

Article **Recognition of** $M \times M$ by Its Complex Group **Algebra Where** M Is a Simple K_3 -Group

Morteza Baniasad Azad and Behrooz Khosravi *

Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran; baniasad84@gmail.com

* Correspondence: khosravibbb@yahoo.com; Tel.: +98-912-176-5845

Received: 4 April 2018; Accepted: 9 May 2018; Published: 25 June 2018

Abstract: In this paper we prove that if *M* is a simple K_3 -group, then $M \times M$ is uniquely determined by its order and some information on irreducible character degrees and as a consequence of our results we show that $M \times M$ is uniquely determined by the structure of its complex group algebra.

Keywords: character degree; order; complex group algebra

1. Introduction

Let *G* be a finite group, Irr(G) be the set of irreducible characters of *G*, and denote by cd(G), the set of irreducible character degrees of *G*. A finite group *G* is called a K_3 -group if |G| has exactly three distinct prime divisors. By [1], simple K_3 -groups are A_5 , A_6 , $L_2(7)$, $L_2(8)$, $L_2(17)$, $L_3(3)$, $U_3(3)$ and $U_4(2)$. Chen et al. in [2,3] proved that all simple K_3 -groups and the Mathieu groups are uniquely determined by their orders and one or both of their largest and second largest irreducible character degrees. In [4], it is proved that $L_2(q)$ is uniquely determined by its group order and its largest irreducible character degree when q is a prime or when $q = 2^a$ for an integer $a \ge 2$ such that $2^a - 1$ or $2^a + 1$ is a prime.

Let *p* be an odd prime number. In [5–8], it is proved that the simple groups $L_2(q)$ and some extensions of them, where $q \mid p^3$ are uniquely determined by their orders and some information on irreducible character degrees.

In ([9], Problem 2*)R. Brauer asked: Let *G* and *H* be two finite groups. If for all fields \mathbb{F} , two group algebras $\mathbb{F}G$ and $\mathbb{F}H$ are isomorphic can we get that *G* and *H* are isomorphic? This is false in general. In fact, E. C. Dade [10] constructed two nonisomorphic metabelian groups *G* and *H* such that $\mathbb{F}G \cong \mathbb{F}H$ for all fields \mathbb{F} . In [11], Tong-Viet posed the following question:

Question. Which groups can be uniquely determined by the structure of their complex group algebras?

In general, the complex group algebras do not uniquely determine the groups, for example, $\mathbb{C}D_8 \cong \mathbb{C}Q_8$. It is proved that nonabelian simple groups, quasi-simple groups and symmetric groups are uniquely determined up to isomorphism by the structure of their complex group algebras (see [12–18]). Khosravi et al. proved that $L_2(p) \times L_2(p)$ is uniquely determined by its complex group algebra, where $p \ge 5$ is a prime number (see [19]). In [20], Khosravi and Khademi proved that the characteristically simple group $A_5 \times A_5$ is uniquely determined by its order and its character degree graph (vertices are the prime divisors of the irreducible character degrees of *G* and two vertices *p* and *q* are joined by an edge if *pq* divides some irreducible character degree of *G*). In this paper, we prove that if *M* is a simple K_3 -group, then $M \times M$ is uniquely determined by its order and some information about its irreducible character degrees. In particular, this result is the generalization of ([19], Theorem 2.4) for p = 5,7 and 17. Also as a consequence of our results we show that $M \times M$ is uniquely determined by the structure of its complex group algebra.

2. Preliminaries

If $\chi = \sum_{i=1}^{k} e_i \chi_i$, where for each $1 \le i \le k$, $\chi_i \in Irr(G)$ and e_i is a natural number, then each χ_i is called an irreducible constituent of χ .

Lemma 1. (Itô's Theorem) ([21], Theorem 6.15) *Let* $A \leq G$ *be abelian. Then* $\chi(1)$ *divides* |G : A|, *for all* $\chi \in Irr(G)$.

Lemma 2. ([21], Corollary 11.29) Let $N \leq G$ and $\chi \in Irr(G)$. If θ is an irreducible constituent of χ_N , then $\chi(1)/\theta(1) \mid |G:N|$.

Lemma 3. ([2], Lemma 1) Let *G* be a nonsolvable group. Then *G* has a normal series $1 \leq H \leq K \leq G$ such that *K*/*H* is a direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|.

Lemma 4. (Itô-Michler Theorem) [22] Let $\rho(G)$ be the set of all prime divisors of the elements of cd(*G*). Then $p \notin \rho(G) = \{p : p \text{ is a prime number}, p \mid \chi(1), \chi \in Irr(G)\}$ if and only if *G* has a normal abelian Sylow *p*-subgroup.

