penny flip game simply as the PQ game.

3.2. Automata

For completeness, we will now mention the definitions of deterministic and nondeterministic
finite automata, which we will use in the following chapters as a succinct tool to represent the PQ game,
define new variants of the original game, and study strategies on the these variants. The definitions
are taken from [35].

Before the necessary definitions about finite automata, let us explain the rationale behind our
choice of automata. Although other approaches, such as game trees are, also, closely related to game
theory (in the sense that they describe all possible moves), our goal here was to present a much
more general tool (e.g., see the work in [36]) that would capture the character of the game. The finite
termination aspect, inherent in finite automata, seems especially appropriate for describing winning
strategies. Another advantage in using automata over game trees is the compact form of automata,
where comparatively few states are adequate for describing the actions of the players. In general,
there are many works in the literature that correlate game-theoretic notions with finite automata
(see [37]).

Definition 1. A deterministic finite automaton (DFA) is a tuple (Q, Σ, δ, q0, F), where:

1. Q is a finite set of states,
2. Σ is a finite set of input symbols called the alphabet.
3. δ : Q× Σ→ Q is the transition function.
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4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of accepting states.

The definition of the nondeterministic finite automata (NFA) follows a similar pattern, save for
some key differences: we replace the definition of the transition function δ seen above with δ :
Q× Σ→ P(Q), where P(Q) is the powerset of Q. We also allow for ε transitions. We note that DFA
and NFA are equivalent in expressive power [35,38].

Definition 2. A NFA is a tuple (Q, Σ, δ, q0, F), where:

1. Q is a finite set of states.
2. Σ is the alphabet.
3. δ : Q× Σε → P(Q) is the transition function.
4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of accepting states.

4. Games and Words

In this work, we intend to examine all finite games that can be played between Picard and
Q. These games are in a sense “similar” to the original PQ game and can, therefore, be viewed as
extensions that arise from modifications of the rules of the original game. First we must precisely state
what we shall keep from the PQ game. Our analysis will be based on the following four hypotheses.

Hypothesis 1. (H1) The two players, Picard and Q, are the stars of the game. Thus, they will continue to play
against each other in all the two-persons games we study. Although the games will be finite, their duration will
vary. Most importantly, the pattern of the games will vary: Picard may make the first move, one player may act
on the coin for a number of consecutive rounds while the other player stays idle, and so on.

Hypothesis 2. (H2) The other cornerstone of the game is the two-dimensional coin, so the players will still act
on the same coin. This means that our games take place in the two-dimensional complex Hilbert spaceH2 and
we shall not be concerned with higher dimensional analogs of the PQ game like those in [6,7].

Hypothesis 3. (H3) Let us agree that the players have exactly the same actions at their disposal, that is Picard
can use either I or F, and Q can use H. This will enable us to treat all games in a uniform manner by using the
same alphabet and notation.

At this point, it is perhaps expedient to clarify why we have presumed that Q’s repertoire is limited to
H. One of the fundamental assumptions of game theory is that the players are rational. This means that they
always act so as to maximize their payoff (see references [2,3] for a more in depth analysis). Rationality will
force each player to choose the best action from a set of possible actions. In this case, Q, being a quantum entity,
can choose his actions from the infinite set of unitary operators (technically from the U(2) group). For instance,

Q is allowed to use I, F, something like M =

[ √
5

3 − 2
3

2
3

√
5

3

]
, etc. Nonetheless, Q will discard such choices and

will eventually play a dominant strategy such as H, followed by H, as his rationality demands. It is this line of
thought that has led us to assume that Q has just one action, namely H.

Hypothesis 4. (H4) Finally, we assume that the coin can initially be at one of the two basic states |0〉 (the coin
is placed heads up) or |1〉 (the coin is placed tails up), and this state is known to both players. We note that, for
each game that begins with the coin in state |0〉, there exists an analogous game that begins with the coin in state
|1〉 and vice versa. When the game is over, the state of the coin is measured in the orthonormal basis {|0〉 , |1〉},
and, if it is found to be in the initial basic state, Q wins; otherwise, Picard wins. This settles the question of
how the winner is determined.
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From now on, we shall take for granted the hypotheses H1–H4 without any further mention.
Let N be the set of the two players {Picard, Q} and let N? be the set of all finite sequences over

N. We agree that N? contains the empty sequence e. Each γ ∈ N? is called a sequence of moves
because it encodes a game between Picard and Q. For instance the sequence (Q, Picard, Q) expresses
the original PQ game, while the sequence (Picard, Q, Picard, Q, Picard) represents a five-round game
variant, where Picard moves during Rounds 1, 3 and 5, and Q during Rounds 2 and 4. This idea is
formalized in the next definition.

Definition 3. Each sequence of moves γ ∈ N? defines the finite game G(|s〉 , γ) between Picard and Q.
The rules of G(|s〉 , γ) are:

• The initial state of the coin is |s〉. In view of hypothesis H4, |s〉 is either |heads〉 or |tails〉.
• If γ = e, then G(|s〉 , e) is the 0-round trivial game (neither Picard nor Q act on the coin, which remains

at its initial state).
• If γ = (p1, p2, . . . , pn), where pi ∈ N, 1 ≤ i ≤ n, then G(|s〉 , γ) is a game that lasts n rounds and pi

determines which of the two players moves during round i. Specifically, if pi = Picard then it is Picard’s
turn to act on the coin, whereas if pi = Q then it is Q’s turn to act on the coin.

In this work, we shall employ sequences of moves as a precise, unambiguous and succinct way
for defining finite games between Picard and Q. For instance, the move sequences (Picard, Picard, Q,
Q, Picard, Picard) and (Picard, Q, Picard, Q, Picard, Q, Picard, Q, Picard) correspond to a six-round
and a nine-round game, respectively. These particular games will be used in Section 7.

Considering that the actions of Picard and Q are just three, namely I, F and H, we define the set of
actions Act = {I, F, H}. The set of all finite sequences of actions, which includes the empty sequence ε,
is denoted by Act?. In the original PQ game, there are just two possible such sequences: (H, I, H) and
(H, F, H). Each action sequence is meaningful only in the appropriate game. For example, the following
sequence (F, H, H, I) is unsuitable for the PQ game, but it makes perfect sense in a four-round game
where Picard plays during the first and fourth round and Q plays during the second and third round.
The precise game for which a given sequence of actions is appropriate is defined below.

Definition 4. The function χ : Act? → N?, which maps sequences of actions to sequences of moves, is defined
as follows.

1. χ(ε) = e, and
2. If α = (U1, . . . , Un), Ui ∈ Act, 1 ≤ i ≤ n, then χ(α) = (p1, p2, . . . , pn), where pi = Picard if Ui = I

or Ui = F and pi = Q if Ui = H.

Every action sequence, α is an admissible sequence for the underlying game G(|s〉 , χ(α)).
If Q (Picard) wins the game G(|s〉 , γ) with the admissible sequence α with probability 1.0, we say that Q

(Picard) surely wins G(|s〉 , γ) with α, or that α is a winning sequence for Q (Picard) in G(|s〉 , γ).
We employ the notation Q(G(|s〉 , γ), α), respectively P(G(|s〉 , γ), α), as an abbreviation of the

foregoing assertion.

It is evident that χ is not an injective function. Take for example (H, I, H) and (H, F, H);
both correspond to the same sequence of moves (Q, Picard, Q). It is also clear that only admissible
sequences are meaningful.

In this work, we shall examine several variants of the PQ game. To each one, we shall associate
an automaton and study the language it accepts. As it will turn out, in every case the corresponding
language has the same characteristic property. Automata are simple but fundamental models of
computation. They recognize regular languages of words from a given alphabet Σ. The set of all
finite words over Σ is denoted by Σ?; we recall that Σ? contains the empty word ε. The operation of
the automaton is very simple: starting from its start state the automaton reads a word w and ends
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up in a certain state. It accepts (or recognizes) w if and only if this final state belongs to the set of
accept states. The set of all the words that are accepted by the automaton is the language recognized
(or accepted) by the automaton. We follow the convention of denoting by LA the language recognized
by the automaton A.

