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Abstract: Column flotation is an efficient method commonly used in the mineral industry to separate
useful minerals from ores of low grade and complex mineral composition. Its main purpose is to
achieve maximum recovery while ensuring desired product grade. This work addresses a model
predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled
heterodirectional hyperbolic partial differential equations (PDEs) and ordinary differential equations
(ODEs), which accounts for the interconnection of well-stirred regions represented by continuous
stirred tank reactors (CSTRs) and transport systems given by heterodirectional hyperbolic PDEs,
with these two regions combined through the PDEs’ boundaries. The model predictive control
considers both optimality of the process operations and naturally present input and state/output
constraints. For the discrete controller design, spatially varying steady-state profiles are obtained
by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the
Cayley–Tustin time discretization transformation without any spatial discretization and/or without
model reduction. The model predictive controller is designed by solving an optimization problem
with input and state/output constraints as well as input disturbance to minimize the objective
function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally,
the controller performance to keep the output at the steady state within the constraint range is
demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in
this work makes this flotation process more efficient.

Keywords: model predictive control; column flotation; coupled PDE–ODE; Cayley–Tustin
discretization; input/state constraints

1. Introduction

Since its first commercial application in the 1980s [1], column flotation has attracted the attention
of many researchers. As a result of its industrial relevance and importance, the modeling and control
of mineral column flotation has gradually become a popular research field. In general, column flotation
methods are based on different physical properties of the particle surface and the flotability for
mineral separation [2,3]. Column flotation has many advantages compared to conventional mechanical
flotation processes, such as simplicity of construction, low energy consumption, higher recovery and
product grade, and so forth [4]. It has been claimed that appropriate process regulation could improve
recovery and product grades or process operations for greater benefits [5,6].

The column flotation process uses a complex distributed parameter system (DPS) that is highly
nonlinear, and various important parameters are highly interrelated. The whole process consists
of water, solid, and gas three-phase flows with multiple inputs as well as the occurrence of various
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sub-processes, such as particle–bubble attachment, detachment, and bubble coalescence, making
the process more complex and difficult to predict. After several decades of research and development,
the process is still not fully understood; the process control of column flotation has proven to be a great
challenge and remains a very important topic for the research community.

The process control for column flotation consists of three to four interconnected levels [6–8],
but according to the control effects, it can be divided into stability control and optimal control [9,10].
At present, most flotation control systems are based on stability control, and the traditional control
method uses PID control to achieve automatic control of the froth depth as well as other easily
measurable variables to keep the flotation process as close as possible to the steady state [11,12].
A growing number of scholars have begun to apply advanced control methods, such as model
predictive control, fuzzy control, expert systems, and neural network control, to regulate the column
flotation process and/or combine these novel control methods to achieve better flotation column
regulation [13–16].

Model predictive control is the most widely used multivariable control algorithm in current
industrial practice. One of its major advantages is that it can explicitly handle constraints while
dealing with multiple-input multiple-output process setting [17]. This ability comes from its
model-based prediction of the future dynamic behaviour of the system. By adding constraints to future
inputs, outputs, or state variables, constraints can be explicitly accounted for in an online quadratic
programming problem realization. This paper proposes and develops a model predictive control design
for the column flotation process, considering the process state/output and input control constraints.

For the model predictive controller design, a three-phase column flotation dynamic model was
developed. A typical column flotation process can be divided into two regions [3]: the collection region
and the froth region (a schematic representation of the column flotation process is given in Figure 1).
This work considers the collection region as a model given by the continuous stirred tank reactor
(CSTR) and considers the froth region as a plug flow reactor (PFR) model. According to the mass
balance laws, the overall column flotation system is described by a set of nonlinear heterodirectional
coupled hyperbolic partial differential equations (PDEs) and ordinary differential equations (ODEs)
that are connected through the PDEs’ boundaries. The steady-state profiles are utilized to linearize
the original nonlinear system, and then the discrete model is realized by the Cayley–Tustin time
discretization transformation [18–20]. By using this method, the continuous linear infinite-dimensional
PDE system can be mapped into a discrete infinite-dimensional system without spatial discretization;
the discretized model is structure-preserving and does not imply any model reduction [21]. Finally,
the model predictive controller is designed on the basis of the infinite-dimensional discrete model.
The paper is organized as follows: Section 2 develops the model of the column flotation process,
and the discrete version of the system is obtained by using the Cayley–Tustin time discretization
transformation. Section 3 addresses the model predictive controller design for the coupled PDE–ODE
model with the consideration of input disturbance rejection and input and state/output constraints.
Simulation results are shown in Section 4 to demonstrate the controller performance. Finally, Section 5
provides the conclusions.
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Figure 1. Schematic representation of a flotation column.