Lemma 5. ([3], Lemma 2) Let G be a finite solvable group of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$, where p_1, p_2, \dots, p_n are distinct primes. If $(kp_n + 1) \nmid p_i^{\alpha_i}$, for each $i \le n - 1$ and k > 0, then the Sylow p_n -subgroup is normal in G.

Lemma 6. ([19], Theorem 2.4) Let $p \ge 5$ be a prime number. If G is a finite group such that (i) $|G| = |L_2(p)|^2$, (ii) $p^2 \in cd(G)$, (iii) there does not exist any element $a \in cd(G)$ such that $2p^2 | a$, (iv) if p is a Mersenne prime or a Fermat prime, then $(p \pm 1)^2 \in cd(G)$, then $G \cong L_2(p) \times L_2(p)$.

3. The Main Results

Lemma 7. Let *S* be a simple K_3 -group and let *G* be an extension of *S* by *S*. Then $G \cong S \times S$.

Proof. There exists a normal subgroup of *G* which is isomorphic to *S* and we denote it by the same notation. By [23], we know that $|Out(S)| \le 4$ and $G/C_G(S) \hookrightarrow Aut(S)$, which implies that $C_G(S) \ne 1$. As *S* is a nonabelian simple group, $S \cap C_G(S) = 1$ and it follows that $SC_G(S) \cong S \times C_G(S)$. Also $C_G(S) \cong SC_G(S)/S \trianglelefteq G/S \cong S$ which implies that *G* is isomorphic to $S \times S$. \Box

Theorem 1. Let G be a finite group. Then $G \cong A_5 \times A_5$ if and only if $|G| = |A_5|^2$ and $5^2 \in cd(G)$.

Proof. Obviously by Itô's theorem, we get that $O_5(G) = 1$. First we show that *G* is not a solvable group. If *G* is a solvable group, then let *H* be a Hall subgroup of *G* of order 2^45^2 . Since $G/H_G \hookrightarrow S_9$, we get that $5 \mid |H_G|$. If $5^2 \mid |H_G|$, then $25 \in cd(H_G)$. On the other hand, $25^2 < |H_G| \le 2^45^2$, a contradiction. If $|H_G| = 2^45$, then $|G/H_G| = 45$. Let L/H_G be a Sylow 5-subgroup of G/H_G . Then $L/H_G \trianglelefteq G/H_G$ and so $L \trianglelefteq G$ and $|L| = 5^22^4$. Then $25 \in cd(L)$, which is a contradiction. If $|H_G| \mid 2^35$, then *P*, a Sylow 5-subgroup of H_G is a normal subgroup of *G*, which is a contradiction by Lemma 4. Therefore *G* is a nonsolvable group.

Since *G* is nonsolvable, by Lemma 3, *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|. As $|G| = 2^4 3^2 5^2$, we have $K/H \cong A_5$, A_6 or $A_5 \times A_5$ by [23]. If $K/H \cong A_6$, then |H| = 5 or 10. Using Lemma 2, $5 \in cd(H)$, a contradiction. If $K/H \cong A_5$, then |H| = 60 or |H| = 30. By Lemma 2, $5 \in cd(H)$. If *H* is a solvable group, then by Lemma 5, $P \leq H$, where $P \in Syl_5(H)$, which is a contradiction. Therefore |H| = 60 and so $H \cong A_5$. Hence *G* is an extension of A_5 by A_5 and by Lemma 7, $G \cong A_5 \times A_5$. If $K/H \cong A_5 \times A_5$, then |H| = 1 and $G \cong A_5 \times A_5$.

Theorem 2. Let G be a finite group. Then $G \cong L_2(17) \times L_2(17)$ if and only if $|G| = |L_2(17)|^2$ and $17^2 \in cd(G)$.

Proof. Obviously $O_{17}(G) = 1$. On the contrary let *G* be a solvable group. First we show that there exists no normal subgroup *N* of *G* such that

(a) $|N| = 2^i 3^j 17^k$, where $k \neq 0$ and i < 8; or (b) $|N| = 2^8 17^2$; or (c) $|N| = 2^8 17$.

Let *N* be a normal subgroup of *G*. If $|N| = 2^i 3^j 17^k$, where $k \neq 0$ and i < 8, then by Lemma 5, $P \leq G$, where $P \in \text{Syl}_{17}(G)$. Hence $O_{17}(G) \neq 1$, which is a contradiction. If $|N| = 2^8 17^2$, then $17^2 \in \text{cd}(N)$, which is impossible. If $|N| = 2^8 17$, then $|G/N| = 3^4 17$. If $T/N \in \text{Syl}_{17}(G/N)$, then $T/N \leq G/N$. Therefore $T \leq G$, where $|T| = 17^2 2^8$ and this is a contradiction as we stated above.

