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1. Introduction and Preliminaries

1.1. Introduction

In this article, we will consider the two sums of finite products

αm,r(x) =
m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x),

(m ≥ 2, r ≥ 1),

(1)

in terms of Chebyshev polynomials of the first kind and

βm,r(x) =
m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x),

(m ≥ 2, r ≥ 1),

(2)

in terms of Lucas polynomials. More precisely, we will express these polynomials αm,r(x) and βm,r(x)
of degree m as linear combinations of Chebyshev polynomials of the first, second, third and fourth
kinds. Here, the coefficients involve some terminating hypergeometric functions 2F1. Before we state
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our main result at the end of this Section 1.1, we will mention some of the previous works that are
related to our contribution.

Along the same line as the present paper, various sums of finite products of several non-Appell
polynomials, namely Chebyshev polynomials of the second, third and fourth kinds and Fibonacci,
Legendre, Laguerre polynomials, have been represented by Chebyshev polynomials of all kinds
(see [1–3]). For sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci
polynomials, they are also represented by Hermite, generalized Laguerre, Legendre, Gegenbauer and
Jacobi polynomials in [4].

In addition, representations by Bernoulli polynomials have been done for certain sums of finite
products of some Appell and non-Appell polynomials. Indeed, certain sums of finite products
of Bernoulli and Euler polynomials were studied in [5,6], and such sums of finite products were
expressed as linear combinations of Bernoulli polynomials. These were done by deriving Fourier series
expansions for functions closely related to those sums of finite products. The same had been done also
for quite a few non-Appell polynomials in [7–10], namely Chebyshev polynomials of the first, second,
third and fourth kinds, and Legendre, Laguerre, Fibonacci and Lucas polynomials.

Our pursuit of this line of research can be justified by the following. Firstly, the present research
can be viewed as a generalization of the classical linearization problems. Indeed, the linearization
problem is concerned with determining the coefficients in the expansion of the product um(x)vn(x) of
two polynomials um(x) and vn(x) in terms of an arbitrary polynomial sequence {wk(x)}k≥0:

um(x)vn(x) =
m+n

∑
k=0

ck(mn)wk(x).

Secondly, our problem has to do with the famous Faber–Pandharipande–Zagier and Miki’s
identities. Namely, it is possible to express the sums of products of two Bernoulli polynomials
∑m−1

k=1
1

k(m−k)Bk(x)Bm−k(x), (m ≥ 2), as linear combinations of Bernoulli polynomials. Namely, we can
show that

m−1

∑
k=1

1
2k (2m− 2k)

B2k (x) B2m−2k (x) +
2

2m− 1
B1 (x) B2m−1 (x) (3)

=
1
m

m

∑
k=1

1
2k

(
2m
2k

)
B2kB2m−2k (x) +

1
m

H2m−1B2m (x) +
2

2m− 1
B2m−1B1 (x) ,

where Hm = ∑m
j=1

1
j are the harmonic numbers. This follows, for example, from the Fourier series

expansion of ∑m−1
k=1

1
k(m−k)Bk(〈x〉)Bm−k(〈x〉), where 〈x〉 = x − [x] denotes the fractional part of any

real number x. Then, the Miki’s and Faber–Pandharipande–Zagier identities respectively follow by
letting x = 0 and x = 1

2 in (3). This approach via Fourier series expansions is simple compared to other
much more involved ones. For some details on these, we let the reader refer to Introduction in [11]
and the papers therein.

As we said in the above, we are going to investigate the sums of finite products of Chebyshev
polynomials of the first kind in (1) and those of Lucas polynomials in (2). Then, we will represent
αm,r(x) and βm,r(x) in terms of Chebyshev polynomials of the four kinds Tn(x), Un(x), Vn(x),
and Wn(x). These will be done by explicit computations, using the general formulas in Proposition
1 and Proposition 2. We note here that the results in Proposition 1 can be derived by making use of
orthogonalities, Rodrigues’ formulas and integration by parts. The next two theorems are the main
results of this paper.
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Theorem 1. Let m, r be any integers with m ≥ 2, r ≥ 1. Then, we have the following:

m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x)

=

(
m + r

r

) [ m
2 ]

∑
j=0

(
m
j

)
Em−2j2F1(−j, j−m; 1−m− r; 1)Tm−2j(x) (4)

=
(m + r)!
(m + 1)!