To associate games with automata in a productive way, we must fix an appropriate alphabet Σ
and map the actions of the players to the letters of Σ. Accordingly, the alphabet Σ must also contain
tree letters. Table 1 shows the 1-1 correspondence between the operators I, F and H and the letters
of the alphabet Σ = {i, f , h}. In this work, we are interested only in finite games and, hence, in finite
words and finite sequences of actions. For simplicity, we shall omit the adjective finite from now and
simply write game, word and sequence of actions.

Table 1. Correspondence between the operators I, F and H and the letters of the alphabet Σ = {i, f , h}.

(a) (b) (c)

Operators vs. Letters Letter Assignment λ Operator Assignment µ

Operators Letters λ : {I, F, H} → {i, f , h} µ : {i, f , h} → {I, F, H}
I i λ(I) = i µ(i) = I

F f λ(F) = f µ( f ) = F

H h λ(H) = h µ(h) = H

Definition 5. Given the set of actions Act = {I, F, H} of Picard and Q, the corresponding alphabet is
Σ = {i, f , h}.

We define the letter assignment function λ : Act → Σ and the operator assignment function µ :
Σ→ Act.

1. λ(I) = i, µ(i) = I;
2. λ(F) = f , µ( f ) = F; and
3. λ(H) = h, µ(h) = H.

The letter assignment function λ follows the obvious mnemonic rule of mapping each operator,
which in the literature is typically denoted by an uppercase letter, to the same lowercase letter. Clearly,
µ is the inverse of λ. All the automata we shall encounter share the same alphabet Σ = {i, f , h}.

Now, via λ, we can map finite sequences of actions to words and via µ we can map words to finite
sequences of actions. For instance, the sequence (H, I, H) is mapped to hih, the sequence (H, F, H)

is mapped to h f h, etc. In this fashion, every sequence of actions is mapped to a word w ∈ Σ?. But,
this is a two-way street, meaning that each word from Σ? corresponds to a sequence of actions: hihh f h
corresponds to (H, I, H, H, F, H).

At this point, we should clarify that, in the rest of this paper, action sequences will be written
as comma-delimited lists of actions enclosed within a pair of left and right parenthesis. This is in
accordance with the practice we have followed so far, e.g., when referring to the action sequences
(H, I, H), (H, F, H) or (H, I, H, H, F, H). On the other hand, words, despite also being considered
as sequences of symbols from the alphabet Σ, are always written as a simple concatenation of
symbols, such as hih, h f h or hihh f h, and never (h, i, f ), etc. In this work, we shall adhere to this
well-established tradition.

Formally, this correspondence between action sequences and words is achieved by properly
extending λ and µ.

Definition 6. The word mapping λ̄ : Act? → Σ? and the action sequence mapping µ̄ : Σ? → Act? are
defined recursively as follows.

1. λ̄(ε) = ε, µ̄(ε) = ε, and
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2. For every U ∈ Act, every α ∈ Act?, every l ∈ Σ, and every w ∈ Σ?:
λ̄((α, U)) = λ̄(α)λ(U), µ̄(wl) = (µ̄(w), µ(l)).

Moreover, a word w ∈ Σ? via the corresponding sequence of actions µ̄(w) can be thought of
as describing the game G(|s〉 , χ(µ̄(w))). For example, the word h f i f h corresponds to a five-round
game, where Q plays only during Rounds 1 and 5, whereas Picard gets to act on the coin during the
consecutive Rounds 2, 3 and 4.

5. An Automaton for the PQ Game

As we have explained in previous sections, the coin in the PQ game is a two-dimensional system
and so its state can be described by a normalized ket |v〉 ∈ C2. The players act upon the coin via the
unitary operators I, F and H whose matrix representation is given in Equation (3).

The game proceeds as follows:

• The initial state of the coin is
[
1 0

]T
= |heads〉 = |0〉.

• After Q’s first move (which is an action on the coin by H), the coin enters state
[√

2
2

√
2

2

]T
.

We call this state s2 (see Figure 1 and Table 2).
• s2 is a very special state in the sense that no matter what Picard chooses to play (Picard can act

either by I or by F), after his move the coin remains in the state s2.
• Finally, Q wins the game by applying H one last time, which in effect sends the coin back to its

initial state |heads〉.

heads s2

h

h

i, f

Figure 1. This two state automaton APQ captures the moves of the PQ game.

Table 2. During the games played by Picard and Q, the coin may pass through the states shown in the
left column of this Table. The corresponding states of the automata that capture these game are shown
in the right column of this Table.

Coin State Automaton State[
1 0

]T
= |heads〉 = |0〉 heads[√

2
2

√
2

2

]T
=
√

2
2 |0〉+

√
2

2 |1〉 s2[
0 1

]T
= |tails〉 = |1〉 tails[√

2
2 −

√
2

2

]T
=
√

2
2 |0〉 −

√
2

2 |1〉 s4

The simple automaton APQ shown in Figure 1 expresses concisely the states of the coin and the
effect of the actions of the two players. The states of the automaton are in 1-1 correspondence with
the states the coin goes through during the game (see Table 2). The actions of the players, that is the
unitary operators I, F, H, are in 1-1 correspondence with the alphabet Σ = {i, f , h} of APQ (see Table 1).

The effect of the actions of the players upon the coin is captured by the transitions between the
states. Technically, APQ is a nondeterministic automaton (see [35]) that has only two states: heads and
s2, where heads is the start and the unique accept state. The nondeterministic nature of APQ stems
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from the fact that no outgoing transitions from heads are labeled with i or f . This is a feature, not a bug,
because the rules of the game stipulate that Q makes the first move and Picard’s only move takes place

when the coin is in state s2 =
[√

2
2

√
2

2

]T
. This means that Picard never gets a chance to act when the

coin is in state |heads〉 =
[
1 0

]T
. Hence, APQ is specifically designed so that the only possible action

while in state |heads〉 is by Q via H. This will have an effect on the words accepted by APQ, as will be
explained below. Other than this subtle point, the behavior of APQ can be considered deterministic.

According to the rules of the PQ game, there are just two admissible sequences of actions: (H, I, H)

and (H, F, H). Both of them guarantee that Q will win with probability 1.0. The corresponding words
are: hih and h f h, both of which are accepted by APQ and, thus, belong to LAPQ . Formally, these two
words are the only ones that correspond to valid game moves.

Let us now take a step back and view APQ as a standalone automaton. Its language LAPQ can be
succinctly described by the regular expression (h(i ∪ f )?h)? (for more about regular expressions we
refer again to [35]). Thus, LAPQ contains an infinite number of words, but only two, namely hih and
h f h, correspond to admissible sequences of game actions. What about the other words of LAPQ ?

Even though the fact that the other words of LAPQ do not correspond to permissible sequences of
moves for the original PQ game, they do share a very interesting property. Given an arbitrary word
w ∈ LAPQ , consider the game G(|heads〉 , χ(µ̄(w))). If the sequence of actions µ̄(w) is played, then Q
will surely win, that is Q will win with probability 1.0. Note that µ̄(w), in general, will contain actions
by both players. We emphasize that this property holds for every word of LAPQ . To develop a better
understanding of this characteristic property, let us look at some concrete examples.

• The empty word ε that technically belongs to LAPQ can be viewed as the representation of the
trivial game, where no player gets to act on the coin, so the coin stays at its initial state |heads〉
and Q trivially wins.

• Words such as hh and hhhh, i.e., having the form (hh)+, correspond to the most unfair (for Picard)
games, where the game lasts exactly 2n rounds, for some n ≥ 1, and Q moves during each round
(Picard does not get to make any move at all).

• Words of the form h(i ∪ f )nh, where n ≥ 1, represent games that last n + 2 rounds. In these
games, Q plays only during the first and last round of the game, whereas Picard plays during the
n intermediate rounds. These variants give to Picard the illusion of fairness, without changing the
final outcome.

• Words of the form (h(i ∪ f )?h)?, e.g., h(i ∪ f )2hh(i ∪ f )3h, correspond to more complex games.
They are in effect independent repetitions of the previous category of games.