Let *M* be a minimal normal subgroup of *G*, which is an elementary abelian *p*-group. Obviously $p \neq 17$. Let p = 2. Then $|M| = 2^i$, where $0 < i \le 8$ and so $|G/M| = 2^{8-i}3^417^2$. Then $T/M \le G/M$, where $T/M \in \text{Syl}_{17}(G/M)$. Therefore $T \le G$ and $|T| = 17^22^i$, which is a contradiction. Hence p = 3 and $|M| = 3^i$, where $1 \le i \le 4$.

If i = 4, then $G/C_G(M) \hookrightarrow \operatorname{Aut}(M) \cong \operatorname{GL}(4,3)$ and $|\operatorname{GL}(4,3)| = 2^9 \times 3^6 \times 5 \times 13$. Hence $17^2 ||C_G(M)|$. Since *M* is an abelian subgroup of *G*, thus $3^4 ||C_G(M)|$. If $|C_G(M)| = 17^2 3^4 2^j$, where $j \neq 8$, then by the above discussion we get a contradiction. Otherwise, $C_G(M) = G$ and so by Burnside normal *p*-complement theorem, *G* has a normal 3-complement of order $17^2 2^8$, which is a contradiction.

If i = 3, then $|G/M| = 2^{8}17^{2}3$. Let H/M be a Hall subgroup of G/M of order $2^{8}17^{2}$. Then $|H| = 2^{8}3^{3}17^{2}$. Since $G/H_{G} \hookrightarrow S_{3}$, thus $3^{3}17^{2} | |H_{G}|$. If $2^{8} \nmid |H_{G}|$, then by the above discussion we get a contradiction. Therefore $|H_{G}| = 2^{8}3^{3}17^{2}$, i.e., $H \trianglelefteq G$. Let B be a Hall subgroup of H of order $|B| = 2^{8}17^{2}$. Then similarly to the above $2^{8}17 | |B_{H}|$. If $|B_{H}| = 2^{8}17^{2}$, then we get a contradiction. If $|B_{H}| = 2^{8}17^{2}$, then $T/B_{H} \trianglelefteq B/B_{H}$ where $T/B_{H} \in \text{Syl}_{17}(B/B_{H})$. Therefore $|T| = 2^{8}17^{2}$, which is a contradiction.

If i = 2, then $|G/M| = 2^8 3^2 17^2$. Let H/M be a Hall subgroup of G/M of order $2^8 17^2$. Then $|H| = 2^8 3^2 17^2$. Thus similarly to the above, $17^2 ||H_G|$ and $17^2 \in cd(H_G)$. Then by the same argument as above we get that H_G has a normal subgroup of order $2^i 17^2$, which is a contradiction.

If i = 1, then $|G/M| = 2^8 3^3 17^2$. Let H/M be a Hall subgroup of G/M of order $2^8 17^2$. Then $|H| = 2^8 17^2 3$. Since $G/H_G \hookrightarrow S_{27}$ we get that $17 \mid |H_G|$. If $2^8 \nmid |H_G|$ or $|H_G| = 2^8 17^k$, where $k \neq 0$, then we get a contradiction. If $|H_G| = 2^8 17^2 3$, then H_G has a normal subgroup of order $2^i 17^2$, which is a contradiction. If $|H_G| = 2^8 \times 17 \times 3$, then $|G/H_G| = 3^3 17$. Therefore $T/H_G \trianglelefteq G/H_G$, where $T/H_G \in \text{Syl}_{17}(G/H_G)$. Hence $T \trianglelefteq G$ and $|T| = 2^8 17^2 3$, which is a contradiction as we stated above.

Therefore *G* is nonsolvable and by Lemma 3, *G* has a normal series $1 \leq H \leq K \leq G$ such that $K/H \cong L_2(17)$ or $L_2(17) \times L_2(17)$ and |G/K| | |Out(K/H)|.

If $K/H \cong L_2(17)$, then $|H| = 2^3 3^2 17$ or $2^4 3^2 17$ and so $17 \in cd(H)$. If H is a solvable group, then by Lemma 5, $P \trianglelefteq H$, where $P \in Syl_{17}(H)$, which is a contradiction by Lemma 4. Otherwise by Lemma 3 and [23] we get that $H \cong L_2(17)$. Therefore G is an extension of $L_2(17)$ by $L_2(17)$ and by Lemma 7, $G \cong L_2(17) \times L_2(17)$.

Obviously if $K/H \cong L_2(17) \times L_2(17)$, then $G \cong L_2(17) \times L_2(17)$.

In the sequel, we show that if *G* is a finite group of order $|L_2(7) \times L_2(7)|$, such that *G* has an irreducible character of order 7² or 2⁶, then we can not conclude that $G \cong L_2(7) \times L_2(7)$. So we need more assumptions to characterize $L_2(7) \times L_2(7)$.