2. Model Formulation of Column Flotation

2.1. Model Description

Column flotation utilizes the principle of countercurrent flow, in which air is introduced
into the column at the bottom through a sparger or in the form of externally generated bubbles
and rises through the downward-flowing slurry that contains mineral, locked, and gangue particles.
By countercurrent flow, contact, and collision, hydrophobic particles (minerals) attach to the bubbles
forming bubble–particle aggregates and reach the top of the column; they are subsequently removed at
the top as a valuable product. Above the overflowing froth, there is a fine spray of water, washing down
the undesired particles that could have been entrained by the bubbles from the froth region [22,23].
Meanwhile, rising bubbles entrain some water flow together through bubble coalescence, and the
interaction of wash water and particles also simultaneously occurs. Therefore, the essential process
step in column flotation is the transfer of particles between the water phase and air phase as well as
between the upward and downward water phases.

On the basis of the above description and by making appropriate mass balances, the following
equations are obtained to describe the column flotation process.

2.1.1. Model for Collection Region

Under the assumption of perfect mixing, the collection region can be considered as a CSTR,
which means that the material properties are uniform throughout the reactor. Therefore, the model for
the collection region is described by coupled ODEs. The state variables for the process of the collection
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region are mass concentrations of solid particles (mineral, locked, and gangue) with the air phase (Ca)
and water phase (Cw):

d(HaVCa(t))
dt

= αAv f HwVCw(t)− βHaVCa(t)−QaCa(t) (1)

d(HwVCw(t))
dt

= −αAv f HwVCw(t) + βHaVCa(t) + QFCF −QTCw(t)

+ Qwd Cwd(0, t)−Qwu Cw(t), (2)

where f = 1− Ca
C∗a

is the fractional free surface area of the bubbles; Qi = Ui Ac is the flow rate of i-th
phase; Qa is the air flow rate; Qwu is the upward water flow rate; Qwd is the downward water flow rate;
QF is the feed flow rate; QT is the tailing flow rate; Ua, Uwu , Uwd , UF, UT are the velocities of particles
with air, upward water, downward water, feed, and tailing phase, respectively. Ac is the cross-sectional
area of the column, V is the volume of the collection region, Ha is the holdup of the air phase, Hw is the
holdup of the water phase, α is the particle–bubble attachment-rate parameter, β is the particle–bubble
detachment rate parameter, and Av is the air–water interfacial area per unit volume of the column.
The initial conditions for the ODE model of the collection region are given by

Ca(0) = Ca0, Cw(0) = Cw0. (3)

2.1.2. Model for Froth Region

The froth region can be considered as a PFR, which means that the material is perfectly mixed
perpendicular to the direction of flow but is not mixed along the flow direction. This region is modeled
by a set of transport hyperbolic PDEs. An upward water phase is added in this region because of the
bubble entrainment. The state variables for the process of the froth region are mass concentrations
of solid particles (mineral, locked, and gangue) with the air phase (CF

a ), downward water phase (Cwd ),
and upward water phase (Cwu ).

∂(HaCF
a (z, t))

∂t
= −∂(UaCF

a (z, t))
∂z

+ αAv f Cwd(z, t) + σAv f Cwu(z, t)− βCF
a (z, t), (4)

∂(Hwd Cwd(z, t))
∂t

=
∂[(Uwd + Hwd Us)Cwd(z, t)]

∂z
− αAv f Cwd(z, t) + ρCwu(z, t) + kβCF

a (z, t), (5)

∂(Hwu Cwu(z, t))
∂t

= −∂(Uwu Cwu(z, t))
∂z

− σAv f Cwu(z, t)− ρCwu(z, t) + (1− k)βCF
a (z, t). (6)

The letter F is marked in the upper right corner of the parameter Ca to indicate that it is a froth
region parameter that can be easily distinguished from the collection region parameter. The term
αAv f Cwd represents the transfer of particles from the downward water flow to the bubble, σAv f Cwu

represents the transfer of particles from the upward water flow to the bubble, βCa represents the
particles’ detachment from the bubble, and ρCwu represents the transfer of particles from the upward
water flow to the downward water flow. This transport-reaction model belongs to the class of fully
state-coupled heterodirectional transport systems (transporting velocities have opposite signs).
The boundary and initial conditions for the PED model of the froth region are given by the following:

CF
a (0, t) = Ca(t), Cwu(0, t) = Cw(t), Cwd(h, t) = 0. (7)

CF
a (z, 0) = fa(z), Cwu(z, 0) = fwu(z), Cwd(z, 0) = fwd(z). (8)

In the system given by Equations (1)–(8), the ODE system provides boundary conditions for
the PDE system. The froth overflow (production) is controlled by the velocity of the feed; that is,
the velocity of the feed UF is the control input and the mass concentration of solid particles with the
air phase of froth overflow CF

a (h, t) is the output.



