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Abstract: In this paper, we investigate the existence of fixed points that are not necessarily unique in
the setting of extended b-metric space. We state some examples to illustrate our results.
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1. Introduction and Preliminaries

Metric fixed point theory was initiated by the elegant results of Banach, the contraction mapping
principle, and all researchers in this area agree on this. He formulated that every contraction in
a complete metric space possesses a unique fixed point. Researchers have generalized this result by
refining the contraction condition and/or by changing the metric space with a refined abstract space.
One interesting generalization of metric space is b-metric space, formulated recently by Czerwik [1].
Following this result on b-metric space, several authors have reported a number of fixed point results
in the framework of b-metric space (see, e.g., [2–9] and related references therein).

Throughout this manuscript, we denote N0 := N∪ {0}, where N represents the positive integers.
Further, R represents the real numbers and R+

0 := [0, ∞).

Definition 1 (Czerwik [1]). For a non-empty set X, a function mb : X× X → R+
0 is said to be b-metric if it

satisfies the following conditions:

(mb1) mb(x, y) = 0 if and only if x = y.
(mb2) mb(x, y) = mb(y, x) for all x, y ∈ X.
(mb3) mb(x, y) ≤ s[mb(x, z) + mb(z, y)] for all x, y, z ∈ X, where s ≥ 1.

In addition, the pair (X, mb) is called a b-metric space, in short, bMS.

One of the standard examples of b-metric is the following:

Example 1. Let X = R be the set of real numbers and mb(x, y) = (x− y)2. Then mb is a b-metric on R with
s = 2. It is clear that mb is not a metric on R.

Remark 1. It is worth mentioning that, for s = 1, the b-metric becomes a usual metric.
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Recently, Kamran et al. [10] introduced a new type of generalized b-metric space. Furthermore,
they observed the analog of a Banach contraction mapping principle in the framework of this
new space.

Definition 2. [10] Let θ : X×X → [1, ∞) be a mapping. For a non-empty set X, a function dθ : X×X→ [0, ∞)

is said to be an extended b-metric if it satisfies the following state of affairs

(dθ1) dθ(ξ, η) = 0 if and only if ξ = η,
(dθ2) dθ(ξ, η) = dθ(η, ξ), and
(dθ3) dθ(ξ, ζ) ≤ θ(ξ, ζ) [dθ(ξ, η) + dθ(η, ζ)],

for all ξ, η, ζ ∈ X. In addition, the pair (X, dθ) is called an extended b-metric space, in short extended-bMS.

Remark 2. If θ(ξ, η) = s, constant, for s ≥ 1, then it coincides with the standard definition of b-metric space.

Example 2. Let θ : X× X → [1, ∞) be a mapping defined as θ(x, y) = x2 + y2 + 2. For a set X = {a, b, c},
we set the mapping dθ : X× X → [0, ∞) as follows:

dθ(a, b) = dθ(b, a) = 5, dθ(a, c) = dθ(c, a) = 3, dθ(b, c) = dθ(c, b) = 1,

dθ(a, a) = dθ(b, b) = dθ(c, c) = 0.

Obviously, (dθ1) and (dθ2) hold. For (dθ3), we have

5 = dθ(a, b) ≤ θ(a, b)(dθ(a, c) + dθ(c, b)) = (a2 + b2 + 2) · 4

3 = dθ(a, c) ≤ θ(a, c)(dθ(a, b) + dθ(b, c)) = (a2 + c2 + 2) · 6

1 = dθ(b, c) ≤ θ(b, c)(dθ(b, a) + dθ(a, c)) = (b2 + c2 + 2) · 8.

In conclusion, for any ξ, η, ζ ∈ X, the third axiom

dθ(ξ, ζ) ≤ θ(ξ, ζ) [dθ(ξ, η) + dθ(η, ζ)]

is satisfied. Accordingly, (X, dθ) is an extended b-metric space. Notice also that the standard triangle inequality
is not satisfied for the following case

5 = dθ(a, b) > 4 = dθ(a, c) + dθ(c, b).