Remark 1. Using the notations of GAP [24], if A = SmallGroup(56, 11) and $H = A \times A \times \mathbb{Z}_9$, then $|H| = |L_2(7) \times L_2(7)|$ and H has an irreducible character of degree 7^2 .

Similarly if B = SmallGroup(784, 160) and $K = B \times S_3 \times S_3$, then $|H| = |L_2(7) \times L_2(7)|$ and H has an irreducible character of degree 2⁶.

Theorem 3. Let G be a finite group. Then $G \cong L_2(7) \times L_2(7)$ if and only if $|G| = 2^6 3^2 7^2$ and $2^6, 7^2 \in cd(G)$.

Proof. If *G* is a solvable group, then let *H* be a Hall subgroup of *G* of order $2^{6}7^{2}$. Since $G/H_{G} \hookrightarrow S_{9}$, we have $|H_{G}| = 2^{i}7^{j}$, where $0 \le i \le 6$ and $1 \le j \le 2$. Using Lemma 2, $2^{i}, 7^{j} \in cd(H_{G})$. If $O_{2}(H_{G}) \ne 1$,

then by Lemma 2, $|O_2(H_G)| \in cd(O_2(H_G))$, which is a contradiction. Similarly $O_7(H_G) = 1$, which shows that *G* is a nonsolvable group.

Therefore *G* has a normal series $1 \leq H \leq K \leq G$ such that $K/H \cong L_2(8)$, $L_2(7)$ or $L_2(7) \times L_2(7)$ and |G/K| | |Out(K/H)|.

If $K/H \cong L_2(8)$, then |H| = 56. Using Lemma 2, $8 \in cd(H)$ and since 64 > 56, we get a contradiction.

If $K/H \cong L_2(7)$, then $|H| = 2^2 \times 3 \times 7$ or $2^3 \times 3 \times 7$. If $|H| = 2^2 \times 3 \times 7$, then by Lemma 2, $7 \in cd(H)$. Since there exists no nonabelian simple group *S* such that |S| | |H|, we get that *H* is a solvable group. then by Lemma 5, $P \trianglelefteq H$ where $P \in Syl_7(H)$, which is a contradiction by Lemma 4. So $|H| = 2^3 \times 3 \times 7$, by the same argument for the proof of Theorem A in [2], we get that $H \cong L_2(7)$. Therefore *G* is an extension of $L_2(7)$ by $L_2(7)$ and by Lemma 7, $G \cong L_2(7) \times L_2(7)$.

If $K/H \cong L_2(7) \times L_2(7)$, obviously we have $G \cong L_2(7) \times L_2(7)$. \Box

Remark 2. We note that Theorems 1, 2 and 3 are generalizations of Lemma 6 for special cases p = 5, 7, 17.

Lemma 8. Let G be a finite group. If $|G| = 2^i 3^j 5$, where $i \ge 3$ or $j \ge 1$, and $2^i, 3^j \in cd(G)$, then G is not solvable. If $|G| = 2^i 3^j 5^2$, where $i \ge 6$ or $j \ge 2$, and $2^i, 3^j \in cd(G)$, then G is not solvable.

Proof. On the contrary let *G* be a solvable group.

Let $O_2(G) \neq 1$ and $|O_2(G)| = 2^t$, where $1 \leq t \leq i$. By the assumption, there exists $\chi \in Irr(G)$ such that $\chi(1) = 2^i$. If $\sigma \in Irr(O_2(G))$ such that $[\chi_{O_2(G)}, \sigma] \neq 0$, then by Lemma 2, $2^i/\sigma(1)$ is a divisor of $|G : O_2(G)| = 2^{i-t}$. Since $\sigma(1) \mid |O_2(G)|$, we get that $\sigma(1) = 2^t$, which is a contradiction. Similarly $O_3(G) = 1$.

Therefore $\operatorname{Fit}(G) = O_5(G) \neq 1$. We know that $G/C_G(\operatorname{Fit}(G)) \hookrightarrow \operatorname{Aut}(\operatorname{Fit}(G))$ and since *G* is a solvable group, $C_G(\operatorname{Fit}(G)) \leq \operatorname{Fit}(G)$. Therefore |G| is a divisor of $|\operatorname{Fit}(G)| \cdot |\operatorname{Aut}(\operatorname{Fit}(G))|$ and easily we can see that in each case we get a contradiction. \Box

Similarly to the above we have the following result:

Lemma 9. *Let G be a finite group.*

- (a) If $|G| = 2^i 3^j 7$, where $i \ge 2$ or $j \ge 2$, and $2^i, 3^j \in cd(G)$, then G is not solvable.
- (b) If $|G| = 2^i 3^j 7^2$, where $i \ge 6$ or $j \ge 3$, and $2^i, 3^j \in cd(G)$, then G is not solvable.