The formal definition of “winning” automata will be given in Section 7. The idea is very simple:
a winning automaton for Q (Picard) accepts a word w only if Q (respectively Picard) surely wins the
game G(|s〉 , γw) with αw, where s is the initial state of the automaton, αw = µ̄(w) is the corresponding
action sequence, and γw = χ(µ̄(w)) is the corresponding move sequence. Therefore, a winning
automaton for one of the players does not accept a single word for which, in the corresponding game,
the associated sequence of actions will result in the other player winning with nonzero probability,
for instance with probability 0.5 or 1/3.

6. Variants of the Game and Their Corresponding Automata

6.1. Changing the Initial State of the Coin

Let us examine what happens if we change the initial state of the coin, while keeping the form of
the game the same. Thus there are still three rounds: Q acts during the first and the third (and final)

round and Picard acts during the second round. The coin is initially at state |tails〉 =
[
0 1

]T
. Q wins

if the coin, after measurement, is found to be in the initial state |tails〉. We designate this game variant
as PQπ/2.
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In this game, after Q’s first move, the coin will be in state
[√

2
2 −

√
2

2

]T
. This state corresponds

to state s4 of the automaton APQπ/2
, depicted in Figure 2. Clearly, the coin will remain in this state,

if Picard decides to use I because I

[ √
2

2

−
√

2
2

]
=

[ √
2

2

−
√

2
2

]
. The coin will also remain in this state even

if Picard decides to use F. To see why, it suffices to write F

[ √
2

2

−
√

2
2

]
=

[
−
√

2
2√
2

2

]
= (−1)

[ √
2

2

−
√

2
2

]
.

This demonstrates
[√

2
2 −

√
2

2

]T
and

[
−
√

2
2

√
2

2

]T
belong to the same ray and, thus, represent the

same state. Q’s final action via H will send the coin to |tails〉. When the game is over and the state of
the coin is measured in the orthonormal basis {|heads〉 , |tails〉}, both players will find that the coin
has ended up in its initial state. Thus, Q wins this game too with probability 1.0.

tails s4

h

h

i, f

Figure 2. The two-state automaton APQπ/2
captures the possible moves of the PQπ/2 game, in which

the initial state of the coin is |tails〉. The accepting state now is tails.

The previous analysis shows that in the PQπ/2 game the coin may go through the states
{|tails〉 , s4}. In view of the fact that these states are all “new”, with respect to the original PQ game,
we see that this variant introduces new states. Automaton APQπ/2

, depicted in Figure 2, captures the
PQπ/2 game. The states of the automaton are in 1-1 correspondence with the states the coin goes
through during the game (see Table 2) and the actions of the players are mirrored by the transitions
between the states. Like APQ, APQπ/2

is nondeterministic because of the rules of the game, which imply
that no outgoing transitions from heads are labeled with i or f .

In the PQπ/2 game, the two admissible sequences of moves are again (H, I, H) and (H, F, H).
Both of them lead to Q’s victory with probability 1.0. The corresponding words hih and h f h belong
to LAPQπ/2

. The other words of LAPQπ/2
do not correspond to permissible moves of the PQπ/2 game.

However, it is easy to establish that APQπ/2
, like APQ, is a winning automaton for Q. The following

remarks, similar to the ones we made regarding APQ, hold for pretty much the same reasons:

• The words of LAPQπ/2
have the general form (h(i ∪ f )?h)?.

• Formally, hih and h f h are the only words that correspond to valid game moves.
• Again, the empty word ε belongs to LAPQπ/2

and can be thought of as expressing the trivial game,
where Q trivially wins.

• Like before, words of the form (hh)+ correspond to games that last at least 2n, n ≥ 1, rounds,
and words of the form h(i ∪ f )nh, where n ≥ 1, correspond to games that last n + 2 rounds.
Q surely wins these games no matter what Picard’s strategies are.

• Words of the form (h(i ∪ f )?h)? correspond to zero or more repetitions of the previous types of
game. It is evident that Q also wins these complex games with probability 1.0.

Again, we reach the same conclusion: all words accepted by APQπ/2
encode sequences of actions

for which Q will surely win in the corresponding game.
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6.2. Variants with More Rounds

Let us suppose now that the duration of the game is increased. The original PQ game was a
three-round game, so it makes sense to examine a six-round, a nine-round, or, in general a 3n-round,
n ≥ 2, variant of the game. We must however emphasize that these are not repeated PQ games. By
repeated, we mean multistage games where the original PQ game is repeated at each stage. In other
words, the moves of the players do not follow the pattern: Q→ Picard→ Q→ Q→ Picard→ Q,
etc. Instead, we focus on games that follow the pattern Q → Picard → Q → Picard, etc. In these
games Q acts during the odd numbered rounds and Picard acts during the even numbered rounds. The
initial state of the coin is |heads〉 and Q wins the game if when the game is over the state of the coin is
measured and found to be |heads〉. Let us denote by PQ3n, where n ≥ 2, these 3n-round games.

• Initially, we examine the six-round game PQ6. Clearly, after Round 3 (i.e., after Q’s second move)

the coin is at state |heads〉 =
[
1 0

]T
. It may remain in this state if Picard decides to use I but,

if Picard decides to use F, the coin will enter state |tails〉 =
[
0 1

]T
. Q’s subsequent move will

send the coin to state s2 =
[√

2
2

√
2

2

]T
in the first case, or to state s4 =

[√
2

2 −
√

2
2

]T
in the second

case. Thus, the coin may end up in s2 or s4, irrespective of whether Picard’s final action in the 6th

round is I or F (recall from our previous analysis that
[√

2
2 −

√
2

2

]T
and

[
−
√

2
2

√
2

2

]T
represent

the same state).

The associated automaton APQ6
is shown in Figure 3. As expected, its states correspond to the

states of the coin (see Table 2) and its transitions to the actions of the players. Like the previous
automata we have seen, APQ6

is nondeterministic because of the rules of the game, which entail,
for instance, that there is no outgoing transition labeled f from state tails. An important
observation we can make in this case is that, by extending the duration of the game, the automata
APQ and APQπ/2

“merge” into the APQ6
.

Strictly speaking, the only possible valid moves in PQ6 are: (H, I, H, I, H, I), (H, I, H,
I, H, F), (H, I, H, F, H, I), (H, I, H, F, H, F), (H, F, H, I, H, I), (H, F, H, I, H, F), (H, F, H, F, H, I),
and (H, F, H, F, H, F). The corresponding words are: hihihi, hihih f , hih f hi, hih f h f , h f hihi, h f hih f ,
h f h f hi, and h f h f h f ; none of them is recognized by APQ6

. This does not imply that LAPQ6
is empty.

On the contrary, LAPQ6
is infinite. For example, h f hih f h belongs to LAPQ6

. This particular word
corresponds to a 7-round game and Q will surely win in this game if the corresponding sequence
of actions (H, F, H, I, H, F, H) is played by Q and Picard. APQ6

is a winning automaton for Q that
accepts the language (i?h(i ∪ f )?h)?. It is therefore consistent with the winning property that all
the words corresponding to the action sequences that are admissible for the PQ6 game are rejected
because they do not guarantee that Q will surely win. As a matter of fact, with the admissible
action sequences both Q and Picard have equal probability 0.5 to win.

• Finally, we look at the general 3n-round variant PQ3n, for n ≥ 3. According to our previous
analysis, after Round 6, the coin may be at one of the states s2 or s4. Consequently, Q’s move will
send it to one of |heads〉 or |tails〉. Picard’s action will either leave the coin to its current state
or forward it to one of |tails〉 or |heads〉; in any case, after Picard’s move the coin will either be
at |heads〉 or |tails〉. Finally, Q’s last action will result in the coin entering one of the states s2 or
s4. This behavior is captured by the automaton AQ, depicted in Figure 4. We can go on, but it
should be clear by now that, no matter how many more rounds are played, no more new states
will appear.