Hence, (X, d) does not form a standard metric space.

In an extended-bMS, it is possible to obtain an analogy of basic topological notions, such as
convergence, Cauchy sequences, and completeness. For more details, see, e.g., [10].

Definition 3. [10] Let (X, dθ) be an extended-bMS.

(i) We say that a sequence ξn in X converges to ξ ∈ X, if for every ε > 0 there exists N = N(ε) ∈ N such
that dθ(ξn, ξ) < ε, for all n ≥ N, and it is denoted as limn→∞ ξn = ξ.

(ii) We say that a sequence ξn in X is Cauchy if, for every ε > 0, there exists N = N(ε) ∈ N such that
dθ(ξm, ξn) < ε, for all m, n ≥ N.

In what follows, we recollect the notion of completeness:

Definition 4. [10]. An extended-bmetric space (X, dθ) is complete if every Cauchy sequence in X is convergent.
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Lemma 1. [10] Suppose that the pair (X, dθ) is a complete extended-bMS, where dθ is continuous. Then every
convergent sequence has a unique limit.

Theorem 1. [10] Suppose that the pair (X, dθ) is an complete extended-bMS, where dθ is continuous. If a
self-mapping T : X → X satisfies

dθ(Tξ, Tη) ≤ kdθ(ξ, η) (1)

for all ξ, η ∈ X, where k ∈ [0, 1) is such that for each x0 ∈ X, limn,m→∞ θ(ξn, ξm) <
1
k , where ξn = Tnξ0,

n = 1, 2, ..., then T has precisely one fixed point u. Moreover, for each η ∈ X, Tnη → u.

For our purposes, we need to recall the following definitions and results.

Definition 5. [11] Suppose that the pair (X, dθ) is an extended-bMS For a self-mapping T : X → X, for each
ξ ∈ X and n ∈ N, we define

O(ξ; n) = {ξ, Tξ, ..., Tnξ} and O(ξ; ∞) = {ξ, Tξ, ..., Tnξ, ...} .

We say that the set O(ξ; ∞) is the orbit of T.

Definition 6. Suppose that the pair (X, dθ) is an extended-bMS. A self-mapping T : X → X is called orbitally
continuous if limi→∞ Tni (ξ) = ζ for some ζ ∈ X implies that limi→∞ T(Tni (ξ)) = Tζ. Moreover, if every
Cauchy sequence of the form {Tni (ξ)}∞

i=1, ξ ∈ X converges in (X, dθ), then we say that an extended-bMS
(X, dθ) is called T-orbitally complete.

Remark 3. It is evident that the orbital continuity of T yields orbital continuity of any iterative power of T,
that is, orbital continuity of Tm for any m ∈ N.

Definition 7. [12] Suppose that T is a self-mapping on a non-empty set X. Let α : X × X → [0, ∞) be
a mapping. Then T is called an α-orbital admissible if, for all ξ ∈ X, we have

α(ξ, Tξ) ≥ 1⇒ α(Tξ, T2ξ) ≥ 1. (2)

Remark 4. We note that any α-admissible mapping is also an α-orbital admissible mapping. (see, e.g., [12]).

2. Main Results

Throughout the paper, we shall assume that dθ is a continuous functional.

Lemma 2. [13] Let (X, dθ) be an extended b-metric space. If there exists q ∈ [0, 1) such that the sequence {xn},
for an arbitrary x0 ∈ X, satisfies lim

n,m→∞
θ(xn, xm) <

1
q

, and

0 < dθ(xn, xn+1) ≤ qdθ(xn−1, xn) (3)

for any n ∈ N, then the sequence {xn} is Cauchy in X.

