Article

# Recognition of $M \times M$ by Its Complex Group Algebra Where M Is a Simple $K_{3}$-Group 

Morteza Baniasad Azad and Behrooz Khosravi *<br>Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran; baniasad84@gmail.com<br>* Correspondence: khosravibbb@yahoo.com; Tel.: +98-912-176-5845

Received: 4 April 2018; Accepted: 9 May 2018; Published: 25 June 2018


#### Abstract

In this paper we prove that if $M$ is a simple $K_{3}$-group, then $M \times M$ is uniquely determined by its order and some information on irreducible character degrees and as a consequence of our results we show that $M \times M$ is uniquely determined by the structure of its complex group algebra.


Keywords: character degree; order; complex group algebra

## 1. Introduction

Let $G$ be a finite group, $\operatorname{Irr}(G)$ be the set of irreducible characters of $G$, and denote by $\operatorname{cd}(G)$, the set of irreducible character degrees of $G$. A finite group $G$ is called a $K_{3}$-group if $|G|$ has exactly three distinct prime divisors. By [1], simple $K_{3}$-groups are $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ and $U_{4}(2)$. Chen et al. in [2,3] proved that all simple $K_{3}$-groups and the Mathieu groups are uniquely determined by their orders and one or both of their largest and second largest irreducible character degrees. In [4], it is proved that $L_{2}(q)$ is uniquely determined by its group order and its largest irreducible character degree when $q$ is a prime or when $q=2^{a}$ for an integer $a \geq 2$ such that $2^{a}-1$ or $2^{a}+1$ is a prime.

Let $p$ be an odd prime number. In [5-8], it is proved that the simple groups $L_{2}(q)$ and some extensions of them, where $q \mid p^{3}$ are uniquely determined by their orders and some information on irreducible character degrees.

In ([9], Problem $2^{*}$ )R. Brauer asked: Let G and H be two finite groups. If for all fields $\mathbb{F}$, two group algebras $\mathbb{F} G$ and $\mathbb{F} H$ are isomorphic can we get that $G$ and $H$ are isomorphic? This is false in general. In fact, E. C. Dade [10] constructed two nonisomorphic metabelian groups $G$ and $H$ such that $\mathbb{F} G \cong \mathbb{F} H$ for all fields $\mathbb{F}$. In [11], Tong-Viet posed the following question:

## Question. Which groups can be uniquely determined by the structure of their complex group algebras?

In general, the complex group algebras do not uniquely determine the groups, for example, $\mathbb{C} D_{8} \cong \mathbb{C} Q_{8}$. It is proved that nonabelian simple groups, quasi-simple groups and symmetric groups are uniquely determined up to isomorphism by the structure of their complex group algebras (see [12-18]). Khosravi et al. proved that $L_{2}(p) \times L_{2}(p)$ is uniquely determined by its complex group algebra, where $p \geq 5$ is a prime number (see [19]). In [20], Khosravi and Khademi proved that the characteristically simple group $A_{5} \times A_{5}$ is uniquely determined by its order and its character degree graph (vertices are the prime divisors of the irreducible character degrees of $G$ and two vertices $p$ and $q$ are joined by an edge if $p q$ divides some irreducible character degree of $G$ ). In this paper, we prove that if $M$ is a simple $K_{3}$-group, then $M \times M$ is uniquely determined by its order and some information about its irreducible character degrees. In particular, this result is the generalization of ([19], Theorem 2.4) for $p=5,7$ and 17. Also as a consequence of our results we show that $M \times M$ is uniquely determined by the structure of its complex group algebra.

## 2. Preliminaries

If $\chi=\sum_{i=1}^{k} e_{i} \chi_{i}$, where for each $1 \leq i \leq k, \chi_{i} \in \operatorname{Irr}(G)$ and $e_{i}$ is a natural number, then each $\chi_{i}$ is called an irreducible constituent of $\chi$.

Lemma 1. (Itô's Theorem) ([21], Theorem 6.15) Let $A \unlhd G$ be abelian. Then $\chi(1)$ divides $|G: A|$, for all $\chi \in \operatorname{Irr}(G)$.

Lemma 2. ([21], Corollary 11.29) Let $N \unlhd G$ and $\chi \in \operatorname{Irr}(G)$. If $\theta$ is an irreducible constituent of $\chi_{N}$, then $\chi(1) / \theta(1)| | G: N \mid$.

Lemma 3. ([2], Lemma 1) Let $G$ be a nonsolvable group. Then $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H$ is a direct product of isomorphic nonabelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 4. (Itô-Michler Theorem) [22] Let $\rho(G)$ be the set of all prime divisors of the elements of $\operatorname{cd}(G)$. Then $p \notin \rho(G)=\{p: p$ is a prime number, $p \mid \chi(1), \chi \in \operatorname{Irr}(G)\}$ if and only if $G$ has a normal abelian Sylow p-subgroup.

Lemma 5. ([3], Lemma 2) Let G be a finite solvable group of order $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes. If $\left(k p_{n}+1\right) \nmid p_{i}^{\alpha_{i}}$, for each $i \leq n-1$ and $k>0$, then the Sylow $p_{n}$-subgroup is normal in $G$.