Up to this point, we have constructed the automata APQ6
and AQ, shown in Figures 3 and 4,

respectively. They are all winning automata for Q, exactly like APQ and APQπ/2
. This is more or

less evident, but we shall give a formal proof in the next section. We close this section with an
important observation. AQ has four states and is the biggest, in terms of number of transitions,
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automaton we have encountered so far. In a way, AQ “contains” all the previous automata.
The most striking difference with the previous automata is the fact that AQ is deterministic,
whereas APQ, APQπ/2

, and APQ6
were nondeterministic. Exactly three transitions, one for each

letter i, f and h, emanate from every state. This gives AQ a type of completeness because whatever
action is taken by any player, the outcome will correspond to a state of AQ. Hence, AQ is able to
accurately mirror the behavior of the coin.

heads s2

tails s4

i

h

f

h

i, f

h

i, f

Figure 3. The automaton APQ6
corresponding to the six-round PQ6 game.

heads s2

tails s4

i

h

f

i, f

h

i

h

f

i, f

h

Figure 4. The automaton AQ corresponding to the 3n-round variant PQ3n, for n ≥ 3.

7. Automata Capturing Sets of Games

In this section, we shall prove that AQ is a “better”, more “complete” representation of the finite
games between Picard and Q compared to all the previous automata. As a matter of fact, in a precise
sense AQ captures all the finite games between Picard and Q.

We begin by giving the formal definition of winning automaton.

Definition 7 (Winning automaton). Consider an automaton A with initial state s, where s is either heads or
tails. Let w ∈ Σ? be a word accepted by A, let αw = µ̄(w) be the corresponding sequence of actions, and let
γw = χ(µ̄(w)) be the corresponding sequence of moves.

If for every word w accepted by A, Q surely wins in the game G(|s〉 , γw) with αw, then A is a winning
automaton for Q.
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Symmetrically, A is a winning automaton for Picard, if for each word w accepted by A, Picard surely
wins in the game G(|s〉 , γw) with αw.

A more succinct way to express that A is a winning automaton for Q or Picard would be to write

∀w ∈ LA : Q(G(|s〉 , γw), αw), and (4)

∀w ∈ LA : P(G(|s〉 , γw), αw), (5)

respectively.
First, we consider all finite games between Picard and Q that satisfy the following conditions

(recall the hypotheses at the beginning of Section 4):

• Picard’s actions are either I or F and Q’s action is H.
• The coin is initially at state |0〉.
• Q wins if, when the game is over and the state of the coin is measured, it is found to be in state
|0〉; otherwise, Picard wins.

The proofs of the main results of this section are easy but lengthy, so they are given in
the Appendix A.

Theorem 1 (Winning automata for Q). The automata APQ, APQπ/2
, APQ6

, and AQ are all winning automata
for Q.

Definition 8 (Complete automaton for winning sequences). An automaton A with initial state s (s is
either heads or tails) is complete with respect to the winning sequences for Q if for every finite game between
Picard and Q in which the coin is initially at state |s〉, every sequence of actions that enables Q to win the game
with probability 1.0 corresponds to a word accepted by A.

Symmetrically, A is complete with respect to the winning sequences for Picard, if for every finite game
between Picard and Q and for every sequence of actions that enables Picard to win with probability 1.0,
the corresponding word is accepted by A.

More formally, the completeness property can be expressed as follows

∀γ ∈ N? ∀α ∈ Act? : Q(G(|s〉 , γ), α)⇒ λ̄(α) ∈ LA, and (6)

∀γ ∈ N? ∀α ∈ Act? : P(G(|s〉 , γ), α)⇒ λ̄(α) ∈ LA. (7)

Theorem 2 (Complete automaton for Q). AQ is complete with respect to the winning sequences for Q.

To appreciate the importance of the completeness property, we point out that APQ6
is not complete

for Q. Let us first consider the six-round game (Picard, Picard, Q, Q, Picard, Picard). In this game,
Q surely wins if the action sequence (F, F, H, H, F, F) is played. The corresponding word is f f hh f f ,
which belongs to LAQ but not to LAPQ6

. Thus, APQ6
fails to accept all winning sequences for Q, i.e., it is

not complete in this respect. This counterexample demonstrates that APQ6
fails to be complete for Q.

7.1. Devising Other Variants

We can be even more flexible by using the semiautomaton A shown in Figure 5. Technically, A
is not an automaton because no initial state and no final states are specified. However, A captures
the essence of all games between Picard and Q because it can serve as a template for automata that
correspond to games that satisfy specific properties. This is easily seen by considering the examples
that follow. Recall that we always operate under the assumption that Q wins if, when the game is over
and the state of the coin is measured, it is found to be in the initial state; otherwise Picard wins.
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heads s2

tails s4

i

h

f

i, f

h

i

h

f

i, f

h

Figure 5. The semiautomaton A capturing the essence of the PQ game and its variants.

7.1.1. Changing the Initial State of the Coin

Suppose we want to construct a complete winning automaton for Q for all the games in which
the coin is initially at state |tails〉 = |1〉. Starting from the semiautomaton A of Figure 5 we define

1. state tails as the initial state, and
2. state tails as the only accept state.

The resulting automaton A′Q is depicted in Figure 6. The following theorem holds for A′Q.

heads s2

tails s4

i

h

f

i, f

h

i

h

f

i, f

h

Figure 6. The automaton A′Q accepts all winning sequences for Q when the initial state of the coin
is |tails〉.

Theorem 3 (Complete and winning automaton II for Q). A′Q is a complete and winning automaton for Q
for all the games in which the initial state of the coin is |tails〉 = |1〉.
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7.1.2. Picard Surely Wins

By suitably modifying the semiautomaton A, we can also design a complete winning automaton
for Picard for all the games in which the coin is initially at state |heads〉 = |0〉. We can do that by

1. setting heads as the initial state; and
2. setting tails as the only accept state.

This will result in the automaton AP depicted in Figure 7, for which one can easily prove the
next theorem.
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Figure 7. The automaton AP accepts all winning sequences for Picard when the initial state of the coin
is |heads〉.

Theorem 4 (Complete and winning automaton for Picard). AP is a complete and winning automaton for
Picard for all the games in which the initial state of the coin is |heads〉 = |0〉.

Similarly, we can define a complete winning automaton for Picard for all the games in which the
coin is initially at state |tails〉 = |1〉. All we have to do is

1. set tails as the initial state; and
2. set heads as the only accept state.

This will result in the automaton A′P shown in Figure 8, for which one can easily show that the
following theorem holds.

Figure 7. The automaton AP accepts all winning sequences for Picard when the initial state of the coin
is |heads〉.

Theorem 4 (Complete and winning automaton for Picard). AP is a complete and winning automaton for
Picard for all the games in which the initial state of the coin is |heads〉 = |0〉.

Similarly, we can define a complete winning automaton for Picard for all the games in which the
coin is initially at state |tails〉 = |1〉. All we have to do is

1. set tails as the initial state; and
2. set heads as the only accept state.

This will result in the automaton A′P shown in Figure 8, for which one can easily show that the
following theorem holds.
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Figure 8. The automaton A′P accepts all winning sequences for P when the coin is initially tails up.

Theorem 5 (Complete and winning automaton II for Picard). A′P is a complete and winning automaton
for Picard for all the games in which the initial state of the coin is |tails〉 = |1〉.

7.1.3. Fair Games

Up to this point, we have focused on winning action sequences for Q or Picard, that is sequences
for which Q or Picard, respectively, wins the game with probability 1.0. However, we can also capture
action sequences for which both players have equal probability 0.5 to win the game. We call such
sequences fair.

Definition 9. Let α be an admissible sequence for the underlying game G(|s〉 , χ(α)). If both Q and Picard
have equal probability 0.5 to win the game G(|s〉 , χ(α)) using α, we say that α is a fair sequence for Q and
Picard in G(|s〉 , χ(α)).

An automaton A with initial state s (s is either heads or tails) is complete with respect to the fair sequences
if for every finite game between Picard and Q in which the coin is initially at state |s〉, every fair sequence
corresponds to a word accepted by A.

The semiautomaton A of Figure 5 can help in this case too. The states s2 and s4 of A correspond
to the states

√
2

2 |0〉+
√

2
2 |1〉 and

√
2

2 |0〉 −
√

2
2 |1〉 of the coin, respectively, as can be seen in Table 2.