Proof. Let {xn}n∈N be a given sequence. By employing Inequality (3), recursively, we derive that

0 < dθ(xn, xn+1) ≤ qndθ(x0, x1). (4)

Since q ∈ [0, 1), we find that
lim

n→∞
dθ(xn, xn+1) = 0. (5)
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On the other hand, by (dθ3), together with triangular inequality, for p ≥ 1, we derive that

dθ(xn, xn+p) ≤ θ(xn, xn+p) ·
[
dθ(xn, xn+1) + dθ(xn+1, xn+p)

]
≤ θ(xn, xn+p)dθ(xn, xn+1) + θ(xn, xn+p)dθ(xn+1, xn+p)

≤ θ(xn, xn+p)qndθ(x0, x1) + θ(xn, xn+p)θ(xn+1, xn+p)[dθ(xn+1, xn+2) + dθ(xn+2, xn+p)]

≤ θ(xn, xn+p) · qndθ(x0, x1) + θ(xn, xn+p)θ(xn+1, xn+p) · qn+1dθ(x0, x1) + ...+

+θ(xn, xn+p) · ... · θ(xn+p−1, xn+p) · kn+p−1dθ(x0, x1)

= dθ(x0, x1)
n+p−1

∑
i=1

qi
i

∏
j=1

θ(xn+j, xn+p).

(6)

Notice that the inequality above is dominated by
n+p−1

∑
i=1

qi
i

∏
j=1

θ(xn+j, xn+p) ≤
n+p−1

∑
i=1

qi
i

∏
j=1

θ(xj, xn+p).

On the other hand, by employing the ratio test, we conclude that the series
∞

∑
i=1

qi
i

∏
j=1

θ(xj, xn+p)

converges some S ∈ (0, ∞). Indeed, lim
i→∞

ai+1

ai
= lim

i→∞
qθ(xi, xi+p) < 1, which is why we obtain the

desired result. Thus, we have

S =
∞

∑
i=1

qi
i

∏
j=1

θ(xj, xn+p) with the partial sum Sn =
n

∑
i=1

qi
i

∏
j=1

θ(xj, xn+p).

Consequently, we observe for n ≤ 1, p ≤ 1 that

dθ(xn, xn+p) ≤ qndθ(x0, x1)
[
Sn+p−1 − Sn−1.

]
(7)

Letting n→ ∞ in Equation (7), we conclude that the constructive sequence {xn} is Cauchy in the
extended b—metric space (X, dθ).

Lemma 3. Let T : X → X be an α-orbital admissible mapping and xn = Txn−1, n ∈ N. If there exists x0 ∈ X
such that α(x0, Tx0) ≥ 1, then we have

α(xn−1, xn) ≥ 1 for all n ∈ N0.

Proof. By assumption, there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1. On account of the
definition of {xn} ⊂ X and owing to the fact that T is α-orbital admissible, we derive

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, T2x0) = α(x1, x2) ≥ 1.

Recursively, we have
α(xn−1, xn) ≥ 1, for all n ∈ N0. (8)

Theorem 2. Suppose that T is an orbitally continuous self-mapping on the T-orbitally complete extended-bMS
(X, dθ). Assume that there exists k ∈ [0, 1) and a ≥ 1 such that

α(x, y)min{dθ(Tx, Ty), dθ(x, Tx), dθ(y, Ty)} − a min{dθ(x, Ty), dθ(Tx, y)} ≤ kdθ(x, y)) (9)

for all x, y ∈ X. Furthermore, we presume that



Mathematics 2018, 6, 68 5 of 11

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) lim
n,m→∞

θ(xn, xm) <
1
k

.

Then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1. We construct the
sequence {xn} in X such that

xn+1 = Txn ∀ n ∈ N0. (10)

If xn0 = xn0+1 = Txn0 for some n0 ∈ N0, then x∗ = xn0 forms a fixed point for T that the proof
finishes. Hence, from now on, we assume that

xn 6= xn+1 for all n ∈ N0. (11)

On account of the assumptions (i) and (ii), together with Lemma (3), Inequality (8) is yielded,
that is,

α(xn−1, xn) ≥ 1, for all n ∈ N0. (12)

By replacing x = xn−1 and y = xn in Inequality (9) and taking Equation (12) into account, we
find that

min {dθ(Txn−1, Txn), dθ(xn−1, Txn−1), dθ(xn, Txn)}
−a min {dθ(Txn, xn−1), dθ(Txn−1, xn)}