[ m
2 ]

∑
j=0

(
m + 1

j

)
(m− 2j + 1)2F1(−j, j−m− 1; 1−m− r; 1)Um−2j(x) (5)

=

(
m + r

r

) m

∑
j=0

(
m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r; 1)Vm−j(x) (6)

=

(
m + r

r

) m

∑
j=0

(−1)j
(

m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r; 1)Wm−j(x). (7)

Here, [x] denotes the greatest integer ≤ x.

Theorem 2. Let m, r be integers with m ≥ 2, r ≥ 1. Then, we have the following identities:

m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x)

= 2r+1−m
(

m + r
r

) [ m
2 ]

∑
j=0

(
m
j

)
Em−2j

× 2F1(−j, j−m; 1−m− r;−4)Tm−2j(x) (8)

=
2r+1−m

r

(
m + r
r− 1

) [ m
2 ]

∑
j=0

(m− 2j + 1)
(

m + 1
j

)
× 2F1(−j, j−m− 1; 1−m− r;−4)Um−2j(x) (9)

= 2r+1−m
(

m + r
r

) m

∑
j=0

(
m
[ j

2 ]

)
× 2F1(−[

j
2
], [

j
2
]−m; 1−m− r;−4)Vm−j(x) (10)

= 2r+1−m
(

m + r
r

) m

∑
j=0

(−1)j
(

m
[ j

2 ]

)
× 2F1(−[

j
2
], [

j
2
]−m; 1−m− r;−4)Wm−j(x). (11)

For related papers on Chebyshev polynomials, we let the reader refer to [12,13].

1.2. Preliminaries

In this section, after fixing some notations, we will recall some basic facts that are needed in
this paper.



Mathematics 2019, 7, 26 4 of 15

For any nonnegative integer n, the falling factorial polynomials (x)n and the rising factorial
polynomials 〈x〉n are respectively given by

(x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (x)0 = 1, (12)

〈x〉n = x(x + 1) · · · (x + n− 1), (n ≥ 1), 〈x〉0 = 1. (13)

The two factorial polynomials are related by

(−1)n(x)n = 〈−x〉n, (−1)n〈x〉n = (−x)n. (14)

The hypergeometric function pFq(a1, · · · , ap; b1, · · · , bq; x) is defined by

pFq(a1, · · · , ap; b1, · · · , bq; x)

=
∞

∑
n=0

〈a1〉n · · · 〈ap〉n
〈b1〉n · · · 〈bq〉n

xn

n!
.

(15)

Below, we are going to recall some very basic facts about Chebyshev polynomials of the first,
second, third and fourth kinds, and Lucas polynomials. The Chebyshev polynomials belong to the
family of classical orthogonal polynomials. For full accounts of this fascinating area of mathematics,
we let the reader refer to [14–16].

In terms of generating functions, the Lucas polynomials and Chebyshev polynomials of the first,
second, third and fourth kinds are respectively given by

F(t, x) =
2− xt

1− xt− t2 =
∞

∑
n=0

Ln(x)tn, (16)

G(t, x) =
1− xt

1− 2xt + t2 =
∞

∑
n=0

Tn(x)tn, (17)

1
1− 2xt + t2 =

∞

∑
n=0

Un(x)tn, (18)

1− t
1− 2xt + t2 =

∞

∑
n=0

Vn(x)tn, (19)

1 + t
1− 2xt + t2 =

∞

∑
n=0

Wn(x)tn. (20)

In addition, the Lucas polynomials and Chebyshev polynomials of the first, second, third and
fourth kinds are respectively given by the following explicit expressions:

Ln(x) = n
[ n
2 ]

∑
l=0

1
n− l

(
n− l

l

)
xn−2l , (n ≥ 1), (21)

Tn(x) = 2F1(−n, n; 1
2 ; 1−x

2 )

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
(2x)n−2l , (n ≥ 1), (22)