Mathematics 2018, 6, 100 5 of 17

2.2. Linearized Model

The system described by Equations (1)–(8) is nonlinear, and it is essential for it to be linearized for
further analysis (taking the mineral, e.g., the steady-state profiles of the mineral within three phases are
illustrated in Figure 2). Cas, Cwds, Cwus, and UF0 are defined at steady state. With the consideration of
steady-state conditions, defining the variables Ca(t) = Cas(0) + xab(t), Cw(t) = Cwus(0) + xwb(t),
CF

a (z, t) = Cas(z) + xa(z, t), Cwd(z, t) = Cwds(z) + xwd(z, t), Cwu(z, t) = Cwus(z) + xwu(z, t),
and UF = UF0 + u(t), one can obtain the following linear coupled PDE–ODEs:

Figure 2. Steady-state profile of mineral.

∂

∂t

 xa(z, t)
xwd(z, t)
xwu(z, t)

 =

−m1
∂
∂z+J11(z) J12(z) J13(z)

J21(z) m2
∂
∂z+J22(z) J23(z)

J31(z) J32(z) −m3
∂
∂z+J33(z)


 xa(z, t)

xwd(z, t)
xwu(z, t)

 , (9)

d
dt

[
xab(t)
xwb(t)

]
=

[
b11 b12

b21 b22

] [
xab(t)
xwb(t)

]
+

[
0

CF
Hw l

]
u(t) +

[
0

Uwd
Hw l

]
xwd(0, t), (10)

with the following boundary conditions and initial conditions:

xa(0, t) = xab(t), xwu(0, t) = xwb(t), xwd(h, t) = 0; (11)

xab(0) = xab0, xwb(0) = xwb0, xa(z, 0) = xa0, xwu(z, 0) = xwu0, xwd(z, 0) = xwd0; (12)

where l = V
Ac , m1 = Ua

Ha
, m2 =

Uwd+Hwd Us
Hwd

, m3 = Uwu
Hwu

, b11 = −β − Uab
Hab l −

αAvHw
Hab C∗a

Cwus(0),

b12 = αAvHw
Hab

− αAvHw
Hab C∗a

Cas(0), b21 =
βHab
Hw

+ αAv
C∗a

Cwus(0), and b22 = −αAv− UT
Hw l −

Uwu
Hw l +

αAv
C∗a

Cas(0).

Jij(z) (i = 1, 2, 3; j = 1, 2, 3) is the Jacobian of the nonlinear term evaluated at steady state.

J :=

 J11(z) J12(z) J13(z)
J21(z) J22(z) J23(z)
J31(z) J32(z) J33(z)



=


− β

Ha
− αAv

HaC∗a
Cwds(z)− σAv

HaC∗a
Cwus(z) αAv

Ha
− αAv

HaC∗a
Cas(z) σAv

Ha
− σAv

HaC∗a
Cas(z)

kβ
Hwd

+ αAv
Hwd C∗a

Cwds(z) − αAv
Hwd

+ αAv
Hwd C∗a

Cas(z)
ρ

Hwd
(1−k)β

Hwu
+ σAv

Hwu C∗a
Cwus(z) 0 − σAv

Hwu
+ σAv

Hwu C∗a
Cas(z)− ρ

Hwu

 (13)



Mathematics 2018, 6, 100 6 of 17

The interconnection of the hyperbolic PDE system and ODE system can be considered as
the boundary-controlled hyperbolic PDE system (see Figure 3). The state transformation that
transfers the boundary actuation to in-domain actuation is given as xa(z, t) = x̄a(z, t) + B1(z)xa(0, t),
and xwu(z, t) = x̄wu(z, t) + B2(z)xwu(0, t), with x̄a(0, t) = 0, x̄wu(0, t) = 0, B1(0) = 1, and B2(0) = 1.
Equations (9) and (10) become

∂x̄a(z, t)
∂t

= −m1
∂x̄a(z, t)

∂z
+ J11(z)x̄a(z, t) + J12(z)xwd (z, t) + J13(z)x̄wu (z, t)

+ [J13(z)B2(z)−b12B1(z)]xwu (0, t)+[−m1
dB1(z)

dz
−b11B1(z) + J11(z)B1(z)]xa(0, t), (14)

∂xwd (z, t)
∂t

= m2
∂xwd (z, t)

∂z
+ J21(z)x̄a(z, t)+ J22(z)xwd (z, t)+ J23(z)x̄wu (z, t)

+ [J21(z)B1(z)xa(0, t) + J23(z)B2(z)xwu (0, t)], (15)
∂x̄wu (z, t)

∂t
= −m3

∂x̄wu (z, t)
∂z

+ J31(z)x̄a(z, t) + J32(z)xwd (z, t) + J33(z)x̄wu (z, t)

+ [J31(z)B1(z)− b21B2(z)]xa(0, t) + [−m3
dB2(z)

dz
− b22B2(z) + J33(z)B2(z)]xwu (0, t)

− B2(z)
Uwd

Hwl
xwd (0, t)− B2(z)