≤ α(xn−1, xn)min {dθ(Txn−1, Txn), dθ(xn−1, Txn−1), dθ(xn, Txn)}−
−a min {dθ(Txn, xn−1), dθ(Txn−1, xn)}

≤ kdθ(xn−1, xn)

(13)

or,
min {dθ(xn, xn+1), dθ(xn−1, xn)} ≤ kdθ(xn−1, xn). (14)

Since k ∈ [0, 1), the case dθ(xn−1, xn) ≤ kdθ(xn−1, xn) is impossible. Thus, we conclude that

d(xn, xn+1) ≤ kdθ(xn−1, xn). (15)

On account of Lemma 2, we find that the sequence {xn} is a Cauchy sequence. By completeness
of (X, dθ), the sequence xn converges to some point u ∈ X as n → ∞. Owing to the construction
xn = Tnx0 and the fact that (X, dθ) is T-orbitally complete, there is u ∈ X such that xn → u. Since T,
is orbital continuity, we deduce that xn → Tu. Accordingly, we conclude that u = Tu.

Example 3. Let X = {1, 2, 3, 4} be endowed with extended b-metric dθ : X × X → [0, ∞), defined by
dθ(x, y) = (x − y)2, where θ : X × X → [1, ∞), θ(x, y) = x + y + 1. Let k = 1

4 , a = 4 and T : X → X
such that

T1 = T3 = 1, T2 = 4, T4 = 3.

Define also α, β : X× X → [0, ∞) by

α(x, y) =

{
0 if , (x, y) ∈ {(3, 4), (4, 3)}
1 otherwise.
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Let us first notice that for any x ∈ {1, 2, 3, 4}, the sequence {Tnx} tends to 1 when n → ∞. For this

reason, we can conclude that the mapping T is orbitally continuous and lim
n,m→∞

θ(Tnx, Tmx) = 3 < 4 =
1
k

,

so (iii) is satisfied. It can also be easily verified that T is orbital admissible.
If x = 1 or y = 1, then d(1, T1) = 0 so Inequality (9) holds. We have to consider the following cases.

Case 1. For x = 2 and y = 3, we have

dθ(2, 3) = 1, dθ(T2, T3) = 9, dθ(2, T2) = 4, dθ(3, T3) = 4, dθ(2, T3) = 1, dθ(3, T2) = 1

and Inequality (9) yields

0 = min {9, 4, 4} − 4 ·min {1, 1} ≤ 1
4
=

1
4
· dθ(2, 3).

Case 2. For x = 2 and y = 4, we have

dθ(2, 4) = 4, dθ(T2, T4) = 1, dθ(2, T2) = 4, dθ(4, T4) = 1, dθ(2, T4) = 1, dθ(4, T2) = 0

and
1 = min {1, 4, 1} − 4 ·min {1, 0} ≤ 1 =

1
4
· dθ(2, 4).

Case 3. For x = 3 and y = 4, because α(3, 4) = 0, Inequality (9) holds.

Therefore, all the conditions of Theorem 2 are satisfied and T has a fixed point, x = 1.

In Theorem 2, if we presume that α(x, y) = 1 and θ(x, y) = 1, then we deduce the renowned
non-unique fixed point theorem of Ćirić [14] as follows:

Corollary 1. [Ćirić [14]] Suppose that T is an orbitally continuous self-map on the T-orbitally complete
standard metric space (X, d). We presume that there is a k ∈ [0, 1) such that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y)

for all x, y ∈ X. Then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.