Lemma 6. ([19], Theorem 2.4) Let $p \geq 5$ be a prime number. If $G$ is a finite group such that (i) $|G|=\left|L_{2}(p)\right|^{2}$, (ii) $p^{2} \in \operatorname{cd}(G)$, (iii) there does not exist any element $a \in \operatorname{cd}(G)$ such that $2 p^{2} \mid a$, (iv) if $p$ is a Mersenne prime or a Fermat prime, then $(p \pm 1)^{2} \in \operatorname{cd}(G)$, then $G \cong L_{2}(p) \times L_{2}(p)$.

## 3. The Main Results

Lemma 7. Let $S$ be a simple $K_{3}$-group and let $G$ be an extension of $S$ by $S$. Then $G \cong S \times S$.
Proof. There exists a normal subgroup of $G$ which is isomorphic to $S$ and we denote it by the same notation. By [23], we know that $|\operatorname{Out}(S)| \leqslant 4$ and $G / C_{G}(S) \hookrightarrow \operatorname{Aut}(S)$, which implies that $C_{G}(S) \neq 1$. As $S$ is a nonabelian simple group, $S \cap C_{G}(S)=1$ and it follows that $S C_{G}(S) \cong S \times C_{G}(S)$. Also $C_{G}(S) \cong S C_{G}(S) / S \unlhd G / S \cong S$ which implies that $G$ is isomorphic to $S \times S$.

Theorem 1. Let $G$ be a finite group. Then $G \cong A_{5} \times A_{5}$ if and only if $|G|=\left|A_{5}\right|^{2}$ and $5^{2} \in \operatorname{cd}(G)$.
Proof. Obviously by Itô's theorem, we get that $O_{5}(G)=1$. First we show that $G$ is not a solvable group. If $G$ is a solvable group, then let $H$ be a Hall subgroup of $G$ of order $2^{4} 5^{2}$. Since $G / H_{G} \hookrightarrow S_{9}$, we get that $5\left|\left|H_{G}\right|\right.$. If $\left.5^{2}\right|\left|H_{G}\right|$, then $25 \in \operatorname{cd}\left(H_{G}\right)$. On the other hand, $25^{2}<\left|H_{G}\right| \leq 2^{4} 5^{2}$, a contradiction. If $\left|H_{G}\right|=2^{4} 5$, then $\left|G / H_{G}\right|=45$. Let $L / H_{G}$ be a Sylow 5-subgroup of $G / H_{G}$. Then $L / H_{G} \unlhd G / H_{G}$ and so $L \unlhd G$ and $|L|=5^{2} 2^{4}$. Then $25 \in \operatorname{cd}(L)$, which is a contradiction. If $\left|H_{G}\right| \mid 2^{3} 5$, then $P$, a Sylow 5-subgroup of $H_{G}$ is a normal subgroup of $G$, which is a contradiction by Lemma 4 . Therefore $G$ is a nonsolvable group.

Since $G$ is nonsolvable, by Lemma 3, $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H$ is a direct product of isomorphic nonabelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$. As $| G \mid=2^{4} 3^{2} 5^{2}$, we have $K / H \cong A_{5}, A_{6}$ or $A_{5} \times A_{5}$ by [23]. If $K / H \cong A_{6}$, then $|H|=5$ or 10 . Using Lemma $2,5 \in \operatorname{cd}(H)$, a contradiction. If $K / H \cong A_{5}$, then $|H|=60$ or $|H|=30$. By Lemma $2,5 \in \operatorname{cd}(H)$. If $H$ is a solvable group, then by Lemma $5, P \unlhd H$, where $P \in \operatorname{Syl}_{5}(H)$, which is a contradiction. Therefore $|H|=60$ and so $H \cong A_{5}$. Hence $G$ is an extension of $A_{5}$ by $A_{5}$ and by Lemma $7, G \cong A_{5} \times A_{5}$. If $K / H \cong A_{5} \times A_{5}$, then $|H|=1$ and $G \cong A_{5} \times A_{5}$.

Theorem 2. Let $G$ be a finite group. Then $G \cong L_{2}(17) \times L_{2}(17)$ if and only if $|G|=\left|L_{2}(17)\right|^{2}$ and $17^{2} \in \operatorname{cd}(G)$.

Proof. Obviously $O_{17}(G)=1$. On the contrary let $G$ be a solvable group. First we show that there exists no normal subgroup $N$ of $G$ such that
(a) $|N|=2^{i} 3^{j} 17^{k}$, where $k \neq 0$ and $i<8$; or (b) $|N|=2^{8} 17^{2}$; or (c) $|N|=2^{8} 17$.

Let $N$ be a normal subgroup of $G$. If $|N|=2^{i} 3^{j} 17^{k}$, where $k \neq 0$ and $i<8$, then by Lemma 5 , $P \unlhd G$, where $P \in \operatorname{Syl}_{17}(G)$. Hence $O_{17}(G) \neq 1$, which is a contradiction. If $|N|=2^{8} 17^{2}$, then $17^{2} \in \operatorname{cd}(N)$, which is impossible. If $|N|=2^{8} 17$, then $|G / N|=3^{4} 17$. If $T / N \in \operatorname{Syl}_{17}(G / N)$, then $T / N \unlhd G / N$. Therefore $T \unlhd G$, where $|T|=17^{2} 2^{8}$ and this is a contradiction as we stated above.