CF
Hwl

u(t), (16)

dxab(t)
dt

= b11xab(t) + b12xwb(t), (17)

dxwb(t)
dt

= b21xab(t) + b22xwb(t) +
Uwd

Hwl
xwd (0, t) +

CF
Hwl

u(t), (18)

with the following boundary conditions and initial conditions:

x̄a(0, t) = 0, x̄wu(0, t) = 0, xwd(h, t) = 0; (19)

xab(0) = xab0, xwb(0) = xwb0, x̄a(z, 0) = x̄a0, x̄wu(z, 0) = x̄wu0, xwd(z, 0) = xwd0; (20)

with x̄a0 = xa(z, 0) − B1(z)xab(0) and x̄wu0 = xwu(z, 0) − B2(z)xwb(0). We consider the conditions
−m1

dB1(z)
dz −b11B1(z) + J11(z)B1(z) = 0 and −m3

dB2(z)
dz − b22B2(z) + J33(z)B2(z) = 0 and solve for the

B1(z) and B2(z) expressions, which simplifies the system given by Equations (14)–(18) as follows:

∂x̄a(z, t)
∂t

=−m1
∂x̄a(z, t)

∂z
+ J11(z)x̄a(z, t) + J12(z)xwd(z, t) + J13(z)x̄wu(z, t)

+ [J13(z)B2(z)−b12B1(z)]xwb(t), (21)
∂xwd(z, t)

∂t
=m2

∂xwd(z, t)
∂z

+ J21(z)x̄a(z, t)+ J22(z)xwd(z, t)+ J23(z)x̄wu(z, t)

+ J21(z)B1(z)xab(t) + J23(z)B2(z)xwb(t), (22)
∂x̄wu(z, t)

∂t
=−m3

∂x̄wu(z, t)
∂z

+ J31(z)x̄a(z, t) + J32(z)xwd(z, t) + J33(z)x̄wu(z, t)

+ [J31(z)B1(z)−b21B2(z)]xab(t)−B2(z)
Uwd

Hwl
xwd(0, t)−B2(z)

CF
Hwl

u(t), (23)

dxab(t)
dt

= b11xab(t) + b12xwb(t), (24)

dxwb(t)
dt

= b21xab(t) + b22xwb(t) +
Uwd

Hwl
xwd(0, t) +

CF
Hwl

u(t). (25)

We consider the extended state x ∈ H
⊕

Rn, where H is a real Hilbert space L2(0, 1) with the
inner product < ·, · > and Rn is a real space. The input u(t) ∈ U; the disturbance g(t) ∈ G; and the
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output y(t) ∈ Y, U, G, and Y are real Hilbert spaces. The system given by Equations (21)–(25) can be
expressed as the equivalent state-space description:

ẋ(t) = Ax(t) + Bu(t) + Eg(t), (26)

where the system state is x(·, t) =
[
x̄a(z, t), xwd(z, t), x̄wu(z, t), xab(t), xwb(t)

]T and the
disturbance is g(t) = xwd(0, t). The system operator A is defined on its domain as

D(A) =
{

x = [x1, x2, x3, x4, x5]
T ∈ H : x is a.c., dx

dz ∈ H, x1(0) = 0, x2(h) = 0, x3(0) = 0
}

by

A =

[
AF AO

0 AC

]
(27)

=


−m1

∂
∂z + J11(z) J12(z) J13(z) 0 J13(z)B2(z)−b12B1(z)
J21(z) m2

∂
∂z + J22(z) J23(z) J21(z)B1(z) J23(z)B2(z)

J31(z) J32(z) −m3
∂
∂z + J33(z) J31(z)B1(z)−b21B2(z) 0

0 0 0 b11 b12

0 0 0 b21 b22

 .

The input, disturbance, and output operators are given by B =


0
0

−B2(z)
CF

Hw l
0

CF
Hw l

 and E =


0
0

−B2(z)
Uwd
Hw l

0
Uwd
Hw l

.

Figure 3. Schematic representation of coupled partial differential equations (PDEs) and ordinary
differential equations (ODEs) system connected through boundary.

2.3. Discretized Model

For the discrete controller design, a discretized model is required. Cayley–Tustin time
discretization transformation is used to obtain discrete models without consideration of spatial
discretization and/or without any other type of model spatial approximation.
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2.3.1. Time Discretization for Linear PDE

The linear infinite-dimensional system is described by the following state-space system:

ẋ(z, t) = Ax(z, t) + Bu(t), x(z, 0) = x0;

y(t) = Cx(z, t) + Du(t). (28)

The operator A : D(A) ⊂ H → H is a generator of a C0-semigroup on H and has a Yoshida
extension operator A−1. B, C, and D are linear operators associated with the actuation and output
measurement or direct feed-forward element; that is, B ⊂ L(U, H), C ⊂ L(H, Y), and D ⊂ L(U, Y).
Given a time discretization parameter d > 0, the Tustin time discretization is given by the
following [24]:

x(jd)− x((j− 1)d)
d

≈ A
x(jd) + x((j− 1)d)