Theorem 3. Suppose that T is an orbitally continuous self-map on the T-orbitally complete extended-bMS
(X, d). We presume that there exists k ∈ [0, 1) such that

α(x, y)Γ(x, y) ≤ kdθ(x, y) (16)

for all x, y ∈ X, where

Γ(x, y) =
P(x, y)−Q(x, y)

R(x, y)
P(x, y) = min{dθ(Tx, Ty)dθ(x, y), dθ(x, Tx)dθ(y, Ty)}
Q(x, y) = min{dθ(x, Tx)dθ(x, Ty), dθ(y, Ty)dθ(Tx, y)}
R(x, y) = min{dθ(x, Tx), dθ(y, Ty)}

where R(x, y) 6= 0. Furthermore, we assume that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) lim
n,m→∞

θ(xn, xm) <
1
k

.

Then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.
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Proof. As a first step, we construct an iterative sequence {xn} as in the proof of Theorem 2. For this
purpose, we take an arbitrary initial value x ∈ X and define the following recursion:

x0 := x and xn = Txn−1 for all n ∈ N. (17)

We also suppose that
xn 6= xn−1 for all n ∈ N, (18)

as is discussed in the proof of Theorem 2.
For x = xn−1 and y = xn, Inequality (16) becomes (taking into account Lemma (3))

Γ(xn−1, xn) ≤ α(xn−1, xn)Γ(xn−1, xn) ≤ kdθ(xn−1, xn) (19)

where

P(xn−1, xn) = min{dθ(Txn−1, Txn)dθ(xn−1, xn), dθ(xn−1, Txn−1)dθ(xn, Txn)}
= dθ(xn, xn+1)dθ(xn−1, xn)

Q(xn−1, xn) = min{dθ(xn−1, Txn−1)dθ(xn−1, Txn), dθ(xn, Txn)dθ(Txn−1, xn)} = 0
R(xn−1, xn) = min{dθ(xn−1, Txn−1), dθ(xn, Txn)} = min{dθ(xn−1, xn), dθ(xn, xn+1)

Γ(xn−1, xn) =
P(xn−1, xn)−Q(xn−1, xn)

R(xn−1, xn)
.

We obtain that
dθ(xn, xn+1)dθ(xn−1, xn)

min{dθ(xn−1, xn), dθ(xn, xn+1)}
≤ kdθ(xn−1, xn). (20)

If R(xn−1, xn) = dθ(xn, xn+1), then Inequality (20) turns into

dθ(xn−1, xn) ≤ kdθ(xn−1, xn) < dθ(xn−1, xn) (21)

which is a contraction, since k ∈ [0, 1). Consequently, we deduce that

dθ(xn, xn+1) ≤ kdθ(xn−1, xn). (22)

Applying Equation (22) recurrently, we find that

dθ(xn, xn+1) ≤ kdθ(xn−1, xn)) ≤ k2dθ(xn−2, xn−1) ≤ · · · ≤ kndθ(x0, x1). (23)

The rest of the proof is a verbatim restatement of the related lines in the proof of Theorem 2.

Theorem 4. Suppose that T is an orbitally continuous self-map on the T-orbitally complete extended-bMS
(X, dtheta). We presumed that there exists k ∈ [0, 1) and a > 0 such that

α(x, y)P(x, y)− aQ(x, y) ≤ kR(x, y) (24)

for all x, y ∈ X, where

P(x, y) = min{dθ(Tx, Ty), dθ(x, y), dθ(x, Tx), dθ(y, Ty)}
Q(x, y) = min{dθ(x, Ty), dθ(Tx, y)}
R(x, y) = min{dθ(x, y), dθ(x, Tx)}

with R(x, y) 6= 0. We also assume that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
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(iii) lim
n,m→∞

θ(xn, xm) <
1
k

.

Then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.

Proof. Basically, we shall use the same technique that was used in the proof of Theorem 2. We built
a recursive {xn},

x0 := x and xn = Txn−1 for all n ∈ N (25)

for an arbitrary initial value x ∈ X. Regarding the discussion in the proof of Theorem 2, we presume that

xn 6= xn−1 for all n ∈ N. (26)

For x = xn−1 and y = xn, Inequality (24) becomes (taking into account Lemma 3)

P(xn−1, xn)− aQ(xn−1, xn) ≤ α(xn−1, xn)P(xn−1, xn)− aQ(xn−1, xn)

≤ kR(xn−1, xn)
(27)

where

P(xn−1, xn) = min{dθ(Txn−1, Txn), dθ(xn−1, xn), dθ(xn−1, Txn−1), dθ(xn, Txn)}
= min{dθ(xn, xn+1), dθ(xn−1, xn)}

Q(xn−1, xn) = min{dθ(xn−1, Txn), dθ(Txn−1, xn)} = 0
R(xn−1, xn) = max{dθ(xn−1, xn), dθ(xn−1, Txn−1)} = dθ(xn−1, xn).