Un(x) = (n + 1)2F1(−n, n + 2; 3
2 ; 1−x

2 )

=

[ n
2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (n ≥ 0), (23)
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Vn(x) = 2F1(−n, n + 1; 1
2 ; 1−x

2 )

=
n

∑
l=0

(
2n− l

l

)
2n−l(x− 1)n−l , (n ≥ 0), (24)

Wn(x) = (2n + 1)2F1(−n, n + 1; 3
2 ; 1−x

2 )

= (2n + 1)
n

∑
l=0

2n−l

2n− 2l + 1

(
2n− l

l

)
(x− 1)n−l , (n ≥ 0). (25)

The Chebyshev polynomials of the first, second, third and fourth kinds are given by
Rodrigues’ formulas:

Tn(x) =
(−1)n2nn!

(2n)!
(1− x2)

1
2

dn

dxn (1− x2)n− 1
2 , (26)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1− x2)−

1
2

dn

dxn (1− x2)n+ 1
2 , (27)

(1− x)−
1
2 (1 + x)

1
2 Vn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n− 1
2 (1 + x)n+ 1

2 , (28)

(1− x)
1
2 (1 + x)−

1
2 Wn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n+ 1
2 (1 + x)n− 1

2 . (29)

As is well known, the Chebyshev polynomials satisfy orthogonalities with respect to various
weight functions as in the following:

∫ 1

−1
(1− x2)−

1
2 Tn(x)Tm(x) dx =

π

En
δn,m, (30)

where δn,m =

{
0, if n 6= m,

1, if n = m,
En =

{
1, if n = 0,

2, if n ≥ 1,
(31)

∫ 1

−1
(1− x2)

1
2 Un(x)Um(x) dx =

π

2
δn,m, (32)∫ 1

−1
(

1 + x
1− x

)
1
2 Vn(x)Vm dx = πδn,m, (33)∫ 1

−1
(

1− x
1 + x

)
1
2 Wn(x)Wm dx = πδn,m. (34)

Our paper is organized as follows. In Section 1, we give an introduction as to our problem of
interest, justification of our research, our contributions to the problem and the necessary ingredients
on Lucas polynomials and Chebyshev polynomials of all kinds. In Section 2, we prove Theorem 1 by
using the general facts in Propositions 1 and 2 and the key Lemma 1. In Section 3, we show Theorem 2
again by exploiting Propositions 1 and 2 and the crucial Lemma 2. In Section 4, we will be able to get
identities among eight expressions by using the well known relationship between Lucas polynomials
and Chebyshev polynomials of the first kind and combining Theorems 1 and 2. Finally, in Section 5,
we present the conclusions of this paper.

2. Proof of Theorem 1

Here, we will prove only (4) and (6) in Theorem 1, leaving (5) and (7) as an exercise for the reader.
For this purpose, we first state two results that are needed in showing Theorems 1 and 2.

The formulas (a) and (b) in Proposition 1 are respectively from the Equations (24) and (36) of [17],
while (c) and (d) are respectively from (23) and (38) of [18]. All of them follow easily from the Rodrigues’
Formulas (26)–(29), and the orthogonalities in (30) and (32)–(34).



Mathematics 2019, 7, 26 6 of 15

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then, we have the following:

(a) q(x) =
n

∑
k=0

Ck,1Tk(x), where

Ck,1 =
(−1)k2kk!Ek

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k− 1
2 dx,

(b) q(x) =
n

∑
k=0

Ck,2Uk(x), where

Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k+ 1
2 dx,

(c) q(x) =
n

∑
k=0

Ck,3Vk(x), where

Ck,3 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k− 1
2 (1 + x)k+ 1

2 dx,

(d) q(x) =
n

∑
k=0

Ck,4Wk(x), where

Ck,4 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k+ 1
2 (1 + x)k− 1

2 dx.

The next Proposition is stated and proved in [1].

Proposition 2. Let m, k be nonnegative integers. Then, we have the following:

(a)
∫ 1

−1
(1− x2)

k−
1
2 xmdx =


0, if m ≡ 1 (mod 2),

m!(2k)!π

2m+2k(
m
2
+ k)!(

m
2
)!k!