Theorem 4. Let G be a finite group.

- (a) If $|G| = 2^6 3^4 5^2$ and $2^6, 3^4 \in cd(G)$, then $G \cong A_6 \times A_6$ or $G \cong \mathbb{Z}_5 \times U_4(2)$;
- (b) If $|G| = 2^{12}3^85^2$ and $2^{12}, 3^8 \in cd(G)$, then $G \cong U_4(2) \times U_4(2)$.

Proof. Lemma 8 gives us that *G* is not solvable and so *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|.

(a) By assumptions K/H is isomorphic to $A_5, A_6, U_4(2), A_5 \times A_5$ or $A_6 \times A_6$.

If $K/H \cong A_5$, then $|H| = 2^4 3^3 5$ or $|H| = 2^3 3^3 5$. By Lemma 8, *H* is not solvable and *H* has a normal series $1 \trianglelefteq A \trianglelefteq B \trianglelefteq H$ such that B/A is a direct product of *m* copies of a nonabelian simple group *S* and |H/B| ||Out(B/A)|. If $|H| = 2^4 3^3 5$, we have $B/A \cong A_5$ or A_6 . Then |A| = 36, 18, 6 or 3, which is a contradiction. If $|H| = 2^3 3^3 5$, then similarly we get a contradiction.

If $K/H \cong A_6$, then $|H| = 2^i 3^2 5$, where $1 \le i \le 3$. By Lemma 2, $2^i, 3^2 \in cd(H)$. Using Lemma 8, H is not a solvable group and so $i \ne 1$. Also H has a normal series $1 \le A \le B \le H$ such that B/A is a direct product of m copies of a nonabelian simple group S and |H/B| | |Out(B/A)|. If $|H| = 2^3 3^2 5$, by Theorem B in [2], we get that $H \cong A_6$, and so by Lemma 7, $G \cong A_6 \times A_6$. If $|H| = 2^2 3^2 5$, then |A| = 3, which is a contradiction.

If $K/H \cong U_4(2)$, then |H| = 5 and G = K. Therefore *G* is an extension of \mathbb{Z}_5 by $U_4(2)$. We know that $G/C_G(H) \hookrightarrow \operatorname{Aut}(H)$ and $(G/H)/(C_G(H)/H) \cong G/C_G(H)$. So *G* is a central extension of *H* by $U_4(2)$. Since the Schur multiplier of $U_4(2)$ is 2, we get that $G \cong \mathbb{Z}_5 \times U_4(2)$.

Let $K/H \cong A_5 \times A_5$. We know that $Out(K/H) \cong Out(A_5) \wr S_2$, and so |G/K| | 8. Thus $|H| = 2^i 3^2$, where $0 \le i \le 2$, which is a contradiction.

Finally, if $K/H \cong A_6 \times A_6$, then $G \cong A_6 \times A_6$.

(**b**) In this case, we have $K/H \cong A_5, A_6, U_4(2), A_5 \times A_5, A_6 \times A_6$ or $U_4(2) \times U_4(2)$.

If $K/H \cong A_5$, then $|H| = 2^{10}3^75$ or 2^93^75 . By Lemma 8, *H* is not a solvable group and *H* has a normal series $1 \trianglelefteq A \trianglelefteq B \trianglelefteq H$ such that B/A is a nonabelian simple group. Therefore *A* is a $\{2,3\}$ -group such that $O_2(A) = O_3(A) = 1$ and this is a contradiction.

If $K/H \cong A_6$, then similarly to the above we get a contradiction.

If $K/H \cong U_4(2)$, then $|H| = 2^i 3^4 5$, where $5 \le i \le 6$. By Lemma 2, $2^i, 3^4 \in cd(H)$. Therefore *H* is not a solvable group and *H* has a normal series $1 \le A \le B \le H$ such that B/A is a nonabelian simple group. If $|H| = 2^5 3^4 5$, then *A* is a $\{2, 3\}$ -group such that $O_2(A) = O_3(A) = 1$ and this is a contradiction. If $|H| = 2^6 3^4 5$, by Theorem A in [2], we get that $H \cong U_4(2)$ and by Lemma 7, $G \cong U_4(2) \times U_4(2)$.

Let $K/H \cong A_5 \times A_5$. We know that $Out(K/H) \cong Out(A_5) \wr S_2$. Therefore |G/K| | 8 and thus $|H| = 2^i 3^6$, where $5 \le i \le 8$, which is a contradiction.