These states share a common characteristic: if the coin ends up in any of them, then, after the
measurement in the orthonormal basis {|0〉 , |1〉}, the state of the coin will either be the basic ket
|0〉 with probability 0.5, or the basic ket |1〉 with equal probability 0.5. Hence, if the coin ends up
in these states, then both Q and Picard have equal probability 0.5 to win. Therefore, we can design
an automaton that accepts all the fair sequences for all the games in which the coin is initially at state
|heads〉 = |0〉 by

1. setting heads as the initial state; and
2. setting s2 and s4 as the accept states.

Symmetrically, we can define an automaton that accepts all the fair sequences for all the games in
which the coin is initially at state |tails〉 = |1〉 by

1. setting tails as the initial state; and
2. setting s2 and s4 as the accept states.

Figure 8. The automaton A′P accepts all winning sequences for P when the coin is initially tails up.
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Theorem 5 (Complete and winning automaton II for Picard). A′P is a complete and winning automaton
for Picard for all the games in which the initial state of the coin is |tails〉 = |1〉.

7.1.3. Fair Games

Up to this point, we have focused on winning action sequences for Q or Picard, that is sequences
for which Q or Picard, respectively, wins the game with probability 1.0. However, we can also capture
action sequences for which both players have equal probability 0.5 to win the game. We call such
sequences fair.

Definition 9. Let α be an admissible sequence for the underlying game G(|s〉 , χ(α)). If both Q and Picard
have equal probability 0.5 to win the game G(|s〉 , χ(α)) using α, we say that α is a fair sequence for Q and
Picard in G(|s〉 , χ(α)).

An automaton A with initial state s (s is either heads or tails) is complete with respect to the fair sequences
if for every finite game between Picard and Q in which the coin is initially at state |s〉, every fair sequence
corresponds to a word accepted by A.

The semiautomaton A of Figure 5 can help in this case too. The states s2 and s4 of A correspond
to the states

√
2

2 |0〉+
√

2
2 |1〉 and

√
2

2 |0〉 −
√

2
2 |1〉 of the coin, respectively, as can be seen in Table 2.

These states share a common characteristic: if the coin ends up in any of them, then, after the
measurement in the orthonormal basis {|0〉 , |1〉}, the state of the coin will either be the basic ket
|0〉 with probability 0.5, or the basic ket |1〉 with equal probability 0.5. Hence, if the coin ends up
in these states, then both Q and Picard have equal probability 0.5 to win. Therefore, we can design
an automaton that accepts all the fair sequences for all the games in which the coin is initially at state
|heads〉 = |0〉 by

1. setting heads as the initial state; and
2. setting s2 and s4 as the accept states.

Symmetrically, we can define an automaton that accepts all the fair sequences for all the games in
which the coin is initially at state |tails〉 = |1〉 by

1. setting tails as the initial state; and
2. setting s2 and s4 as the accept states.

The resulting automata are A1/2 and A′1/2, shown in Figures 9 and 10, respectively.
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they accept all fair sequences for all the games in which the initial state of the coin is |heads〉 = |0〉 and
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8. Conclusions and Further Work

Quantum technologies have attracted the interest of not only the academic community but also
of the industry. This has led to further research on the relationship between classical and quantum
computation. Standard and well-established notions and systems have to be examined and, if necessary,
revised in the light of the upcoming quantum era.

In this work, we have presented a way to construct automata, and a semiautomaton, from the
PQ game, such that the resulting automata and semiautomaton capture, in a specific sense,
every conceivable variation and extension of the game. That is, the automata can be used to study
possible variants of the game, and their accepting language can be used to determine strategies for
any player, dominant or otherwise. Specifically, starting from the automaton that corresponds to
the standard PQ game, we construct automata for various interesting variations of the PQ game,
before finally presenting a semiautomaton that is in a sense “complete” with regard to the game and
captures the “essence” of the generalized PQ game. This simply means that, by providing appropriate
initial and final states for the semiautomaton, we can study any possible variation of the PQ game.

We remark that the automata presented here do much more than accepting dominant strategies.
In game theory a strategy i for a player is strongly dominated by strategy j if the player’s payoff from i is
strictly less than that from j. A strategy i for a player is a strongly dominant strategy iff all other strategies
for this player are strongly dominated by i (see [1,2] for details). In our context, the strategy (H, H) for
the original PQ game is a strongly dominant strategy for Q. The automata we have constructed accept
sequences of actions by both players, i.e., sequences that contain the actions of both players. As we
have explained in Section 7, they can be designed so as to accept all action sequences of all possible
games between Picard and Q for which either Q surely wins, or Picard surely wins or even they both
have probability 0.5 to win.

We believe that the current methodology can be easily extended to account for greater variation
in the actions of Picard and Q. Our analysis was based on the premise that the set of actions is
precisely Act = {I, F, H}. This set can be augmented by adding a finite number of actions, as long
as these actions represent rotations Rθ through an angle θ about the origin and reflections Fϕ about
a line through the origin that makes an angle ϕ with the positive x-axis, where θ = 2π

n and ϕ = 2π
m ,

where n, m are positive integers. In that way, Q, being the quantum player, would have many more
actions in his disposal, rather than only H. However, more actions may not necessarily mean more
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winning strategies for Q. Obviously, in such a case, the resulting finite automata would have more
states that the automata presented in this paper.

Future directions for this work are numerous, including the construction of automata expressing
other quantum games, and the application of automata-theoretic notions to such games. The connection
of standard finite automata with the players actions on a particular quantum game can only be seen
as a first step in the direction of checking, not only other games, but also different game modes on
already known setups.
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Appendix A. Proofs of the Main Results

It is clear from our prior analysis that, under the assumptions that the coin is initially at state
|heads〉 = |0〉 or |tails〉 = |1〉 and the actions of the players are precisely I, F and H, the only states the
coin may pass through are the eight states shown in Table 2. This fact prompts the following definition.

Definition A1. The set of kets {|0〉 ,
√

2
2 |0〉+

√
2

2 |1〉 , |1〉 ,
√

2
2 |0〉 −

√
2

2 |1〉} that represent the possible states
of the coin is denoted by C. C ⊂ H2 is a finite subset of the two-dimensional complex Hilbert spaceH2.

For completeness, we state the following Lemma A1. Its proof is trivial and is omitted.

Lemma A1. C is closed with respect to the actions I, F and H.

To prove the main theorems of this paper, we will have to give a few technical definitions.

Definition A2. The transition function δ of a deterministic automaton A can be extended to a function
δ̄ : K× Σ? → K, where K is the set of states and Σ the alphabet of A. Let q ∈ K, l ∈ Σ, and w0, w ∈ Σ?; then δ̄

is defined recursively as follows:

δ̄(q, w) =

{
q, w = ε

δ(δ̄(q, w0), l), w = w0l
. (A1)

If a deterministic automaton is in state q and reads the word w, it will end up in state δ̄(q, w).
In this respect, the extended transition function is a convenient way to specify how an arbitrary word
will affect the state of the automaton. For instance AQ, whose initial state is heads, when fed with the
input word f h f it will end up in state s5. In an analogous fashion, it will be useful to define a function
that will specify how a sequence of actions will affect the state of the coin. Without further ado, we
state the next definition.
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Definition A3. We define the function S : C× Act? → C which gives the state of the coin after the application
of the action sequence α, assuming that the coin is initially in state |s〉. Formally,

S(|s〉 , α) =

{
|s〉 , α = ε

U(S(|s〉 , α0)), α = (α0, U)
, (A2)

where U ∈ Act and α0, α ∈ Act?.

Consider for example the action sequence α = (I, F, H); then S(|0〉 , α) =
√

2
2 |0〉 −

√
2

2 |1〉 and

S(|1〉 , α) =
√

2
2 |0〉+

√
2

2 . Finally, we define the function ϕ and its inverse ϕ−1. ϕ maps states of the
automaton AQ to states of the coin. This function conveys exactly the same information as Table 2 and
it will enable us to rigorously express what we mean by saying that AQ captures all the finite games
between Picard and Q.