Thus, Inequality (27) becomes

min{dθ(xn, xn+1), dθ(xn−1, xn)} ≤ kdθ(xn−1, xn). (28)

If min{dθ(xn, xn+1), dθ(xn−1, xn)} = dθ(xn−1, xn), then Inequality (28) turns into

dθ(xn−1, xn) ≤ kdθ(xn−1, xn) < dθ(xn−1, xn), (29)

a contraction, since k ∈ [0, 1). Accordingly, we conclude that

dθ(xn, xn+1) ≤ kdθ(xn−1, xn). (30)

Recursively, we derive that

dθ(xn, xn+1) ≤ kdθ(xn−1, xn)) ≤ k2dθ(xn−2, xn−1)) ≤ · · · ≤ kndθ(x0, x1). (31)

By following the related lines in the proof of Theorem 2, we complete the proof.

Theorem 5. Assume that T is an orbitally continuous self-mapping on the T-orbitally complete extended-bMS
(X, d). We also presumed that there exists k ∈ [0, 1) and a > 0 such that

α(x, y)m(x, y)− n(x, y) ≤ kdθ(x, Tx)dθ(y, Ty) (32)

for all x, y ∈ X, where

n(x, y) = min{[dθ(Tx, Ty)]2, dθ(x, y)dθ(Tx, Ty), [dθ(y, Ty)]2}
m(x, y) = min{dθ(x, Tx)dθ(y, Ty), dθ(x, Ty)dθ(Tx, y)}.

Assume the following:

(i) T is α-orbital admissible;
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(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) lim
n,m→∞

θ(xn, xm) <
1
k

.

Then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.

Proof. As a first step, we shall construct an recursive sequence {xn = Txn−1}n∈N, for an arbitrary
initial value x0 := x ∈ X, as in the proof of Theorem 2. By following the same steps in the proof of
Theorem 2, we deduce that adjacent terms of the sequence {xn} should be chosen distinct, that is,

xn 6= xn−1 for all n ∈ N.

For x = xn−1 and y = xn, using (i) and Lemma (3) Inequality (32) infer that

m(xn−1, xn)− n(xn−1, xn) ≤ α(xn−1, xn)m(xn−1, xn)− n(xn−1, xn) ≤ kdθ(xn−1, Txn−1)dθ(xn, Txn), (33)

where

m(xn−1, xn) = min{[dθ(Txn−1, Txn)]2, dθ(xn−1, xn)dθ(Txn−1, Txn), [dθ(xn, Txn)]2}
= min{[dθ(xn, xn+1)]

2, dθ(xn−1, xn)dθ(xn, xn+1), [dθ(xn, xn+1)]
2}

= min{[dθ(xn, xn+1)]
2, dθ(xn−1, xn)dθ(xn, xn+1)},

n(xn−1, xn) = min{dθ(xn−1, Txn−1)dθ(xn, Txn), dθ(xn−1, Txn)dθ(Txn−1, xn)}
= min{dθ(xn−1, xn)dθ(xn, xn+1), dθ(xn−1, xn+1)dθ(xn, xn)} = 0.

The case m(xn−1, xn) = dθ(xn−1, xn)dθ(xn, xn+1), is not possible because in this situation
inequality (33) becomes

dθ(xn−1, xn)dθ(xn, xn+1) ≤ kdθ(xn−1, xn)dθ(xn, xn+1) < dθ(xn−1, xn)dθ(xn, xn+1), (34)

which is a contradiction. Consequently, we derive

[d(xn, xn+1)]
2 ≤ k(d(xn−1, xn)d(xn, xn+1)), (35)

which yields
d(xn, xn+1) < kd(xn−1, xn). (36)

Iteratively, we get that

d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ · · · ≤ kn(d(x0, x1)).