Let $M$ be a minimal normal subgroup of $G$, which is an elementary abelian $p$-group. Obviously $p \neq 17$. Let $p=2$. Then $|M|=2^{i}$, where $0<i \leq 8$ and so $|G / M|=2^{8-i} 3^{4} 17^{2}$. Then $T / M \unlhd G / M$, where $T / M \in \operatorname{Syl}_{17}(G / M)$. Therefore $T \unlhd G$ and $|T|=17^{2} 2^{i}$, which is a contradiction. Hence $p=3$ and $|M|=3^{i}$, where $1 \leq i \leq 4$.

If $i=4$, then $G / C_{G}(M) \hookrightarrow \operatorname{Aut}(M) \cong G L(4,3)$ and $|G L(4,3)|=2^{9} \times 3^{6} \times 5 \times 13$. Hence $17^{2}| | C_{G}(M) \mid$. Since $M$ is an abelian subgroup of $G$, thus $3^{4}| | C_{G}(M) \mid$. If $\left|C_{G}(M)\right|=17^{2} 3^{4} 2^{j}$, where $j \neq 8$, then by the above discussion we get a contradiction. Otherwise, $C_{G}(M)=G$ and so by Burnside normal $p$-complement theorem, $G$ has a normal 3-complement of order $17^{2} 2^{8}$, which is a contradiction.

If $i=3$, then $|G / M|=2^{8} 17^{2} 3$. Let $H / M$ be a Hall subgroup of $G / M$ of order $2^{8} 17^{2}$. Then $|H|=2^{8} 3^{3} 17^{2}$. Since $G / H_{G} \hookrightarrow S_{3}$, thus $3^{3} 17^{2}| | H_{G} \mid$. If $2^{8} \nmid\left|H_{G}\right|$, then by the above discussion we get a contradiction. Therefore $\left|H_{G}\right|=2^{8} 3^{3} 17^{2}$, i.e., $H \unlhd G$. Let $B$ be a Hall subgroup of $H$ of order $|B|=2^{8} 17^{2}$. Then similarly to the above $2^{8} 17| | B_{H} \mid$. If $\left|B_{H}\right|=2^{8} 17^{2}$, then we get a contradiction. If $\left|B_{H}\right|=2^{8} 17$, then $T / B_{H} \unlhd B / B_{H}$ where $T / B_{H} \in \operatorname{Syl}_{17}\left(B / B_{H}\right)$. Therefore $|T|=2^{8} 17^{2}$, which is a contradiction.

If $i=2$, then $|G / M|=2^{8} 3^{2} 17^{2}$. Let $H / M$ be a Hall subgroup of $G / M$ of order $2^{8} 17^{2}$. Then $|H|=2^{8} 3^{2} 17^{2}$. Thus similarly to the above, $17^{2}| | H_{G} \mid$ and $17^{2} \in \operatorname{cd}\left(H_{G}\right)$. Then by the same argument as above we get that $H_{G}$ has a normal subgroup of order $2^{i} 17^{2}$, which is a contradiction.

If $i=1$, then $|G / M|=2^{8} 3^{3} 17^{2}$. Let $H / M$ be a Hall subgroup of $G / M$ of order $2^{8} 17^{2}$. Then $|H|=2^{8} 17^{2} 3$. Since $G / H_{G} \hookrightarrow S_{27}$ we get that $17\left|\left|H_{G}\right|\right.$. If $\left.2^{8} \nmid\right| H_{G} \mid$ or $\left|H_{G}\right|=2^{8} 17^{k}$, where $k \neq 0$, then we get a contradiction. If $\left|H_{G}\right|=2^{8} 17^{2} 3$, then $H_{G}$ has a normal subgroup of order $2^{i} 17^{2}$, which is a contradiction. If $\left|H_{G}\right|=2^{8} \times 17 \times 3$, then $\left|G / H_{G}\right|=3^{3} 17$. Therefore $T / H_{G} \unlhd G / H_{G}$, where $T / H_{G} \in \operatorname{Syl}_{17}\left(G / H_{G}\right)$. Hence $T \unlhd G$ and $|T|=2^{8} 17^{2} 3$, which is a contradiction as we stated above.

Therefore $G$ is nonsolvable and by Lemma 3, $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H \cong L_{2}(17)$ or $L_{2}(17) \times L_{2}(17)$ and $|G / K|||\operatorname{Out}(K / H)|$.

If $K / H \cong L_{2}(17)$, then $|H|=2^{3} 3^{2} 17$ or $2^{4} 3^{2} 17$ and so $17 \in \operatorname{cd}(H)$. If $H$ is a solvable group, then by Lemma $5, P \unlhd H$, where $P \in \operatorname{Syl}_{17}(H)$, which is a contradiction by Lemma 4 . Otherwise by Lemma 3 and [23] we get that $H \cong L_{2}(17)$. Therefore $G$ is an extension of $L_{2}(17)$ by $L_{2}(17)$ and by Lemma 7, $G \cong L_{2}(17) \times L_{2}(17)$.