Definition A4. We define the function ϕ : K → C, where K is the set of states of the automaton AQ.

ϕ(heads) = |0〉 , ϕ(s2) =

√
2

2
|0〉+

√
2

2
|1〉 , ϕ(tails) = |1〉 , ϕ(s4) =

√
2

2
|0〉 −

√
2

2
|1〉 . (A3)

Clearly, ϕ is a bijection, so it has an inverse function ϕ−1 : C → K.

ϕ−1(|0〉) = heads, ϕ−1(

√
2

2
|0〉+

√
2

2
|1〉) = s2, ϕ−1(|1〉) = tails, ϕ−1(

√
2

2
|0〉 −

√
2

2
|1〉) = s4. (A4)

The next Lemma states that AQ is a faithful representation of the coin.

Lemma A2 (Faithful representation Lemma). The states and the transitions of the coin are faithfully
represented by the states and the transitions of AQ in the following precise sense

∀w ∈ Σ? ∀q ∈ K : ϕ(δ̄(q, w)) = S(ϕ(q), µ̄(w)), and (A5)

∀α ∈ Act? ∀s ∈ C : ϕ−1(S(|s〉 , α)) = δ̄(ϕ−1(|s〉), λ̄(α)). (A6)

Proof. Typically, the proof is by simultaneous induction on the length n of w and α.

• When n = 0, the only word of length 0 is the empty word ε. In this case, by Definition 6 µ̄(ε) = ε,
by Definition A2 δ̄(q, ε) = q and, by Definition A3, S(ϕ(q), ε) = ϕ(q). Equation (A5) then reduces
to ϕ(q) = ϕ(q), which is trivially true.

Similarly, when n = 0, α is the empty action sequence ε, in which case λ̄(ε) = ε (Definition 6),
δ̄(ϕ−1(|s〉), ε) = ϕ−1(|s〉) (Definition A2), and S(|s〉 , ε) = |s〉 (Definition A3). In this special case,
Equation (A6) becomes ϕ−1(|s〉) = ϕ−1(|s〉), which is of course true.

• We assume that (A5) and (A6) hold for n = k and for all q ∈ K and s ∈ C.
• It remains to prove Equations (A5) and (A6) for n = k + 1.

Consider an arbitrary word w over Σ of length k + 1. w can be written as w0l where w0 is a word
of length k and l is one of i, f or h. By the induction hypothesis we know that

∀q ∈ K : ϕ(δ̄(q, w0)) = S(ϕ(q), µ̄(w0)). (A7)

There are three cases to consider, depending on whether l = i, l = f or l = h.

If l = i, then w = w0i and the transition function of AQ (Figure 4) ensures that
δ̄(q, w0) = δ̄(q, w0i) (?). At the same time, by Definition 6, µ̄(w0i) = (µ̄(w0), I) and,
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by Definition A3, S(ϕ(q), (µ̄(w0), I)) = I(S(ϕ(q), µ̄(w0))) = S(ϕ(q), µ̄(w0)) (??) because I
is the identity operator. Using (?), (??), and the induction hypothesis in Equation (A7), we

get ϕ(δ̄(q, w0i))
(?)
= ϕ(δ̄(q, w0))

(A7)
= S(ϕ(q), µ̄(w0))

(??)
= S(ϕ(q), (µ̄(w0), I)). Thus, in this case,

Equation (A5) holds.

If l = f , then w = w0 f . With respect to f the transition function of AQ (Figure 4) is a bit more
complicated, which implies that each state of AQ must be examined separately. Let’s begin with
state heads, that is let’s assume that δ̄(q, w0) = heads. Then, the transition function requires that
δ̄(q, w0 f ) = tails. Accordingly, Definition A4 implies that

ϕ(δ̄(q, w0)) = ϕ(heads) = |0〉 ϕ(δ̄(q, w0 f )) = ϕ(tails) = |1〉 . (∗)

By the induction hypothesis in Equation (A7) and (∗) we can deduce that

S(ϕ(q), µ̄(w0))
(A7)
= ϕ(δ̄(q, w0))

(∗)
= |0〉 . (∗∗)

Combining Definitions 6 and (A3) with (∗∗) we derive that µ̄(w0 f ) = (µ̄(w0), F) and

S(ϕ(q), (µ̄(w0), F))
(De f . A3)

= F(S(ϕ(q), µ̄(w0)))
(∗∗)
= F |0〉 = |1〉 (∗ ∗ ∗)

because F is the flip operator. Therefore, if δ̄(q, w0) = heads, then

ϕ(δ̄(q, w0 f ))
(∗)
= |1〉 (∗∗∗)= S(ϕ(q), (µ̄(w0), F)),

that is Equation (A5) holds. It is straightforward to repeat the same reasoning for the remaining
states of AQ and verify in each case the validity of Equation (A5).

If l = h, then w = w0h. As in the previous case, we have to examine each state of AQ
separately. If δ̄(q, w0) = heads, then, according to the transition function, δ̄(q, w0h) = s2.
Recalling Definition A4 we see that

ϕ(δ̄(q, w0)) = ϕ(heads) = |0〉 ϕ(δ̄(q, w0h)) = ϕ(s2) =

√
2

2
|0〉+

√
2

2
|1〉 . (•)

By the induction hypothesis in Equation (A7) and (•) we conclude that

S(ϕ(q), µ̄(w0))
(A7)
= ϕ(δ̄(q, w0))

(•)
= |0〉 . (••)

Together, Definitions 6 and A3 and (••) imply that µ̄(w0h) = (µ̄(w0), H) and

S(ϕ(q), (µ̄(w0), H))
(De f . A3)

= H(S(ϕ(q), µ̄(w0)))
(••)
= H |0〉 =

√
2

2
|0〉+

√
2

2
|1〉 (• • •)

because H is the Hadamard operator. Hence, if δ̄(q, w0) = heads, then

ϕ(δ̄(q, w0h))
(•)
=

√
2

2
|0〉+

√
2

2
|1〉 (•••)= S(ϕ(q), (µ̄(w0), H)),

showing that Equation (A5) holds. Repeating analogous arguments for the remaining states of
AQ allows us to establish the validity of Equation (A5).
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We proceed now to show that Equation (A6) holds. Consider an arbitrary action sequence α of
length k + 1: α = (α0, U), where α0 is the prefix action sequence of length k and U is one of the
unitary operators I, F or H. In this case the induction hypothesis becomes

∀s ∈ C : ϕ−1(S(|s〉 , α0)) = δ̄(ϕ−1(|s〉), λ̄(α0)). (A8)

Since U stands for one of I, F or H, we must distinguish three cases.

If U is the identity operator I then, by Definition A3, S(|s〉 , (α0, I)) = I(S(|s〉 , α0)) = S(|s〉 , α0) (?).

Hence, ϕ−1(S(|s〉 , α))
(?)
= ϕ−1(S(|s〉 , α0))

(A8)
= δ̄(ϕ−1(|s〉), λ̄(α0)) (??). The transition function

of AQ (Figure 4) guarantees that ∀w ∈ Σ? ∀q ∈ K δ̄(q, w) = δ̄(q, wi). Therefore, δ̄(ϕ−1(|s〉),
λ̄(α0)) = δ̄(ϕ−1(|s〉), λ̄(α0)i)

(De f . 5)
= δ̄(ϕ−1(|s〉), λ̄(α0) λ(I))

(De f . 6)
= δ̄(ϕ−1(|s〉), λ̄(α)) (? ? ?).

Combining (??) and (? ? ?), we conclude that ϕ−1(S(|s〉 , α)) = δ̄(ϕ−1(|s〉), λ̄(α)), i.e., (A6) holds.

