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Abstract: Symplectic geometry arises as the natural geometry of phase-space in the equations of
classical mechanics. In this study, we obtain new characterizations of regular symplectic curves with
respect to the Frenet frame in four-dimensional symplectic space. We also give the characterizations
of the symplectic circular helices as the third- and fourth-order differential equations involving the
symplectic curvatures.

Keywords: symplectic curves; circular helices; symplectic curvatures; Frenet frame

1. Introduction

As the Riemannian geometry involves the length as the fundamental quantity, symplectic
geometry involves the directed area, and contact geometry involves the twisting behavior as the
fundamental quantities. Since contact geometry is always odd-dimensional and symplectic geometry
is always even-dimensional, they are dual in the sense that they have many common results. Hence,
studying the twisting behavior in symplectic geometry helps us to obtain connections between these
two geometries.

The even-dimensional symplectic geometry has been found in numerous areas of mathematics and
physics. It arises as the natural geometry of phase-space in the equations of classical mechanics, which
are called Hamilton’s equations, and treating mechanical problems in phase-space greatly simplifies
the problem [1]. Besides, the symplectic numerical methods are known to be fast and accurate [2–5].
Symplectic geometry also arises in microlocal analysis [6–8], in time series analysis [9,10], analysis of
random walks on euclidean graphs [11], and applications of Clifford algebras [12–14].

Geometrical optics has been recognized as a semi-classical limit of wave optics with a small
parameter; it has nevertheless been constantly considered as a self-consistent theory for light rays,
borrowing much from differential geometry and, more specifically, from Riemannian and symplectic
geometries. Geometrical optics provides, indeed, a beautiful link between both previously-mentioned
geometries: (i) Light travels along geodesics of an optical medium, a three-dimensional manifold
whose Riemannian structure is defined by a refractive index; (ii) The set of all such geodesics is
naturally endowed with the structure of four-dimensional symplectic manifolds [15,16].

The aim of this paper is to study some characterization for a special class of symplectic curves
called affine symplectic helices, which are a very important tool for both physics and geometric optics.
The helix is a symplectic similarity of non-symbolic full toric diversity, whereby algebraic geometry
accounts for the effects of uniformity near the focus-focus singularities. The characterization of the
helices in different geometries has also been studied by several researchers [17–21]. Proceeding the
same way, we study symplectic regular curves, which are parameterized by the symplectic arc length
and analyzed by their Frenet-type symplectic frame. In Section 2, we present the preliminaries on the
symplectic geometry in terms of isometry groups and inner products. In Section 3, we give the general
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properties of affine symplectic curves in R4, which was firstly studied in [22]. Finally, in Section 4,
we present the results that we obtain on the characterizations of symplectic curves in R4 and study
symplectic helices.

2. Preliminaries

In the following, we use similar notations and concepts as in [22].
Let R4 be endowed with standard symplectic form Ω given in global Darboux coordinates:

z =
(

x1, x2, y1, y2) by
Ω = dx1 ∧ dy1 + dx2 ∧ dy2. (1)

Given two vector fields:

u = x1 ∂

∂x1 + x2 ∂

∂x2 + y1 ∂

∂y1 + y2 ∂

∂y2

and:
v = ξ1 ∂

∂ξ1 + ξ2 ∂

∂ξ2 + ω1 ∂

∂ω1 + ω2 ∂

∂ω2

the symplectic form (1) induces a symplectic inner product, which is a non-degenerate,
skew-symmetric, bilinear form, on each fiber of tangent bundle TR4. with:

< u, v >= Ω(u, v) =
2

∑
i=1

(
xiωi − yiξ i

)
. (2)

The isometry group of the inner product (2) is the 10-dimensional symplectic group
Sp(4) = Sp(4,R) ⊂ GL(4,R). The Lie algebra sp(4) of Sp(4) is the vector space consisting of all
4× 4 matrices of the form: (

U V
W −UT

)
, (3)

where U,V, and W are 2× 2 matrices satisfying:

W = WT , V = VT .

The semi-direct product G = Sp(4,R)n R4 of the symplectic group by the translations is called
the group of rigid symplectic motions [22]. Hence, a rigid symplectic motion acting on z ∈ R4 with
z 7→ Az + b for (A, b) ∈ Sp(4,R) is an affine symplectic transformation.

Definition 1. A symplectic frame is a smooth section of the bundle of linear frames over R4, which assigns to
every point z ∈ R4 an ordered basis of tangent vectors a1, a2, a3,a4 with the property that:〈

ai, aj
〉

=
〈

a2+i, a2+j
〉
= 0 , 1 ≤ i, j ≤ 2,〈

ai, a2+j
〉

= 0 , 1 ≤ i 6= j ≤ 2, (4)

〈ai, a2+i〉 = 1 , 1 ≤ i ≤ 2.