2
+ Bu(jd),

y(jd) ≈ C
x(jd) + x((j− 1)d)

2
+ Du(jd),

x(0) = x0. (29)

We let ud
j /
√

d be an approximation to u(jd), under the assumptions that yd
j /
√

d converges to
y(jd) as d→ 0. Then, one obtains discrete time dynamics as follows:

xd
j − xd

j−1

d
= A

xd
j + xd

j−1

2
+ Bud

j /
√

d,

yd
j /
√

d = C
xd

j + xd
j−1

2
+ Dud

j /
√

d,

xd
0 = x0. (30)

After some calculations, one obtains the form of a discrete system:

x(z, k) = Adx(z, k− 1) + Bdu(k), x(z, 0) = x0;

y(k) = Cdx(z, k− 1) + Ddu(k). (31)

Here δ = 2/d, and the operators Ad, Bd, Cd, and Dd are given by[
Ad Bd
Cd Dd

]
=

[
[δ− A]−1[δ + A]

√
2δ[δ− A]−1B√

2δC[δ− A]−1 G(δ)

]
, (32)

where G(δ) denotes the transfer function of the system, G(δ) = C[δ− A]−1B + D. Operator Ad can
be expressed as Ad = −I + 2δ[δ− A]−1, where I is the identity operator. By introducing the affine
disturbance input, the time discretization for the most general form:

ẋ(z, t) = Ax(z, t) + Bu(t) + Eg(t), x(z, 0) = x0,

y(t) = Cx(z, t) + Du(t) + Fg(t), (33)

is given by [25]; the corresponding discrete operator of the linear operators E ⊂ L(Rn, H) and
F ⊂ L(Rn, Y) are Ed =

√
2δ[δ− A]−1E and Fd = C[δ− A]−1E + F.

2.3.2. Time Discretization of Column Flotation System

From the previous section, one can find resolvent R(δ, A) = [δ− A]−1 of the column operator A
(Equation (27)), which provides discrete operators (Ad, Bd, Cd, and Dd) to be easily realized. Returning
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to the system given by Equation (26), the resolvent operator can be obtained by taking a Laplace
transform. After the Laplace transform, one obtains

∂x̄a(z, s)
∂z

=
1

m1
(J11(z)− s)x̄a(z, s) +

1
m1

J12(z)xwd(z, s) +
1

m1
J13(z)x̄wu(z, s)

+
1

m1
[J13(z)B2(z)− b12B1(z)]xwu(0, s) +

1
m1

x̄a(z, 0), (34)

∂xwd(z, s)
∂z

= − 1
m2

J21(z)x̄a(z, s)− 1
m2

(J22(z)− s)xwd(z, s)− 1
m2

J23(z)x̄wu(z, s)

− 1
m2

J21(z)B1(z)xa(0, s)− 1
m2

J23(z)B2(z)xwu(0, s)− 1
m2

xwd(z, 0), (35)

∂x̄wu(z, s)
∂z

=
1

m3
J31(z)x̄a(z, s) +

1
m3

J32(z)xwd(z, s) +
1

m3
(J33(z)− s)x̄wu(z, s)

+
1

m3
[J31(z)B1(z)− b21B2(z)]xa(0, s) +

1
m3

x̄wu(z, 0), (36)

xab(s) =
s− b22

b
xab(0) +

b12

b
xwb(0), (37)

xwb(s) =
b21

b
xab(0) +

s− b11

b
xwb(0), (38)

where b = (s− b11)(s− b22)− b21b12.

By solving this ODE, one obtains x̄a(z, s)
xwd(z, s)
x̄wu(z, s)

=eĀz

 x̄a(0, s)
xwd(0, s)
x̄wu(0, s)

+∫ z

0
eĀ(z−η)


1

m1
x̄a(η, 0) + 1

m1
Ja1(η)xab(0) + 1

m1
Ja2(η)xwb(0)

− 1
m2

xwd(η, 0)− 1
m2

Jd1(η)xab(0)− 1
m2

Jd2(η)xwb(0)
1

m3
x̄wu(η, 0) + 1

m3
Ju1(η)xab(0) + 1

m3
Ju2(η)xwb(0)

dη, (39)

where Ja1(z) = b21
b [J13(z)B2(z) − b12B1(z)], Ja2(z) = s−b11

b [J13(z)B2(z) − b12B1(z)],
Jd1(z) = s−b22

b J21(z)B1(z) + b21
b J23(z)B2(z), Jd2(z) = b12

b J21(z)B1(z) + s−b11
b J23(z)B2(z),

Ju1(z) = s−b22
b [J31(z)B1(z) − b21B2(z)], and Ju2(z) = b12

b [J31(z)B1(z) − b21B2(z)]. For simplicity,
we let Jij, which is defined as a spatial average of Jij(z), replace Jij(z), so that the matrix exponential of

Ā can be computed directly. Then, Ā=


1

m1
(J11−s) 1

m1
J12

1
m1

J13

− 1
m2

J21 − 1
m2
(J22−s) − 1

m2
J23

1
m3

J31
1

m3
J32

1
m3
(J33−s)

.