If $K/H \cong A_6 \times A_6$, then $|Out(K/H)| = 2^5$ and thus $|H| = 2^i 3^4$, where $1 \le i \le 6$, which is a contradiction.

Therefore $K/H \cong U_4(2) \times U_4(2)$, and so $G \cong U_4(2) \times U_4(2)$. \Box

Corollary 1. *If* $|G| = 2^{6}3^{4}5^{2}$ *and* $2^{6}, 3^{4} \in cd(G)$ *and* $6 \notin cd(G)$ *, then* $G \cong A_{6} \times A_{6}$ *.*

Theorem 5. If $|G| = 2^{10}3^{6}7^{2}$ and $2^{10}, 3^{6} \in cd(G)$, then $G \cong U_{3}(3) \times U_{3}(3)$.

Proof. By Lemma 9 it follows that *G* is not solvable and *G* has a normal series $1 \leq H \leq K \leq G$ such that $K/H \cong L_2(7), L_2(8), U_3(3), L_2(7) \times L_2(7), L_2(8) \times L_2(8)$ or $U_3(3) \times U_3(3)$ and |G/K| | |Out(K/H)|.

If $K/H \cong L_2(7)$, then $|H| = 2^7 3^5 7$ or $2^6 3^5 7$. By Lemma 9, *H* is not solvable and *H* has a normal series $1 \trianglelefteq A \trianglelefteq B \trianglelefteq H$ such that B/A is a nonabelian simple group. Therefore *A* is a $\{2,3\}$ -group such that $O_2(A) = O_3(A) = 1$, which is a contradiction. If $K/H \cong L_2(8)$, then similarly to the above we get a contradiction.

If $K/H \cong L_2(7) \times L_2(7)$ or $K/H \cong L_2(8) \times L_2(8)$, then *H* is a {2,3}-group, and we get a contradiction similarly.

If $K/H \cong U_3(3)$, then $|H| = 2^5 3^3 7$ or $2^4 3^3 7$. By Lemma 9, *H* is not a solvable group and *H* has a normal series $1 \leq A \leq B \leq H$ such that B/A is a nonabelian simple group.

If $|H| = 2^4 3^3 7$, then *A* is a $\{2,3\}$ -group such that $O_2(A) = O_3(A) = 1$, which is a contradiction. If $|H| = 2^5 3^3 7$, by Theorem C in [2], we get that $H \cong U_3(3)$ and by Lemma 7, $G \cong U_3(3) \times U_3(3)$.

Finally, if $K/H \cong U_3(3) \times U_3(3)$, then obviously $G \cong U_3(3) \times U_3(3)$.

Theorem 6. If G is a finite group such that

(*i*) $|G| = 2^6 3^4 7^2$,

(*ii*) $2^6, 3^4 \in cd(G),$

(*iii*) 6, 12, 18 \notin cd(*G*),

then $G \cong L_2(8) \times L_2(8)$.

Proof. By Lemmas 3 and 9, we get that *G* has a normal series $1 \leq H \leq K \leq G$ such that $K/H \cong L_2(7), L_2(8), U_3(3), L_2(7) \times L_2(7)$ or $L_2(8) \times L_2(8)$, and |G/K| | |Out(K/H)|.

If $K/H \cong L_2(7)$, then $|H| = 2^3 3^3 7$ or $2^2 3^3 7$. By Lemma 9, *H* is not a solvable group and *H* has a normal series $1 \trianglelefteq A \trianglelefteq B \trianglelefteq H$ such that B/A is a nonabelian simple group and $|H/B| \mid |Out(B/A)|$.

If $|H| = 2^3 3^3 7$, we have $B/A \cong L_2(7)$ or $L_2(8)$. If $B/A \cong L_2(7)$, then $|A| = 3^2$, a contradiction. If $B/A \cong L_2(8)$, then by Itô's theorem, |A| = 1 and $1 \trianglelefteq B \cong L_2(8) \trianglelefteq H$, where |H : B| = 3. By the proof of Lemma 1 in [2] (Lemma 3 in the present paper), H/B is isomorphic to a subgroup of Out(B/A) and by [23] we have $H \cong L_2(8).3$. Using GAP cd $(H) = \{1, 7, 8, 21, 27\}$, Z(H) = 1 and $Aut(H) \cong H$. Now similarly to the proof of Lemma 7, $G \cong (L_2(8).3) \times L_2(7)$. Then $6 \in cd(G)$, which is a contradiction by (iii). If $|H| = 2^2 3^3 7$, then by Lemma 9, H is not a solvable group, and this is a contradiction by [23].