, if m ≡ 0 (mod 2),

(b)
∫ 1

−1
(1− x2)

k+
1
2 xmdx =


0, if m ≡ 1 (mod 2),

m!(2k + 2)!π

2m+2k+2(
m
2
+ k + 1)!(

m
2
)!(k + 1)!

, if m ≡ 0 (mod 2),

(c)
∫ 1

−1
(1− x)

k−
1
2 (1 + x)

k+
1
2 xmdx

=



(m + 1)!(2k)!π

2m+2k+1(
m + 1

2
+ k)!(

m + 1
2

)!k!
, if m ≡ 1 (mod 2),

m!(2k)!π

2m+2k(
m
2
+ k)!(

m
2
)!k!

, if m ≡ 0 (mod 2),

(d)
∫ 1

−1
(1− x)

k+
1
2 (1 + x)

k−
1
2 xmdx

=


− (m + 1)!(2k)!π

2m+2k+1(
m + 1

2
+ k)!(

m + 1
2

)!k!
, if m ≡ 1 (mod 2),

m!(2k)!π

2m+2k(
m
2
+ k)!(

m
2
)!k!

, if m ≡ 0 (mod 2).

The following lemma was stated and proved in [10].
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Lemma 1. Let m, r be integers with m ≥ 2, r ≥ 1. Then, we have the following identity:

m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x)Ti2(x) · · · Tir+1(x)

=
1

2r−1r!
T(r)

m+r(x),

(35)

where the first and second inner sums on the left-hand side are respectively over all nonnegative integers
i1, i2, · · · ir+1, with i1 + i2 + · · ·+ ir+1 = m− l and i1 + i2 + · · ·+ ir+1 = m− l − 2.

From (22), the rth derivative of Tn(x) is given by

T(r)
n (x) =

n
2

[ n−r
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
2n−2l(n− 2l)rxn−2l−r. (36)

Thus, in particular, we have

T(r+k)
m+r (x)

=
m + r

2

[ m−k
2 ]

∑
l=0

(−1)l 1
m + r− l

(
m + r− l

l

)
2m+r−2l(m + r− 2l)r+kxm−k−2l .

(37)

With αm,r(x) as in (1), we let

αm,r(x) =
m

∑
k=0

Ck,1Tk(x). (38)

Then, from (a) of Proposition 1, (35), (37), and integration by parts k times, we have

Ck,1 =
(−1)k2kk!Ek

(2k)!π

∫ 1

−1
αm,r(x)

dk

dxk (1− x2)k− 1
2 dx

=
(−1)k2kk!Ek
(2k)!π2r−1r!

∫ 1

−1
T(r)

m+r(x)
dk

dxk (1− x2)k− 1
2 dx

=
2kk!Ek

(2k)!π2r−1r!

∫ 1

−1
T(r+k)

m+r (x)(1− x2)k− 1
2 dx

=
2kk!Ek

(2k)!π2r−1r!
m + r

2

[ m−k
2 ]

∑
l=0

(−1)l 1
m + r− l

(
m + r− l

l

)
× 2m+r−2l(m + r− 2l)r+k

∫ 1

−1
xm−k−2l(1− x2)k− 1

2 dx.

(39)

We note from (a) in Proposition 2 that

∫ 1

−1
xm−k−2l(1− x2)

k−
1
2 dx

=


0, if k 6≡ m (mod 2),

(m− k− 2l)!(2k)!π

2m+k−2l(
m + k

2
− l)!(

m− k
2
− l)!k!

, if k ≡ m (mod 2),

(40)
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From (38)–(40), and, after some simplifications, we get

αm,r(x) = ∑
0≤k≤m

k≡m (mod 2)

[ m−k
2 ]

∑
l=0

Ek(m + r)(−1)l(m + r− l)!
r!(m + r− l)l!(m+k

2 − l)!(m−k
2 − l)!

Tk(x)

=
[ m

2 ]

∑
j=0

Tm−2j(x)Em−2j(m + r)
r!

j

∑
l=0

(−1)l(m + r− 1− l)!
l!(m− l − j)!(j− l)!