A verbatim repetition of the related lines in the proof of Theorem 2 completes the proof.

Theorem 6. Assume T is an orbitally continuous self-mapping on the T-orbitally complete extended-bMS
(X, dθ). We presumed there exists k ∈ [0, 1) and a ≥ 0 such that

α(x, y)K(x, y)− aQ(x, y) ≤ kS(x, y), (37)

for all distinct x, y ∈ X where

K(x, y) = min {dθ(Tx, Ty), dθ(y, Ty)} ,

Q(x, y) = min{dθ(x, Ty), dθ(y, Tx)},

S(x, y) = max{dθ(x, y), dθ(x, Tx), dθ(y, Ty)}.
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If the following three conditions are fulfilled,

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) lim
n,m→∞

θ(xn, xm) <
1
k

,

then, for each x0 ∈ X, the sequence {Tnx0}n∈N converges to a fixed point of T.

Proof. Let x0 ∈ X. Starting from this arbitrary initial value, we construct the iterative sequence
xn = Txn−1n∈N. As discussed in the proof of Theorem 2, we can suppose that

xn 6= xn−1 for all n ∈ N. (38)

On the other hand, from (i) and Lemma 3, we have that α(xn−1, xn) ≥ 1, so, for x = xn−1 and
y = xn, Inequality (37) implies that

K(xn−1, xn)− aQ(xn−1, xn) ≤ α(xn−1, xn)K(xn−1, xn)− aQ(xn−1, xn) ≤ kS(xn−1, xn) (39)

where

K(xn−1, xn) = min {dθ(Txn−1, Txn), dθ(xn, Txn)} = min {dθ(xn, xn+1), dθ(xn, xn+1)} = dθ(xn, xn+1)

Q(xn−1, xn) = min{dθ(xn−1, Txn), dθ(xn, Txn−1)} = 0

S(xn−1, xn) = max{dθ(xn−1, xn), dθ(xn−1, Txn−1), dθ(xn, Txn)} = max{dθ(xn−1, xn), dθ(xn, xn+1)}.

Obviously, since k ∈ [0, 1), the case S(xn−1, xn) = d(xn, xn+1) is impossible. More precisely,
Inequality (39) turns into

K(xn−1, xn) = d(xn, xn+1) ≤ kd(xn, xn+1) < d(xn, xn+1)

which is a contradiction. Hence, Inequality (39) yields that

d(xn, xn+1) ≤ kd(xn−1, xn) < d(xn−1, xn) and d(xn, xn+1) ≤ knd(x0, x1)

for all n ∈ N. A verbatim restatement of the related lines in the proof of Theorem 2 completes
the proof.

3. Conclusions

We note that several consequences can be observed from the main results in distinct aspects.
For example, taking θ(x, y) = s ≥ 1 implies corresponding fixed point results in the context of b-metric
space. In addition, standard versions of the given results follow when we take θ(x, y) = 1. Notice also
that, as in [15], by assigning α(x, y) in a proper way, we can conclude results in the frame of “partially
ordered spaces” and for “cyclic contraction”.

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read
and approved the final manuscript.

Acknowledgments: The first and third authors extend their appreciation to Distinguished Scientist Fellowship
Program (DSFP) at King Saud University (Saudi Arabia).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11.



Mathematics 2018, 6, 68 11 of 11

2. Afshari, H.; Aydi, H.; Karapınar, E. Existence of Fixed Points of Set-Valued Mappings in B-Metric Spaces.
East Asian Math. J. 2016, 32, 319–332. [CrossRef]

3. Aksoy, U.; Karapınar, E.; Erhan, Y.M. Fixed points of generalized alpha-admissible contractions on b-metric
spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 2016, 17, 1095–1108.
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