If U is the flip operator F, then each ket of C must be examined separately. Let us begin with
ket |0〉, that is let’s assume that S(|s〉 , α0) = |0〉. Then, by Definition A3, S(|s〉 , α) = S(|s〉 ,
(α0, F)) = F(S(|s〉 , α0)) = |1〉. In this case Definition A4 implies that

ϕ−1(S(|s〉 , α0)) = ϕ−1(|0〉) = heads ϕ−1(S(|s〉 , α)) = ϕ−1(|1〉) = tails. (∗)

By the induction hypothesis in Equation (A8) and (∗) we see that

δ̄(ϕ−1(|s〉), λ̄(α0))
(A8)
= ϕ−1(S(|s〉 , α0))

(∗)
= heads. (∗∗)

Combining Definitions 6 and A2 with (∗∗) we derive that λ̄(α) = λ̄(α0)λ(F) = λ̄(α0) f and

δ̄(ϕ−1(|s〉), λ̄(α)) = δ̄(ϕ−1(|s〉), λ̄(α0) f )
(De f . A2)

=

δ(δ̄(ϕ−1(|s〉), λ̄(α0)), f )
(∗∗)
= δ(heads, f ) = tails, (∗ ∗ ∗)

by the transition function of transition function of AQ (Figure 4). Consequently,

ϕ−1(S(|s〉 , α))
(∗)
= tails

(∗∗∗)
= δ̄(ϕ−1(|s〉), λ̄(α)),

that is Equation (A6) holds. It is straightforward to repeat the same reasoning for the remaining
kets of C and verify in each case the validity of Equation (A6).

The last case we have to examine is when U is the Hadamard operator H, in which case
α = (α0, H). As in the previous case, we have to check each ket of C. Let us consider first the case
where S(|s〉 , α0) = |0〉. Then, by Definition A3, S(|s〉 , α) = S(|s〉 , (α0, H)) = H(S(|s〉 , α0)) =√

2
2 |0〉+

√
2

2 |1〉. In this case Definition A4 implies that

ϕ−1(S(|s〉 , α0)) = heads ϕ−1(S(|s〉 , α)) = s2. (•)

By the induction hypothesis in Equation (A8) and (•) we see that

δ̄(ϕ−1(|s〉), λ̄(α0))
(A8)
= ϕ−1(S(|s〉 , α0))

(•)
= heads. (••)
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Combining Definitions 6 and A2 with (••) we derive that λ̄(α) = λ̄(α0)λ(H) = λ̄(α0)h and

δ̄(ϕ−1(|s〉), λ̄(α)) = δ̄(ϕ−1(|s〉), λ̄(α0)h)
(De f . A2)

=

δ(δ̄(ϕ−1(|s〉), λ̄(α0)), h)
(••)
= δ(heads, h) = s2, (• • •)

by the transition function of transition function of AQ (Figure 4). Finally,

ϕ−1(S(|s〉 , α))
(•)
= s2

(•••)
= δ̄(ϕ−1(|s〉), λ̄(α)),

that is Equation (A6) holds. Using similar arguments, we can prove Equation (A6) for the
remaining kets of C.

Theorem A1 (Winning automaton). AQ is a winning automaton for Q.

Proof. Recalling Definition 7 and taking into account that the initial state of AQ is heads, we see that
we must prove that

∀w ∈ LAQ : Q(G(|0〉 , γw), αw), (A9)

where αw = µ̄(w) and γw = χ(µ̄(w)).
Let us first consider the special case where w is the empty word ε, which obviously belongs to LAQ .

By Definition 6, ε corresponds to the empty action sequence ε, which, by Definition 4, corresponds to
empty sequence of moves e, which, by Definition 3, corresponds to the trivial game G(|0〉 , e). Q wins
this game, so in this special case Q(G(|0〉 , e), ε) is true.

We consider now an arbitrary word w of LAQ . Applying Lemma A2 and taking into account that
the initial state of AQ is heads, we arrive at the conclusion that

ϕ(δ̄(heads, w)) = S(|0〉 , µ̄(w)). (?)

The fact that w is accepted by AQ means that δ̄(heads, w) = heads, which in turn implies
(recall Definition A4) that

ϕ(δ̄(heads, w)) = |0〉 . (??)

Together (?) and (??) give
S(|0〉 , µ̄(w)) = |0〉 . (? ? ?)

Hence, if the initial state of the coin is |0〉, and the sequence of actions µ̄(w) is applied, then the coin
will end up, prior to measurement, in state |0〉. The outcome of the measurement in the orthonormal
basis {|0〉 , |1〉} will be |0〉 with probability 1.0. Finally, by Definition 4, µ̄(w) is a winning sequence for
G(|0〉 , χ(µ̄(w))). Therefore, Equation (A9) holds.

In an identical manner we can show the next Corollary.

Corollary A1. The automata APQ, APQπ/2
, and APQ6

are all winning automata for Q.

Theorem A2 (Complete automaton for Q). AQ is complete with respect to the winning sequences for Q.

Proof. We must show that

∀γ ∈ N? ∀α ∈ Act? : Q(G(|0〉 , γ), α)⇒ λ̄(α) ∈ LAQ . (A10)
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Let us first consider the special case where γ is the empty sequence of moves e, which,
by Definition 3, corresponds to the trivial game G(|0〉 , e). In this case, the only admissible action
sequence α is the empty sequence ε, which is a winning sequence for Q. Obviously, the corresponding
word is the empty word, which is, of course, recognized by AQ. Thus, in this special case,
Equation (A11) is true.

We consider now an arbitrary sequence of moves γ and an arbitrary winning sequence α for the
game G(|0〉 , γ). Applying Lemma A2 and taking into account that the initial state of AQ is heads,
we arrive at the conclusion that

S(ϕ(heads), α) = S(|0〉 , α) = ϕ(δ̄(heads, λ̄(α))). (?)

The fact that Q wins with probability 1.0 means the final state of the coin, before measurement,
is |0〉, that is S(|0〉 , α) = |0〉, which, in view of (?), implies that ϕ(δ̄(heads, λ̄(α))) = |0〉. Consequently,
by Definition A4

δ̄(heads, λ̄(α)) = heads. (??)

Hence, AQ starting from the initial state heads will surely end up in state heads upon reading the
word λ̄(α). The fact that heads is an accepting state, allows us to conclude that λ̄(α) belongs to LAQ

and (A11) holds.

Theorem A3 (Complete and winning automaton II for Q). A′Q is a complete and winning automaton for
Q for all the games in which the initial state of the coin is |tails〉 = |1〉.

Proof. The proof is just a repetition of the proofs of Theorems A1 and A2, the only difference being
that this time the games begin with the coin at state |tails〉 = |1〉.

Theorem A4 (Complete and winning automaton for Picard). AP is a complete and winning automaton
for Picard for all the games in which the initial state of the coin is |heads〉 = |0〉.

Proof. Again the proof is just a repetition of the proofs of Theorems A1 and A2. The difference now is
that the accepting state is tails.

Theorem A5 (Complete and winning automaton II for Picard). A′P is a complete and winning automaton
for Picard for all the games in which the initial state of the coin is |tails〉 = |1〉.

Proof. Once more we repeat the proofs of Theorems A1 and A2. In this case the games begin with the
coin at state |tails〉 = |1〉, the initial state of A′P is tails and the accepting state is heads.

Theorem A6 (Complete automata for fair sequences). A1/2 and A′1/2 are complete for fair sequences,
that is they accept all fair sequences for all the games in which the initial state of the coin is |heads〉 = |0〉 and
|tails〉 = |1〉, respectively.

Proof. We first show that ∀γ ∈ N? ∀α ∈ Act?

If Q and Picard have probability 0.5 to win G(|0〉 , γ) using α, then λ̄(α) ∈ LA1/2 . (A11)

Before we give the proof let us point out that this time γ cannot be the empty sequence of moves
e because, by Definition 3, it would correspond to the trivial game G(|0〉 , e). For the trivial game the
only admissible action sequence α is the empty sequence ε, which is not a fair sequence. Naturally,
the corresponding empty word is not accepted by A1/2.
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We consider now an arbitrary sequence of moves γ and an arbitrary fair sequence α for the game
G(|0〉 , γ). Applying Lemma A2 and taking into account that the initial state of A1/2 is heads, we arrive
at the conclusion that

S(ϕ(heads), α) = S(|0〉 , α) = ϕ(δ̄(heads, λ̄(α))). (?)