Obviously if $K / H \cong L_{2}(17) \times L_{2}(17)$, then $G \cong L_{2}(17) \times L_{2}(17)$.
In the sequel, we show that if $G$ is a finite group of order $\left|L_{2}(7) \times L_{2}(7)\right|$, such that $G$ has an irreducible character of order $7^{2}$ or $2^{6}$, then we can not conclude that $G \cong L_{2}(7) \times L_{2}(7)$. So we need more assumptions to characterize $L_{2}(7) \times L_{2}(7)$.

Remark 1. Using the notations of GAP [24], if $A=\operatorname{SmallGroup}(56,11)$ and $H=A \times A \times \mathbb{Z}_{9}$, then $|H|=\left|L_{2}(7) \times L_{2}(7)\right|$ and $H$ has an irreducible character of degree $7^{2}$.

Similarly if $B=\operatorname{SmallGroup}(784,160)$ and $K=B \times S_{3} \times S_{3}$, then $|H|=\left|L_{2}(7) \times L_{2}(7)\right|$ and $H$ has an irreducible character of degree $2^{6}$.

Theorem 3. Let $G$ be a finite group. Then $G \cong L_{2}(7) \times L_{2}(7)$ if and only if $|G|=2^{6} 3^{2} 7^{2}$ and $2^{6}, 7^{2} \in \operatorname{cd}(G)$.
Proof. If $G$ is a solvable group, then let $H$ be a Hall subgroup of $G$ of order $2^{6} 7^{2}$. Since $G / H_{G} \hookrightarrow S_{9}$, we have $\left|H_{G}\right|=2^{i} 7^{j}$, where $0 \leq i \leq 6$ and $1 \leq j \leq 2$. Using Lemma $2,2^{i}, 7^{j} \in \operatorname{cd}\left(H_{G}\right)$. If $O_{2}\left(H_{G}\right) \neq 1$,
then by Lemma 2, $\left|O_{2}\left(H_{G}\right)\right| \in \operatorname{cd}\left(O_{2}\left(H_{G}\right)\right)$, which is a contradiction. Similarly $O_{7}\left(H_{G}\right)=1$, which shows that $G$ is a nonsolvable group.

Therefore $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H \cong L_{2}(8), L_{2}(7)$ or $L_{2}(7) \times L_{2}(7)$ and $|G / K|||\operatorname{Out}(K / H)|$.

If $K / H \cong L_{2}(8)$, then $|H|=56$. Using Lemma $2,8 \in \operatorname{cd}(H)$ and since $64>56$, we get a contradiction.

If $K / H \cong L_{2}(7)$, then $|H|=2^{2} \times 3 \times 7$ or $2^{3} \times 3 \times 7$. If $|H|=2^{2} \times 3 \times 7$, then by Lemma 2, $7 \in \operatorname{cd}(H)$. Since there exists no nonabelian simple group $S$ such that $|S|||H|$, we get that $H$ is a solvable group. then by Lemma $5, P \unlhd H$ where $P \in \operatorname{Syl}_{7}(H)$, which is a contradiction by Lemma 4. So $|H|=2^{3} \times 3 \times 7$, by the same argument for the proof of Theorem A in [2], we get that $H \cong L_{2}(7)$. Therefore $G$ is an extension of $L_{2}(7)$ by $L_{2}(7)$ and by Lemma $7, G \cong L_{2}(7) \times L_{2}(7)$.

If $K / H \cong L_{2}(7) \times L_{2}(7)$, obviously we have $G \cong L_{2}(7) \times L_{2}(7)$.
Remark 2. We note that Theorems 1, 2 and 3 are generalizations of Lemma 6 for special cases $p=5,7,17$.
Lemma 8. Let $G$ be a finite group. If $|G|=2^{i} 3 j 5$, where $i \geq 3$ or $j \geq 1$, and $2^{i}, 3^{j} \in \operatorname{cd}(G)$, then $G$ is not solvable. If $|G|=2^{i} 3^{j} 5^{2}$, where $i \geq 6$ or $j \geq 2$, and $2^{i}, 3^{j} \in \operatorname{cd}(G)$, then $G$ is not solvable.

Proof. On the contrary let $G$ be a solvable group.
Let $O_{2}(G) \neq 1$ and $\left|O_{2}(G)\right|=2^{t}$, where $1 \leq t \leq i$. By the assumption, there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)=2^{i}$. If $\sigma \in \operatorname{Irr}\left(\mathrm{O}_{2}(\mathrm{G})\right)$ such that $\left[\chi_{\mathrm{O}_{2}(G)}, \sigma\right] \neq 0$, then by Lemma $2,2^{i} / \sigma(1)$ is a divisor of $\left|G: O_{2}(G)\right|=2^{i-t}$. Since $\sigma(1)\left|\left|O_{2}(G)\right|\right.$, we get that $\sigma(1)=2^{t}$, which is a contradiction. Similarly $O_{3}(G)=1$.