The structure equations for a symplectic frame are therefore of the form:

dai =
2

∑
k=1

wikak +
2

∑
k=1

θika2+k (5)

da2+i =
2

∑
k=1

φikak −
2

∑
k=1

wkia2+k
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for 1 ≤ i ≤ 2. By a consequence of the conditions in (4), the one forms satisfy:

θij = θ ji, φij = φji. (6)

3. General Properties of Affine Symplectic Curves in R4

We consider parametrized smooth curves z : I → R4 defined on an open interval I ⊂ R. As is
customary in classical mechanics, we use the notation ż to denote differentiation with respect to the
parameter t, that is:

ż =
dz
dt

. (7)

Definition 2. Let z : I → R4 be a smooth curve. If the second-order osculating spaces of z satisfy the
non-degeneracy condition:

< ż, z̈ > 6= 0

for all t ∈ I, then z : I → R4 is called an affine symplectic regular curve.

Definition 3. Let t0 ∈ I. The symplectic arc length s of a symplectic regular curve z starting at t0 is defined by:

s(t) =
∫ t

t0

〈ż, z̈〉1/3 dt (8)

for t ∈ I.

We shall note that symplectic arc length may be negative. However, with no loss of generality, we
may assume that < ż, z̈ >> 0 throughout the paper.

Taking the exterior differential of the (8), we obtain the symplectic arc length element as:

ds = 〈ż, z̈〉1/3 dt. (9)

In the following, primes are used to denote differentiation with respect to the symplectic arc
length derivative operator (9) as:

z′ =
dz
ds

.

Definition 4. A symplectic regular curve is parameterized by the symplectic arc length if:

〈ż, z̈〉 = 1 (10)

for all t ∈ I.

Proposition 1. Every symplectic regular curve can be parameterized by the symplectic arc length.

Proposition 2. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and such that H2(s) 6= 0. Then, the symplectic frame {a1(s), a2(s), a3(s), a4(s)} defined along the
image of z satisfies the following structure equations:

a
′
1(s) = a3(s)

a
′
2(s) = H2(s)a4(s) (11)

a
′
3(s) = k1(s)a1(s) + a2(s)

a
′
4(s) = a1(s) + k2(s)a2(s),

where H2(s), k1(s), k2(s) are symplectic curvatures of z.
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In general, we call the equations in (11) symplectic Frenet equations.

4. The Characterizations of Symplectic Curves in R4

Definition 5. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and {a1(s), a2(s), a3(s), a4(s)} be the Frenet frame of this curve. A symplectic curve z that satisfies the
following condition:

k1(s)
k2(s)

= const.

is called a general helix with respect to the Frenet frame.

Example 1. Let z : I → R4 be defined with z(t) =
(

t,
t2

2
,

t3

3
,

t3

3
+

t5

5

)
. Since Ω(dz, dz) 6= 0 and:

k1(t)
k2(t)

= constant

with:
ds = 〈ż, z̈〉1/3 dt,

z is a symplectic polynomial helix.

Example 2. Let z : I → R4 be defined with z(s) = (cosh s, 0, sinh s, 0). Since Ω(dz, dz) 6= 0 and:

k1(s)
k2(s)

= constant

with:
< ż, z̈ >= 1,

z is a symplectic arc length parameterized circular helix.

Definition 6. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and { a1(s), a2(s), a3(s), a4(s)} be the Frenet frame of z. If both k1(s) and k2(s) are positive constants
along z, then z is called a circular helix with respect to the Frenet frame.

Theorem 1. Let z(s) be a symplectic regular curve, which is parameterized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 6= 0 if
and only if:

a(iv)1 (s) = [k
′′
1(s) + k2

1(s) + H2(s)]a1(s) + 2k
′
1(s)a3(s) (12)

Proof. Suppose that z(s) is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)}.
Then, from (11), we have:

a(ıv)1 (s) = [k
′′
1(s) + k2

1(s) + H2(s)]a1(s) + [k1(s) + (13)

k2(s)H2(s)]a2(s) + 2k
′
1(s)a3(s) + H

′
2(s)a4(s)

Now, H2(s) = cons( 6= 0), and z(s) is a general helix with respect to the Frenet frame; we suppose that:

k1(s)
k2(s)

= −H2(s) (14)

If we substitute Equation (14) in (13), we obtain (12).
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Conversely, let us assume that Equation (12) holds. We show that the curve z(s) is a general helix.
From (11), we obtain:

a1(s) =
1

k1(s)
[a
′
3(s)− a2(s)] (15)