If $K/H \cong L_2(8)$, then $|H| = 2^3 \cdot 3^2 \cdot 7$ or $2^3 \cdot 3 \cdot 7$. Using Lemma 9, *H* is not a solvable group. If $|H| = 2^3 \cdot 3^2 \cdot 7$, by the same argument as Theorem C in [2], we get that $H \cong L_2(8)$ and by Lemma 7, $G \cong L_2(8) \times L_2(8)$. If $|H| = 2^3 \cdot 3 \cdot 7$, then by Theorem A in [2], $H \cong L_2(7)$. Since $K/H \cong L_2(8)$, similarly to the proof of Lemma 7, we get that $K \cong L_2(7) \times L_2(8)$. So *G* is a an extension of *Z*₃ by $L_2(7) \times L_2(8)$. Since $6 \in cd(G)$ or $18 \in cd(G)$, we get a contradiction by (iii).

If $K/H \cong U_3(3)$, then |H| = 42 or |H| = 21.

If |H| = 42, then *H* is solvable and *H'* is a cyclic group, since |H| is square-free. Therefore |H'| = 7 and |H/H'| = 6. Now easily we see that the equation $\sum_{\varphi \in Irr(H)} \varphi^2(1) = |H|$, where $\varphi(1) | |H|$, has no solution and so we get a contradiction.

If |H| = 21, then by Lemma 2, we get that $3 \in cd(H)$ and so H is a Frobenius group of order 21, which is denoted by 7 : 3. Also Z(H) = 1 and $Aut(H) \cong H.2$. Now similarly to the proof of Lemma 7, we get that $K \cong (7:3) \times U_3(3)$. Since |G:K| = 2, we have $G \cong (7:3) \times U_3(3)$.2 and so $6 \in cd(G)$ or $12 \in cd(G)$, which is a contradiction by (iii).

If $K/H \cong L_2(7) \times L_2(7)$. We know that $Out(K/H) \cong Out(L_2(7)) \wr S_2$. Then |G/K| | 8 and thus $|H| = 3^2$, which is a contradiction.

Finally $K/H \cong L_2(8) \times L_2(8)$, and so $G \cong L_2(8) \times L_2(8)$. \Box

Theorem 7. If $|G| = |L_3(3)|^2$ and $2^8, 3^6 \in cd(G)$, then $G \cong L_3(3) \times L_3(3)$.

Proof. First we show that *G* is not a solvable group. If *G* is a solvable group, then $O_2(G) = O_3(G) = 1$ and so Fit(*G*) = $O_{13}(G) \neq 1$. Since $|\operatorname{Aut}(\mathbb{Z}_{13})| = 2^23$, $|\operatorname{Aut}(\mathbb{Z}_{169})| = 2^2 \cdot 3 \cdot 13$ and $|\operatorname{Aut}(\mathbb{Z}_{13} \times \mathbb{Z}_{13})| = 2^5 \cdot 3^2 \cdot 7 \cdot 13$, therefore $|G| \nmid |\operatorname{Fit}(G)| \cdot |\operatorname{Aut}(\operatorname{Fit}(G))|$, which is a contradiction. Therefore *G* is nonsolvable and *G* has a normal series $1 \leq H \leq K \leq G$ such that $K/H \cong L_3(3)$ or $L_3(3) \times L_3(3)$, where $|G/K| \mid |\operatorname{Out}(K/H)|$. If $K/H \cong L_3(3) \times L_3(3)$, then $G = L_3(3) \times L_3(3)$. If $K/H \cong L_3(3)$, then |G/K| = 1 or 2, and thus $|H| = 2^43^313$ or $|H| = 2^33^313$. If *H* is a solvable group, then Fit(*H*) $\cong \mathbb{Z}_{13}$ and $|H| \nmid |\operatorname{Fit}(H)| \cdot |\operatorname{Aut}(\operatorname{Fit}(H))|$, which is a contradiction. Hence *H* is not a solvable group and so $H \cong L_3(3)$ and by Lemma 7, $G \cong L_3(3) \times L_3(3)$.

As a consequence of the above theorem, by ([25], Theorem 2.13), we have the following result which is a partial answer to the question arose in [11].

Corollary 2. Let *M* be a simple K_3 -group and $H = M \times M$. If *G* is a group such that $\mathbb{C}G \cong \mathbb{C}H$, then $G \cong H$. Thus $M \times M$, where *M* is a simple K_3 -group, is uniquely determined by the structure of its complex group algebra.

Author Contributions: Both authors contributed equally to this work.

Acknowledgments: The authors are grateful to the referees for their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interesr.