Therefore $\operatorname{Fit}(G)=O_{5}(G) \neq 1$. We know that $G / C_{G}(\operatorname{Fit}(G)) \hookrightarrow \operatorname{Aut}(\operatorname{Fit}(G))$ and since $G$ is a solvable group, $C_{G}(\operatorname{Fit}(G)) \leqslant \operatorname{Fit}(G)$. Therefore $|G|$ is a divisor of $|\operatorname{Fit}(G)| \cdot|\operatorname{Aut}(\operatorname{Fit}(G))|$ and easily we can see that in each case we get a contradiction.

Similarly to the above we have the following result:
Lemma 9. Let $G$ be a finite group.
(a) If $|G|=2^{i} 3^{j} 7$, where $i \geq 2$ or $j \geq 2$, and $2^{i}, 3^{j} \in \operatorname{cd}(G)$, then $G$ is not solvable.
(b) If $|G|=2^{i} 3^{j} 7^{2}$, where $i \geq 6$ or $j \geq 3$, and $2^{i}, 3^{j} \in \operatorname{cd}(G)$, then $G$ is not solvable.

Theorem 4. Let $G$ be a finite group.
(a) If $|G|=2^{6} 3^{4} 5^{2}$ and $2^{6}, 3^{4} \in \operatorname{cd}(G)$, then $G \cong A_{6} \times A_{6}$ or $G \cong \mathbb{Z}_{5} \times U_{4}(2)$;
(b) If $|G|=2^{12} 3^{8} 5^{2}$ and $2^{12}, 3^{8} \in \operatorname{cd}(G)$, then $G \cong U_{4}(2) \times U_{4}(2)$.

Proof. Lemma 8 gives us that $G$ is not solvable and so $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H$ is a direct product of isomorphic nonabelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.
(a) By assumptions $K / H$ is isomorphic to $A_{5}, A_{6}, U_{4}(2), A_{5} \times A_{5}$ or $A_{6} \times A_{6}$.

If $K / H \cong A_{5}$, then $|H|=2^{4} 3^{3} 5$ or $|H|=2^{3} 3^{3} 5$. By Lemma $8, H$ is not solvable and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a direct product of $m$ copies of a nonabelian simple group $S$ and $|H / B|||\operatorname{Out}(B / A)|$. If $| H \mid=2^{4} 3^{3} 5$, we have $B / A \cong A_{5}$ or $A_{6}$. Then $|A|=36,18,6$ or 3 , which is a contradiction. If $|H|=2^{3} 3^{3} 5$, then similarly we get a contradiction.

If $K / H \cong A_{6}$, then $|H|=2^{i} 3^{2} 5$, where $1 \leq i \leq 3$. By Lemma $2,2^{i}, 3^{2} \in \operatorname{cd}(H)$. Using Lemma 8, $H$ is not a solvable group and so $i \neq 1$. Also $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a direct product of $m$ copies of a nonabelian simple group $S$ and $|H / B|||\operatorname{Out}(B / A)|$. If $| H \mid=2^{3} 3^{2} 5$, by Theorem B in [2], we get that $H \cong A_{6}$, and so by Lemma $7, G \cong A_{6} \times A_{6}$. If $|H|=2^{2} 3^{2} 5$, then $|A|=3$, which is a contradiction.

If $K / H \cong U_{4}(2)$, then $|H|=5$ and $G=K$. Therefore $G$ is an extension of $\mathbb{Z}_{5}$ by $U_{4}(2)$. We know that $G / C_{G}(H) \hookrightarrow \operatorname{Aut}(H)$ and $(G / H) /\left(C_{G}(H) / H\right) \cong G / C_{G}(H)$. So $G$ is a central extension of $H$ by $U_{4}(2)$. Since the Schur multiplier of $U_{4}(2)$ is 2 , we get that $G \cong \mathbb{Z}_{5} \times U_{4}(2)$.

Let $K / H \cong A_{5} \times A_{5}$. We know that $\operatorname{Out}(K / H) \cong \operatorname{Out}\left(A_{5}\right)$ 亿 $S_{2}$, and so $|G / K| \mid 8$. Thus $|H|=2^{i} 3^{2}$, where $0 \leq i \leq 2$, which is a contradiction.

Finally, if $K / H \cong A_{6} \times A_{6}$, then $G \cong A_{6} \times A_{6}$.
(b) In this case, we have $K / H \cong A_{5}, A_{6}, U_{4}(2), A_{5} \times A_{5}, A_{6} \times A_{6}$ or $U_{4}(2) \times U_{4}(2)$.

If $K / H \cong A_{5}$, then $|H|=2^{10} 3^{7} 5$ or $2^{9} 3^{7} 5$. By Lemma $8, H$ is not a solvable group and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a nonabelian simple group. Therefore $A$ is a $\{2,3\}$-group such that $O_{2}(A)=O_{3}(A)=1$ and this is a contradiction.

If $K / H \cong A_{6}$, then similarly to the above we get a contradiction.
If $K / H \cong U_{4}(2)$, then $|H|=2^{i} 3^{4} 5$, where $5 \leq i \leq 6$. By Lemma $2,2^{i}, 3^{4} \in \operatorname{cd}(H)$. Therefore $H$ is not a solvable group and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a nonabelian simple group. If $|H|=2^{5} 3^{4} 5$, then $A$ is a $\{2,3\}$-group such that $O_{2}(A)=O_{3}(A)=1$ and this is a contradiction. If $|H|=2^{6} 3^{4} 5$, by Theorem A in [2], we get that $H \cong U_{4}(2)$ and by Lemma $7, G \cong U_{4}(2) \times U_{4}(2)$.