With the boundary conditions given by Equation (19), the resolvent of operator A can be expressed
as follows:

R(s, A) = [sI − A]−1x(z, 0)

=


R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

0 0 0 R44 R45

0 0 0 R54 R55

 x(z, 0), (40)

where R11, R12, ..., R55 are shown in Appendix A. Then, the discretized model of the column flotation
process takes the following form:

x(z, k) = Adx(z, k− 1) + Bdu(k) + Edg(k). (41)
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3. Model Predictive Control Design

In this work, the model for the column flotation process uses coupled PDEs and ODEs with input
disturbance g(t); the continuous linearized model described in Equation (26) can be rewritten as

ẋ(t) = Ax(t) + Bū(t), (42)

where ū(t) = u(t)+
Uwd
CF

g(t). The discrete version is obtained by applying Cayley–Tustin discretization
as follows:

x(z, k) = Adx(z, k− 1) + Bdū(k), (43)

where we have adopted x(z, k) notation to denote spatial characteristics of the extended state
x(t). The model predictive controller was developed as a solution of the optimization problem
by minimizing the following open-loop performance objective function across the length of the infinite
horizon at sampling time k [26] on the basis of the above system given by Equation (43) without
disturbances being present.

min
ūN

∞

∑
j=0

[< x(z, k + j|k), Qx(z, k + j|k) >

+ < ū(k + j + 1|k), Rū(k + j + 1|k) >] (44)

s.t. x(z, k + j|k) = Adx(z, k + j− 1|k) + Bdū(k + j|k)]
ūmin ≤ ū(k + j|k) ≤ ūmax

xmin ≤ x(z, k + j|k) ≤ xmax,

where Q is a symmetric positive semidefinite matrix and R is a symmetric positive definite matrix.
The infinite-horizon open-loop objective function in Equation (44) can be expressed as the finite-horizon
open-loop objective function with u(k + N + 1|k) = 0, as below:

min
ūN

J =
N−1

∑
j=0

[< x(z, k + j|k), Qx(z, k + j|k) >

+ < ū(k + j + 1|k), Rū(k + j + 1|k) >]

+ < x(z, k + N|k), Q̄x(z, k + N|k) > (45)

s.t. x(z, k + j|k) = Adx(z, k + j− 1|k) + Bdū(k + j|k)
ūmin ≤ ū(k + j|k) ≤ ūmax

xmin ≤ x(z, k + j|k) ≤ xmax,

where Q̄ is defined as the infinite sum Q̄ = ∑∞
i=0 A∗id C∗d QCd Ai

d. This terminal state penalty operator Q̄
can be calculated from the solution of the following discrete Lyapunov function:

A∗dQ̄Ad − Q̄ = −C∗d QCd. (46)

It can be noticed that operator Ad in the equation is applied to some function and that the same
holds for Cd; thus to derive Q̄ directly from Equation (46) is not a feasible task. However, the unique
solution of the discrete Lyapunov function can be related to the solution of the continuous Lyapunov
function, which can be solved uniquely. Therefore, Q̄ can be obtained by solving the continuous
Lyapunov function:

A∗Q̄ + Q̄A = −C∗QC, Q̄ ∈ D(A∗). (47)
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Proof. We establish a link between the continuous and discrete Lyapunov functions. If the continuous
Lyapunov function holds, defining Ad := −I + 2δ[δ− A]−1 and A∗d := [−I + 2δ[δ− A]−1]∗, then

A∗dQ̄Ad−Q̄ =
[
−I+2δ(δ− A)−1

]∗
Q
[
−I+2δ(δ− A)−1

]
−Q̄

= (δ− A)−1∗[[−(δ− A)+2δ]∗Q[−(δ− A)+2δ]

− (δ− A)∗Q(δ− A)](δ− A)−1

= (δ− A)−1∗ [2A∗Q̄δ + 2δQ̄A] (δ− A)−1

= (δ− A)−1∗ [2δ(−C∗QC)] (δ− A)−1

= −(
√

2δC [δ− A]−1)∗Q(
√

2δC [δ− A]−1)

= −C∗d QCd,

such that the unique solution of the continuous Lyapunov function (Equation (51)) is also a solution of
the discrete Lyapunov function ((Equation 46)).

Because of the fact that ū(t) = u(t) +
Uwd
CF

g(t), straightforward algebraic manipulation of the
objective function presented in Equation (45) results in the following program:

min
U

J = UT < I, H > U + 2UT [< I, Px(z, k|k) > + < I, R
Uwd

CF
G >]

+ < x(z, k|k), Q̄x(z, k|k) > + <
Uwd

CF
G, R

Uwd

CF
G >, (48)

where U = [u(k + 1|k), u(k + 2|k), ..., u(k + N|k)]T , G = [g(k + 1|k), g(k + 2|k), ..., g(k + N|k)]T , and

H =


B∗d Q̄Bd + R B∗d A∗dQ̄Bd · · · B∗d A∗N−1

d Q̄Bd
B∗d Q̄AdBd B∗d Q̄Bd + R · · · B∗d A∗N−2

d Q̄Bd
...