Differentiating covariantly (15), we obtain:

a
′
1(s) =

(
−k

′
1(s)

k1(s)

)
a1(s) +

(
1

k1(s)

)
[a
′′
3(s)− a

′
2(s)] (16)

and so:

a
′′
1(s) =

(
−k

′
1(s)

k1(s)

)′
a1(s) +

(
−k

′
1(s)

k1(s)

)
a3(s). (17)

+

(
1

k1(s)

)′
[a
′′
3(s)− a

′
2(s)] +

(
1

k1(s)

)
[a
′′′
3 − a

′′
2 ]

If we use (7) in (17) and after routine calculations, we have:

H
′
2(s)

k1(s)
= 0 (18)

and:
−H2(s)k2(s)

k1(s)
= 1. (19)

Hence, we obtain H2(s) = const. and k1(s)
k2(s)

= const. This shows that z(s) is a general helix.

The hypotheses of Theorem 1 and the definition of a circular helix lead us to the following corollary:

Corollary 1. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s) is
a circular helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} if and only if:

a(iv)1 (s) = λa1(s), (20)

where λ = k2
1(s) + H2(s) = const.

Theorem 2. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s) is
a circular helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} if and only if:

a
′′′
4 (s) =

(
1 + k

′′
2(s)− k1(s)k2(s)

)
a2(s) +

(
2k
′
2(s)H2(s)

)
a4(s). (21)

Corollary 2. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 6= 0 if
and only if:

a
′′′
4 (s) = µa2(s), (22)

where µ = (1− k1(s)k2(s)) = const.

Theorem 3. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 6= 0 if
and only if:

a
′′′
2 (s) = H2(s)a3(s) + H2(s)K

′
2(s)a2(s)− H2(s)K1(s)a4(s) (23)
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Corollary 3. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 6= 0 if
and only if:

a
′′′
2 (s) = c1a3(s) + c2a4(s) (24)

c1 = H2(s) = const. and c2 = H2(s)K1(s) = const.

In the rest of this section, we discuss symplectic regular curves with constant local symplectic
invariants. The theorem of Cartan states that the curves with constant symplectic curvatures are precisely
the orbits of the one-parameter subgroups of the affine symplectic group in four variables [23,24]. In order
to determine such one-parameter subgroups, we shall directly integrate the symplectic Frenet equations
of affine symplectic helices. Now, let us consider the symplectic Frenet equations given by (11) with
the matrix form as:

d
ds


a1

a2

a3

a4

 =


0 0 1 0
0 0 0 H2

k1 1 0 0
1 k2 0 0




a1

a2

a3

a4

 , (25)

with the constant symplectic curvatures k1, k2, H1. It is well known that the eigenvalues of the Frenet
matrix appearing in the right-hand side of (25) are:

µ1 =
1√
2

√
λ1 +

√
λ2, µ2 = −µ2

µ3 =
1√
2

√
λ1 −

√
λ2, µ4 = −µ3,

where λ1 = k2H2 + k1 and λ2 = (k2H2 − k1)
2 + 4H2 [22].

Now, let us assume that z : I → R4 is a symplectic general helix with constant positive curvatures
k1, k2. Then, by Theorem 1, k1 = −k2H2. Therefore, the eigenvalues of the Frenet matrix appearing
in (25) become:

µ1 =
1
2

4√
λ, µ2 = −µ2

µ3 =
i
2

√
λ, µ4 = −µ3,

where λ =
(
k2

1 + H1
)

and i =
√
−1. Thus, if H1 < −k2

1, then the eigenvalues are distinct complex
conjugates. Similarly, if H1 > −k2

1, then the eigenvalues are distinct reals. Depending on the two
cases involving symplectic curvatures, we obtain symplectic general helices of the euclidean or
hyperbolic type.

5. Conclusions

In our three-dimensional world, the four-dimensional Frenet formulae may seem irrelevant and
useless. However, in many areas, including the classical mechanics of physics, the Frenet formulae
have been applied. In this study, we study four-dimensional symplectic curves by using the Frenet
frames. Our results show that a symplectic helix involves non-zero constant symplectic curvature
if and only if the fourth derivative of its first component of the position vector can be described as
in Equation (12). Besides, the symplectic circular helices can be characterized directly by the first
component of the position vector with the fourth-order derivative.

The characterization of the symplectic helices not only depends on the first component of the
position vector. The third derivatives of the second and fourth components of the position vector can be
characterized as in Equations (21) and (23). Similarly, symplectic circular helices can be characterized
directly by their second and fourth components of the position vector with the third-order derivatives.
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Helices are natural twisting structures; hence, studying the symplectic helix may shed light on
the connection of contact and symplectic geometries.
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