Let $K / H \cong A_{5} \times A_{5}$. We know that $\operatorname{Out}(K / H) \cong \operatorname{Out}\left(A_{5}\right)$ < $S_{2}$. Therefore $|G / K| \mid 8$ and thus $|H|=2^{i} 3^{6}$, where $5 \leq i \leq 8$, which is a contradiction.

If $K / H \cong A_{6} \times A_{6}$, then $|\operatorname{Out}(K / H)|=2^{5}$ and thus $|H|=2^{i} 3^{4}$, where $1 \leq i \leq 6$, which is a contradiction.

Therefore $K / H \cong U_{4}(2) \times U_{4}(2)$, and so $G \cong U_{4}(2) \times U_{4}(2)$.
Corollary 1. If $|G|=2^{6} 3^{4} 5^{2}$ and $2^{6}, 3^{4} \in \operatorname{cd}(G)$ and $6 \notin \operatorname{cd}(G)$, then $G \cong A_{6} \times A_{6}$.
Theorem 5. If $|G|=2^{10} 3^{6} 7^{2}$ and $2^{10}, 3^{6} \in \operatorname{cd}(G)$, then $G \cong U_{3}(3) \times U_{3}(3)$.
Proof. By Lemma 9 it follows that $G$ is not solvable and $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H \cong L_{2}(7), L_{2}(8), U_{3}(3), L_{2}(7) \times L_{2}(7), L_{2}(8) \times L_{2}(8)$ or $U_{3}(3) \times U_{3}(3)$ and $|G / K|||\operatorname{Out}(K / H)|$.

If $K / H \cong L_{2}(7)$, then $|H|=2^{7} 3^{5} 7$ or $2^{6} 3^{5} 7$. By Lemma $9, H$ is not solvable and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a nonabelian simple group. Therefore $A$ is a $\{2,3\}$-group such that $O_{2}(A)=O_{3}(A)=1$, which is a contradiction. If $K / H \cong L_{2}(8)$, then similarly to the above we get a contradiction.

If $K / H \cong L_{2}(7) \times L_{2}(7)$ or $K / H \cong L_{2}(8) \times L_{2}(8)$, then $H$ is a $\{2,3\}$-group, and we get a contradiction similarly.

If $K / H \cong U_{3}(3)$, then $|H|=2^{5} 3^{3} 7$ or $2^{4} 3^{3} 7$. By Lemma $9, H$ is not a solvable group and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a nonabelian simple group.

If $|H|=2^{4} 3^{3} 7$, then $A$ is a $\{2,3\}$-group such that $O_{2}(A)=O_{3}(A)=1$, which is a contradiction. If $|H|=2^{5} 3^{3} 7$, by Theorem $C$ in [2], we get that $H \cong U_{3}(3)$ and by Lemma $7, G \cong U_{3}(3) \times U_{3}(3)$.

Finally, if $K / H \cong U_{3}(3) \times U_{3}(3)$, then obviously $G \cong U_{3}(3) \times U_{3}(3)$.
Theorem 6. If $G$ is a finite group such that
(i) $|G|=2^{6} 3^{4} 7^{2}$,
(ii) $2^{6}, 3^{4} \in \operatorname{cd}(G)$,
(iii) $6,12,18 \notin \operatorname{cd}(G)$,
then $G \cong L_{2}(8) \times L_{2}(8)$.
Proof. By Lemmas 3 and 9, we get that $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H \cong$ $L_{2}(7), L_{2}(8), U_{3}(3), L_{2}(7) \times L_{2}(7)$ or $L_{2}(8) \times L_{2}(8)$, and $|G / K|||\operatorname{Out}(K / H)|$.

If $K / H \cong L_{2}(7)$, then $|H|=2^{3} 3^{3} 7$ or $2^{2} 3^{3} 7$. By Lemma $9, H$ is not a solvable group and $H$ has a normal series $1 \unlhd A \unlhd B \unlhd H$ such that $B / A$ is a nonabelian simple group and $|H / B|||\operatorname{Out}(B / A)|$.

If $|H|=2^{3} 3^{3} 7$, we have $B / A \cong L_{2}(7)$ or $L_{2}(8)$. If $B / A \cong L_{2}(7)$, then $|A|=3^{2}$, a contradiction. If $B / A \cong L_{2}(8)$, then by Itô's theorem, $|A|=1$ and $1 \unlhd B \cong L_{2}(8) \unlhd H$, where $|H: B|=3$. By the proof of Lemma 1 in [2] (Lemma 3 in the present paper), $H / B$ is isomorphic to a subgroup of $\operatorname{Out}(B / A)$ and by [23] we have $H \cong L_{2}(8) .3$. Using $\operatorname{GAP} \operatorname{cd}(H)=\{1,7,8,21,27\}, Z(H)=1$ and $\operatorname{Aut}(H) \cong$ $H$. Now similarly to the proof of Lemma $7, G \cong\left(L_{2}(8) .3\right) \times L_{2}(7)$. Then $6 \in \operatorname{cd}(G)$, which is a contradiction by (iii). If $|H|=2^{2} 3^{3} 7$, then by Lemma 9, $H$ is not a solvable group, and this is a contradiction by [23].