...
. . .

...
B∗d Q̄AN−1

d Bd B∗d Q̄AN−2
d Bd · · · B∗d Q̄Bd + R

, P =


B∗d Q̄Ad
B∗d Q̄A2

d
...

B∗d Q̄AN
d

.

The objective function is subjected to the following constraints:

Ūmin ≤ U +
Uwd

CF
G ≤ Ūmax,

Xmin ≤ S(U +
Uwd

CF
G) + Tx(z, k|k) ≤ Xmax. (49)

That is,


I
−I
S
−S

U ≤


Ūmax − Uwd

CF
G

−Ūmin +
Uwd
CF

G

Xmax − Tx(z, k|k)− S
Uwd
CF

G

−Xmin + Tx(z, k|k) + S
Uwd
CF

G

 , (50)

where S =


Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...
AN−1

d Bd AN−2
d Bd · · · Bd

 and T =


Ad
A2

d
...

AN
d

.
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The optimization problem described in Equation (48) is a standard finite-dimensional quadratic
optimization problem, as inner products in Equation (48) are integrations over the spatial components
in the cost function.

Remark 1. The model predictive controller design in this paper uses the system state x(z, t); therefore, it is
necessary to design a discrete observer to reconstruct the system state. At present, the design of the continuous
system observer is very mature, and it is feasible to design a discrete observer on this basis of the discrete
infinite-dimensional model.

4. Simulation Results

In this section, the performance of the proposed model predictive control to keep the output at
the steady state within the constraint range by adjusting the input is demonstrated by a comparison
between high-fidelity numerical simulations of open-loop and controlled system responses.

In the simulations, the values of the system parameters were as given in Table 1. The time
discretization parameter was chosen as d = 0.2, which implies that δ = 10 and ∆z = 0.01 were chosen
for the numerical integration.

Table 1. Model parameters for both collection region (C) and froth region (F).

Symbol Description Value

h Height of froth region 1.0
l Height of collection region 1.0

Ca∗ Bubble saturation parameter 5
Av Air–water interfacial area C: 1.0; F: 0.3
Uw Water velocity of collection region 0.8
Us Settling/slip velocity 1
Ha Air holdup C: 0.3; F: 0.7

Hwd Downward water holdup 0.1
Hwu Upward water holdup C: 0.7; F: 0.2
Ua Air velocity C: 0.1; F: 0.2

Uwd Downward water velocity 0.1
Uwu Upward water velocity C: 0.08; F: 0.1

α Attachment-rate parameter for downward water C: 1.2; F: 1.0
σ Attachment-rate parameter for upward water 1.5
β Detachment rate parameter C: 0.1; F: 0
ρ Transfer rate from upward water to downward water 0.1
k Transfer rate from air to downward water 0.01

a1, a2, a3 Initial-condition coefficients a1 = 0.8, a2 = 0.1, a3 = 0.2

In this work, C was considered as C = I, which implies that the full state was available for the
controller realization, and thus C∗ = C. The above framework allows for easy extension to the discrete
observer design with boundary measurements applied; that is, C(·) :=

∫ 1
0 δ(z− 1)(·)dz. The Q̄ can

be obtained by solving the following continuous Lyapunov equation corresponding to the discrete
Lyapunov Equation (46):

A∗Q̄ + Q̄A = −Q. (51)

We consider Q̄ =

[
Q̄1 0
0 Q̄2

]
, where Q̄1 ∈ H, Q̄2 ∈ Rn, and assume Q =

[
Q11 Q12

Q21 Q22

]
; we can

obtain a set of equivalent Lyapunov equations as follows:

A∗FQ̄1 + Q̄1 AF = −Q11, Q̄1 ∈ D(A∗F);

Q̄1 AO = −Q12;

A∗OQ̄1 = −Q21;

A∗CQ̄2 + Q̄2 AC = −Q22. (52)
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With the assumptions that Q̄1 =

 q̄1−11 0 0
0 q̄1−22 0
0 0 q̄1−33

 and Q̄2 =

[
q̄2−11 0

0 q̄2−22

]
, and

by choosing Q11 =

 1 0 0
0 1 0
0 0 1

 and Q22 =

[
q11 q12

q12 q22

]
, where q11 = q22 = 1, one can obtain

Q̄2 =

[
0.25 −0.688
−0.688 1.15

]
and Q̄1, as shown in Figure 4.

Figure 4. Q̄1 obtained by solving Equation (52).