References

- 1. Herzog, M. On finite simple groups of order divisible by there primes only. J. Algebra 1968, 10, 383–388. [CrossRef]
- 2. Xu, H.; Chen, G.Y.; Yan, Y. A new characterization of simple *K*₃-groups by their orders and large degrees of their irreducible characters. *Commun. Algebra* **2014**, 42, 5374–5380. [CrossRef]

- 3. Xu, H.; Yan, Y.; Chen, G.Y. A new characterization of Mathieu groups by the order and one irreducible character degree. *J. Inequal. Appl.* **2013**, *209*, 1–6. [CrossRef]
- 4. Jiang, Q.; Shao, C. Recognition of $L_2(q)$ by its group order and largest irreducible character degree. *Monatsh. Math.* **2015**, 176, 413–422. [CrossRef]
- 5. Khosravi, B.; Khosravi, B.; Khosravi, B. Recognition of PSL(2, *p*) by order and some information on its character degrees where *p* is a prime. *Monatsh. Math.* **2014**, 175, 277–282. [CrossRef]
- 6. Khosravi, B.; Khosravi, B.; Khosravi, B.; Momen, Z. A new characterization for the simple group PSL(2, *p*²) by order and some character degrees. *Czechoslov. Math. J.* **2015**, *65*, 271–280. [CrossRef]
- 7. Khosravi, B.; Khosravi, B. Some extensions of PSL(2, *p*²) are uniquely determined by their complex group algebras. *Commun. Algebra* **2015**, *43*, 3330–3341. [CrossRef]
- 8. Khosravi, B.; Khosravi, B.; Khosravi, B. A new characterization for some extensions of PSL(2, *q*) for some *q* by some character degrees. *Proc. Indian Acad. Sci.* **2016**, *126*, 49–59. [CrossRef]
- 9. Brauer, R. Representations of finite groups. In *Lectures on Modern Mathematics*; John Wiley & Sons: Hoboken, NJ, USA, 1963; Volume I.
- Dade, E.C. Deux groupes finis distincts ayant la meme algèbre de groupe sur tout corps. *Math. Z.* 1971, 119, 345–348. [CrossRef]
- 11. Tong-Viet, H.P. Simple classical groups of Lie type are determined by their character degrees. *J. Algebra* **2012**, 357, 61–68. [CrossRef]
- 12. Bessenrodt, C.; Nguyen, H.; Olsson, J.; Tong-Viet, H. Complex group algebras of the double covers of the symmetric and alternating groups. *Algebra Number Theory* **2015**, *9*, 601–628. [CrossRef]
- Nagl, M. Charakterisierung der Symmetrischen Gruppen Durch Ihre Komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte 2011. Available online: http://www.mathematik.uni-stuttgart.de/preprints/ downloads/2011/2011-007.pdf(2011) (accessed on 3 April 2018).
- 14. Nagl, M. Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. PhD Diplomarbeit, Universität Stuttgart, Stuttgart, Germany, 2008.
- 15. Nguyen, H.N.; Tong-Viet, H.P. Characterizing finite quasisimple groups by their complex group algebras. *Algebras Represent. Theory* **2014**, *17*, 305–320. [CrossRef]
- 16. Tong-Viet, H.P. Symmetric groups are determined by their character degrees. J. Algebra 2011, 334, 275–284. [CrossRef]
- 17. Tong-Viet, H.P. Alternating and sporadic simple groups are determined by their character degrees. *Algebras Represent. Theory* **2012**, *15*, 379–389. [CrossRef]
- 18. Tong-Viet, H.P. Simple exceptional groups of Lie type are determined by their character degrees. *Monatsh. Math.* **2012**, *166*, 559–577. [CrossRef]
- 19. Khosravi, B.; Khosravi, B.; Khosravi, B.; Momen, Z. Recognition of PSL(2, *p*) × PSL(2, *p*) by its complex group Algebra. *J. Algebra Appl.* **2017**, *16*, 1750036. [CrossRef]
- 20. Khademi, M.; Khosravi, B. Recognition of characteristically simple group $A_5 \times A_5$ by character degree graph and order. *Czech. Math. J.* to appear. Available online: https://articles.math.cas.cz/?type=C&v=0&n=0 (accessed on 3 April 2018).
- 21. Isaacs, I.M. Character Theory of Finite Groups; Academic Press: New York, NY, USA, 1976.
- 22. Huppert, B. Character Theory of Finite Groups; de Gruyter: Berlin, Germany; New York, NY, USA, 1998.
- 23. Conway, J.H.; Curtis, R.T.; Norton, S.P.; Parker, R.A.; Wilson, R.A. *Atlas of Finite Groups*; Oxford University Press: Oxford, UK, 1985.
- 24. The GAP Group. GAP—Groups, Algorithms, and Programming, 2007. Available online: https://www.gapsystem.org (accessed on 03 April 2018)
- 25. Berkovich, Y.G.; Zhmud, E.M. *Characters of Finite Groups. Part 1, Translations of Mathematical Monographs;* American Mathematical Society: Providence, RI, USA, 1998.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).