If $K / H \cong L_{2}(8)$, then $|H|=2^{3} \cdot 3^{2} \cdot 7$ or $2^{3} \cdot 3 \cdot 7$. Using Lemma $9, H$ is not a solvable group. If $|H|=2^{3} \cdot 3^{2} \cdot 7$, by the same argument as Theorem $C$ in [2], we get that $H \cong L_{2}(8)$ and by Lemma 7, $G \cong L_{2}(8) \times L_{2}(8)$. If $|H|=2^{3} \cdot 3 \cdot 7$, then by Theorem $A$ in [2], $H \cong L_{2}(7)$. Since $K / H \cong L_{2}(8)$, similarly to the proof of Lemma 7, we get that $K \cong L_{2}(7) \times L_{2}(8)$. So $G$ is a an extension of $Z_{3}$ by $L_{2}(7) \times L_{2}(8)$. Since $6 \in \operatorname{cd}(G)$ or $18 \in \operatorname{cd}(G)$, we get a contradiction by (iii).

If $K / H \cong U_{3}(3)$, then $|H|=42$ or $|H|=21$.
If $|H|=42$, then $H$ is solvable and $H^{\prime}$ is a cyclic group, since $|H|$ is square-free. Therefore $\left|H^{\prime}\right|=7$ and $\left|H / H^{\prime}\right|=6$. Now easily we see that the equation $\sum_{\varphi \in \operatorname{Irr}(H)} \varphi^{2}(1)=|H|$, where $\varphi(1)||H|$, has no solution and so we get a contradiction.

If $|H|=21$, then by Lemma 2, we get that $3 \in \operatorname{cd}(H)$ and so $H$ is a Frobenius group of order 21, which is denoted by $7: 3$. Also $Z(H)=1$ and $\operatorname{Aut}(H) \cong H .2$. Now similarly to the proof of Lemma 7, we get that $K \cong(7: 3) \times U_{3}(3)$. Since $|G: K|=2$, we have $\left.G \cong(7: 3) \times U_{3}(3)\right) .2$ and so $6 \in \operatorname{cd}(G)$ or $12 \in \operatorname{cd}(G)$, which is a contradiction by (iii).

If $K / H \cong L_{2}(7) \times L_{2}(7)$. We know that $\operatorname{Out}(K / H) \cong \operatorname{Out}\left(L_{2}(7)\right)$ 々 $S_{2}$. Then $|G / K| \mid 8$ and thus $|H|=3^{2}$, which is a contradiction.

Finally $K / H \cong L_{2}(8) \times L_{2}(8)$, and so $G \cong L_{2}(8) \times L_{2}(8)$.
Theorem 7. If $|G|=\left|L_{3}(3)\right|^{2}$ and $2^{8}, 3^{6} \in \operatorname{cd}(G)$, then $G \cong L_{3}(3) \times L_{3}(3)$.
Proof. First we show that $G$ is not a solvable group. If $G$ is a solvable group, then $O_{2}(G)=O_{3}(G)=1$ and so $\operatorname{Fit}(G)=O_{13}(G) \neq 1$. Since $\left|\operatorname{Aut}\left(\mathbb{Z}_{13}\right)\right|=2^{2} 3,\left|\operatorname{Aut}\left(\mathbb{Z}_{169}\right)\right|=2^{2} \cdot 3 \cdot 13$ and $\mid \operatorname{Aut}\left(\mathbb{Z}_{13} \times\right.$ $\left.\mathbb{Z}_{13}\right) \mid=2^{5} \cdot 3^{2} \cdot 7 \cdot 13$, therefore $|G| \nmid|\operatorname{Fit}(G)| \cdot|\operatorname{Aut}(\operatorname{Fit}(G))|$, which is a contradiction. Therefore $G$ is nonsolvable and $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H \cong L_{3}(3)$ or $L_{3}(3) \times L_{3}(3)$, where $|G / K|\left||\operatorname{Out}(K / H)|\right.$. If $K / H \cong L_{3}(3) \times L_{3}(3)$, then $G=L_{3}(3) \times L_{3}(3)$. If $K / H \cong L_{3}(3)$, then $|G / K|=1$ or 2 , and thus $|H|=2^{4} 3^{3} 13$ or $|H|=2^{3} 3^{3} 13$. If $H$ is a solvable group, then $\operatorname{Fit}(H) \cong \mathbb{Z}_{13}$ and $|H| \nmid|\operatorname{Fit}(H)| \cdot|\operatorname{Aut}(\operatorname{Fit}(H))|$, which is a contradiction. Hence $H$ is not a solvable group and so $H \cong L_{3}(3)$ and by Lemma 7, $G \cong L_{3}(3) \times L_{3}(3)$.

As a consequence of the above theorem, by ([25], Theorem 2.13), we have the following result which is a partial answer to the question arose in [11].