In order to demonstrate the controller performance, the MPC horizon was N = 3, and R = 0.1.
The input and state constraints were given as −0.5 ≤ u(t) ≤ 1 and 0 ≤ xa(h2, t) ≤ 0.83. The initial
conditions of the system given by Equation (26) were given as follows:

xa(z, 0) = a1(cos(
π

2
z) + sin(πz)),

xwd(z, 0) = a2(cos(
π

2
z) + sin(πz)),

xwu(z, 0) = a3(cos(
π

2
z) + sin(πz)). (53)

The performance of the proposed model predictive control can be evaluated from Figures 5–8,
and the corresponding control input is given in Figure 9. From Figures 5–7, it can be seen that
under the model predictive control, the system reached steady state. Figure 8 compares the output
xa(h, k) evolutions under the model predictive control with state/output constraints to the model
predictive control without constraints and using the open-loop system. It is clear from the figure that
the application of model predictive control allows the system to reach steady state faster and that
the output profile under the model predictive control law satisfies the constraints. It is important
to emphasize that the system is stable and that performance under input and state constraints are
of interest in this study; however, the extension to the unstable system dynamics case is easily realizable
for more general classes of dynamic plants.
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Figure 5. Profile of concentration for mineral particles with air phase under model predictive control
law Equations (48) and (49).

Figure 6. Profile of concentration for mineral particles with downward water phase under model
predictive control law Equations (48) and (49).

Figure 7. Profile of concentration for mineral particles with upward water phase under model predictive
control law Equations (48) and (49).
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Figure 8. Profile of the state xa(h, k) (output) under model predictive control law Equations (48)
and (49) (dash-dotted line) without constraints (dashed line), and the profile of an open-loop system
(dash-dotted line), as well as state/output constraints (dotted line).

Figure 9. Input profile obtained by model predictive control law Equations (48) and (49) (solid line);
input constraints are given by dotted line.

5. Conclusions

In conclusion, model predictive control algorithms are developed for the column flotation
process that take into account the input and state/output constraints as well as the input disturbance.
The underlying model is described by coupled nonlinear heterodirectional hyperbolic transport
PDE–ODEs, and the steady-state profiles are utilized in the linearization of a nonlinear system.
By using the Cayley–Tustin time discretization method, the continuous infinite-dimensional system is
mapped into the discrete infinite-dimensional system without model reduction or spatial discretization.
Finally, the performance of the proposed model predictive control development was demonstrated by
applying it to the column flotation system, and the simulation results show that the output (the mass
concentration of solid minerals with the air phase of froth overflow) is stabilized at the steady state
within the constraints’ physical range by adjusting the feed velocity. This optimal control realization
improves the column flotation process, enabling it to operate more efficiently.
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Appendix A. Resolution of Operator A for Discretized Model

R11 = − ϕ1(1, 2)
E1(2, 2)

1
m1

∫ h

0
E2(2, 1)(·)dη +

1
m1

∫ z

0
ϕ2(1, 1)(·)dη, (A1)

R12 =
ϕ1(1, 2)
E1(2, 2)

1
m2

∫ h

0
E2(2, 2)(·)dη − 1

m2

∫ z

0
ϕ2(1, 2)(·)dη, (A2)

R13 = − ϕ1(1, 2)
E1(2, 2)

1
m3

∫ h

0
E2(2, 3)(·)dη +

1
m3

∫ z

0
ϕ2(1, 3)(·)dη, (A3)

R14 = − ϕ1(1, 2)
E1(2, 2)

[
1

m1

∫ h

0
E2(2, 1)Ja1(η)dη − 1

m2

∫ h

0
E2(2, 2)Jd1(η)dη +

1
m3

∫ h

0
E2(2, 3)Ju1(η)dη](·)

+ [
1

m1

∫ z

0
ϕ2(1, 1)Ja1(η)dη − 1

m2

∫ z

0
ϕ2(1, 2)Jd1(η)dη +

1
m3

∫ z

0
ϕ2(1, 3)Ju1(η)dη)](·), (A4)

R15 = − ϕ1(1, 2)
E1(2, 2)

[
1

m1

∫ h

0
E2(2, 1)Ja2(η)dη − 1

m2

∫ h

0
E2(2, 2)Jd2(η)dη +

1
m3

∫ h

0
E2(2, 3)Ju2(η)dη](·)

+ [
1

m1

∫ z

0
ϕ2(1, 1)Ja2(η)dη − 1

m2

∫ z

0
ϕ2(1, 2)Jd2(η)dη +

1
m3

∫ z

0
ϕ2(1, 3)Ju2(η)dη)](·), (A5)

R44 =
s− b22

b
(·), (A6)

R45 =
b12
b
(·), (A7)

R54 =
b21
b
(·), (A8)

R55 =
s− b11

b
(·), (A9)

where ϕ1 = eĀz, ϕ2 = eĀ(z−η), E1 = eĀh, and E2 = eĀ(h−η). The other R21, R22, ..., R35 values can be
obtained in a similar way as for R11, ..., R15.
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