The fact that both Q and Picard have probability 0.5 to win means the final state of the coin
before measurement is either

√
2

2 |0〉+
√

2
2 |1〉 or

√
2

2 |0〉 −
√

2
2 |1〉. This is guaranteed by Lemma A1

which asserts that the coin can only pass through the states in C. Hence, S(|0〉 , α) =
√

2
2 |0〉+

√
2

2 |1〉
or S(|0〉 , α) =

√
2

2 |0〉 −
√

2
2 |1〉. In view of (?), this means that ϕ(δ̄(heads, λ̄(α))) =

√
2

2 |0〉+
√

2
2 |1〉, or

ϕ(δ̄(heads, λ̄(α))) =
√

2
2 |0〉 −

√
2

2 |1〉. Therefore, by Definition A4, δ̄(heads, λ̄(α)) is either s2 or s4 (??).
Thus, A1/2 starting from the initial state heads will end up in one of s2 or s4 upon reading the word
λ̄(α). Since both of these states are accepting states, we conclude that λ̄(α) belongs to LA1/2 and A1/2
is complete for fair sequences.

In a similar manner we can show that A′1/2 is also complete for fair sequences.

References

1. Gintis, H. Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction, 2nd ed.;
Princeton University Press: Princeton, NJ, USA, 2009.

2. Tadelis, S. Game Theory: An Introduction; Princeton University Press: Princeton, NJ, USA, 2013.
3. Myerson, R. Game Theory; Harvard University Press: Cambridge, MA, USA, 1997.
4. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Science Editions; J. Wiley:

Hoboken, NJ, USA, 1944.
5. Meyer, D.A. Quantum strategies. Phys. Rev. Lett. 1999, 82, 1052–1055.
6. Salimi, S.; Soltanzadeh, M. Investigation of quantum roulette. Int. J. Quantum Inf. 2009, 7, 615–626.
7. Wang, X.B.; Kwek, L.; Oh, C. Quantum roulette: An extended quantum strategy. Phys. Lett. A 2000, 278, 44–46.
8. Ren, H.F.; Wang, Q.L. Quantum game of two discriminable coins. Int. J. Theor. Phys. 2008, 47, 1828–1835.
9. Nguyen, A.T.; Frison, J.; Huy, K.P.; Massar, S. Experimental quantum tossing of a single coin. New J. Phys.

2008, 10, 083037.
10. Berlin, G.; Brassard, G.; Bussieres, F.; Godbout, N. Fair loss-tolerant quantum coin flipping. Phys. Rev. A

2009, 80, 062321.
11. Ambainis, A. A new protocol and lower bounds for quantum coin flipping. In Proceedings of the

Thirty-Third Annual ACM Symposium on Theory of Computing, Crete, Greece, 6–8 July 2001; pp. 134–142.
12. Ambainis, A.; Buhrman, H.; Dodis, Y.; Rohrig, H. Multiparty quantum coin flipping. In Proceedings of the

19th IEEE Annual Conference on Computational Complexity, Amherst, MA, USA, 24 June 2004; pp. 250–259.
13. Neyman, A. Bounded complexity justifies cooperation in the finitely repeated prisoners’ dilemma. Econ. Lett.

1985, 19, 227–229.
14. Rubinstein, A. Finite automata play the repeated prisoner’s dilemma. J. Econ. Theory 1986, 39, 83–96.
15. Abreu, D.; Rubinstein, A. The structure of Nash equilibrium in repeated games with finite automata.

Econometrica 1988, 56, 1259–1281.
16. Binmore, K.G.; Samuelson, L. Evolutionary stability in repeated games played by finite automata. J. Econ. Theory

1992, 57, 278–305.
17. Ben-Porath, E. Repeated games with finite automata. J. Econ. Theory 1993, 59, 17–32.
18. Marks, R.E. Repeated Games and Finite Automata; Australian Graduate School of Management, University of

New South Wales: Sydney, Australia, 1990.
19. Eisert, J.; Wilkens, M.; Lewenstein, M. Quantum games and quantum strategies. Phys. Rev. Lett. 1999, 83, 3077.
20. Benjamin, S.C.; Hayden, P.M. Comment on “Quantum Games and Quantum Strategies”. Phys. Rev. Lett.

2001, 87, 069801.
21. Zhang, S. Quantum strategic game theory. In Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, Cambridge, MA, USA, 8–10 January 2012; ACM: New York, NY, USA, 2012; pp. 39–59.
22. Flitney, A.P.; Abbott, D. An introduction to quantum game theory. Fluct. Noise Lett. 2002, 2, R175–R187.
23. Lee, C.F.; Johnson, N. Parrondo games and quantum algorithms. arXiv 2002, quant-ph/0203043.



Mathematics 2018, 6, 20 26 of 26

24. Meyer, D.A.; Blumer, H. Parrondo games as lattice gas automata. J. Stat. Phys. 2002, 107, 225–239.
25. Bertelle, C.; Flouret, M.; Jay, V.; Olivier, D.; Ponty, J.L. Adaptive behaviour for prisoner dilemma strategies

based on automata with multiplicities. In Proceedings of the ESS 2002 Conference, Dresden, Germany,
23–26 October 2002.

26. Piotrowski, E.W.; Sladkowski, J. The next stage: Quantum game theory. arXiv 2003, quant-ph/0308027.
27. Suwais, K. Assessing the Utilization of Automata in Representing Players’ Behaviors in Game Theory. Int. J.

Ambient Comput. Intell. 2014, 6, 1–14.
28. Almanasra, S.; Suwais, K.; Rafie, M. The Applications of Automata in Game Theory. In Intelligent Technologies

and Techniques for Pervasive Computing; IGI Global: Hershey, PA, USA, 2013; pp. 204–217.
29. Li, L.; Feng, Y. On hybrid models of quantum finite automata. J. Comput. Syst. Sci. 2015, 81, 1144–1158.
30. Zheng, S.; Li, L.; Qiu, D.; Gruska, J. Promise problems solved by quantum and classical finite automata.

Theor. Comput. Sci. 2017, 666, 48–64.
31. Li, L.; Qiu, D. Lower bounds on the size of semi-quantum finite automata. Theor. Comput. Sci. 2016, 623, 75–82.
32. Gainutdinova, A.; Yakaryılmaz, A. Unary probabilistic and quantum automata on promise problems.

Quantum Inf. Process. 2018, 17, 28.
33. Giannakis, K.; Papalitsas, C.; Kastampolidou, K.; Singh, A.; Andronikos, T. Dominant Strategies of Quantum

Games on Quantum Periodic Automata. Computation 2015, 3, 586–599.
34. Preskill, J. Quantum Information and Computation. 2017. Available online: http://www.theory.caltech.

edu/preskill/ph219/ph219_2017 (accessed on 18 December 2017).
35. Sipser, M. Introduction to the Theory of Computation, 2nd ed.; Course Technology: Boston, MA, USA, 2006.
36. Yakhnis, A.; Yakhnis, V. Gurevich–Harrington’s games defined by finite automata. Ann. Pure Appl. Logic

1993, 62, 265–294.
37. Cox, E.; Schkufza, E.; Madsen, R.; Genesereth, M. Factoring general games using propositional automata.

In Proceedings of the IJCAI Workshop on General Intelligence in Game-Playing Agents (GIGA), Pasadena,
CA, USA, 13 July 2009; pp. 13–20.

38. Rabin, M.O.; Scott, D. Finite automata and their decision problems. IBM J. Res. Dev. 1959, 3, 114–125.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.theory.caltech.edu/preskill/ph219/ph219_2017
http://www.theory.caltech.edu/preskill/ph219/ph219_2017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminary Definitions
	The PQ Game
	Automata

	Games and Words
	An Automaton for the PQ Game
	Variants of the Game and Their Corresponding Automata
	Changing the Initial State of the Coin
	Variants with More Rounds

	Automata Capturing Sets of Games
	Devising Other Variants
	Changing the Initial State of the Coin
	Picard Surely Wins
	Fair Games


	Conclusions and Further Work
	Proofs of the Main Results
	References