Corollary 2. Let $M$ be a simple $K_{3}$-group and $H=M \times M$. If $G$ is a group such that $\mathbb{C G} \cong \mathbb{C H}$, then $G \cong H$. Thus $M \times M$, where $M$ is a simple $K_{3}$-group, is uniquely determined by the structure of its complex group algebra.

Author Contributions: Both authors contributed equally to this work.
Acknowledgments: The authors are grateful to the referees for their comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interesr.

## References

1. Herzog, M. On finite simple groups of order divisible by there primes only. J. Algebra 1968, 10, 383-388. [CrossRef]
2. $\mathrm{Xu}, \mathrm{H} . ;$ Chen, G.Y.; Yan, Y. A new characterization of simple $K_{3}$-groups by their orders and large degrees of their irreducible characters. Commun. Algebra 2014, 42, 5374-5380. [CrossRef]
3. Xu, H.; Yan, Y.; Chen, G.Y. A new characterization of Mathieu groups by the order and one irreducible character degree. J. Inequal. Appl. 2013, 209, 1-6. [CrossRef]
4. Jiang, Q.; Shao, C. Recognition of $L_{2}(q)$ by its group order and largest irreducible character degree. Monatsh. Math. 2015, 176, 413-422. [CrossRef]
5. Khosravi, B.; Khosravi, B.; Khosravi, B. Recognition of PSL $(2, p)$ by order and some information on its character degrees where $p$ is a prime. Monatsh. Math. 2014, 175, 277-282. [CrossRef]
6. Khosravi, B.; Khosravi, B.; Khosravi, B.; Momen, Z. A new characterization for the simple group PSL $\left(2, p^{2}\right)$ by order and some character degrees. Czechoslov. Math. J. 2015, 65, 271-280. [CrossRef]
7. Khosravi, B.; Khosravi, B.; Khosravi, B. Some extensions of PSL $\left(2, p^{2}\right)$ are uniquely determined by their complex group algebras. Commun. Algebra 2015, 43, 3330-3341. [CrossRef]
8. Khosravi, B.; Khosravi, B.; Khosravi, B. A new characterization for some extensions of PSL $(2, q)$ for some $q$ by some character degrees. Proc. Indian Acad. Sci. 2016, 126, 49-59. [CrossRef]
9. Brauer, R. Representations of finite groups. In Lectures on Modern Mathematics; John Wiley \& Sons: Hoboken, NJ, USA, 1963; Volume I.
10. Dade, E.C. Deux groupes finis distincts ayant la meme algèbre de groupe sur tout corps. Math. Z. 1971, 119, 345-348. [CrossRef]
11. Tong-Viet, H.P. Simple classical groups of Lie type are determined by their character degrees. J. Algebra 2012, 357, 61-68. [CrossRef]
12. Bessenrodt, C.; Nguyen, H.; Olsson, J.; Tong-Viet, H. Complex group algebras of the double covers of the symmetric and alternating groups. Algebra Number Theory 2015, 9, 601-628. [CrossRef]
13. Nagl, M. Charakterisierung der Symmetrischen Gruppen Durch Ihre Komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte 2011. Available online: http://www.mathematik.uni-stuttgart.de/preprints/ downloads/2011/2011-007.pdf(2011) (accessed on 3 April 2018).
14. Nagl, M. Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. PhD Diplomarbeit, Universität Stuttgart, Stuttgart, Germany, 2008.
15. Nguyen, H.N.; Tong-Viet, H.P. Characterizing finite quasisimple groups by their complex group algebras. Algebras Represent. Theory 2014, 17, 305-320. [CrossRef]
16. Tong-Viet, H.P. Symmetric groups are determined by their character degrees. J. Algebra 2011, 334, 275-284. [CrossRef]
17. Tong-Viet, H.P. Alternating and sporadic simple groups are determined by their character degrees. Algebras Represent. Theory 2012, 15, 379-389. [CrossRef]
18. Tong-Viet, H.P. Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 2012, 166, 559-577. [CrossRef]
19. Khosravi, B.; Khosravi, B.; Khosravi, B.; Momen, Z. Recognition of $\operatorname{PSL}(2, p) \times \operatorname{PSL}(2, p)$ by its complex group Algebra. J. Algebra Appl. 2017, 16, 1750036. [CrossRef]
20. Khademi, M.; Khosravi, B. Recognition of characteristically simple group $A_{5} \times A_{5}$ by character degree graph and order. Czech. Math. J. to appear. Available online: https:/ /articles.math.cas.cz/?type=C\&v=0\&n=0 (accessed on 3 April 2018).
21. Isaacs, I.M. Character Theory of Finite Groups; Academic Press: New York, NY, USA, 1976.
22. Huppert, B. Character Theory of Finite Groups; de Gruyter: Berlin, Germany; New York, NY, USA, 1998.
23. Conway, J.H.; Curtis, R.T.; Norton, S.P.; Parker, R.A.; Wilson, R.A. Atlas of Finite Groups; Oxford University Press: Oxford, UK, 1985.
24. The GAP Group. GAP—Groups, Algorithms, and Programming, 2007. Available online: https://www.gapsystem.org (accessed on 03 April 2018)
25. Berkovich, Y.G.; Zhmud, E.M. Characters of Finite Groups. Part 1, Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1998.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