=
[ m

2 ]

∑
j=0

Tm−2j(x)Em−2j(m + r)!
r!(m− j)!j!

j

∑
l=0

〈−j〉l〈j−m〉l
l!〈1−m− r〉l

=

(
m + r

r

) [ m
2 ]

∑
j=0

(
m
j

)
Em−2j2F1(−j, j−m; 1−m− r; 1)Tm−2j(x).

(41)

This completes the proof for (4) in Theorem 1.
Next, we let

αm,r(x) =
m

∑
k=0

Ck,3Vk(x). (42)

Then, from (c) of Proposition 1, (35), (37) and integration by parts k times , we obtain

Ck,3 =
k!2k

(2k)!π2r−1r!
m + r

2

[ m−k
2 ]

∑
l=0

(−1)l 1
m + r− l

(
m + r− l

l

)
× 2m+r−2l(m + r− 2l)r+k

∫ 1

−1
xm−k−2l(1− x)k− 1

2 (1 + x)k+ 1
2 dx.

(43)

From (c) of Proposition 2, we observe that

∫ 1

−1
xm−k−2l(1− x)

k−
1
2 (1 + x)

k+
1
2 dx

=



(m− k− 2l + 1)!(2k)!π

2m+k−2l+1(
m + k + 1

2
− l)!(

m− k + 1
2

− l)!k!
, if , k 6≡ m (mod 2),

(m− k− 2l)!(2k)!π

2m+k−2l(
m + k

2
− l)!(

m− k
2
− l)!k!

, if k ≡ m (mod 2).

(44)

By (42)–(44), and, after some simplifications, we get

αm,r(x) =
(m + r)

2r! ∑
0≤k≤m

k 6≡m (mod 2)

[ m−k
2 ]

∑
l=0

Vk(x)
(−1)l(m + r− 1− l)!(m− k− 2l + 1)

l!(m+k+1
2 − l)!(m−k+1

2 − l)!

+
(m + r)

r! ∑
0≤k≤m

k≡m (mod 2)

[ m−k
2 ]

∑
l=0

Vk(x)
(−1)l(m + r− 1− l)!
l!(m+k

2 − l)!(m−k
2 − l)!

=
(m + r)

r!

[ m−1
2 ]

∑
j=0

j

∑
l=0

Vm−2j−1(x)
(−1)l(m + r− 1− l)!
l!(m− j− l)!(j− l)!

+
(m + r)

r!

[ m
2 ]

∑
j=0

j

∑
l=0

Vm−2j(x)
(−1)l(m + r− 1− l)!
l!(m− j− l)!(j− l)!

.

(45)
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Further modifications of (45) give us

αm,r(x) =
(m + r)

r!

[ m−1
2 ]

∑
j=0

j

∑
l=0

1
(m− j)!j!

Vm−2j−1(x)
〈−j〉l〈j−m〉l
l!〈1−m− r〉l

+
(m + r)!

r!

[ m
2 ]

∑
j=0

j

∑
l=0

1
(m− j)!j!

Vm−2j(x)
〈−j〉l〈j−m〉l
l!〈1−m− r〉l

=

(
m + r

r

) [ m−1
2 ]

∑
j=0

(
m
j

)
2F1(−j, j−m; 1−m− r; 1)Vm−2j−1(x)

+

(
m + r

r

) [ m
2 ]

∑
j=0

(
m
j

)
2F1(−j, j−m; 1−m− r; 1)Vm−2j(x)

=

(
m + r

r

) m

∑
j=0

(
m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r; 1)Vm−j(x).

(46)

This finishes up the proof for (6) in Theorem 1.

3. Proof of Theorem 2

Here, we will show only (9) and (11) in Theorem 2, leaving the proofs for (8) and (10) as an
exercise for the reader. The following lemma is crucial to our discussion in this section. As it is stated
in [10] but not proved, we are going to show this.

Lemma 2. Let m, r be integers with m ≥ 2, r ≥ 1. Then, the following identity holds:

m

∑
l=0

∑
i1+i2+···+ir+1=m−l

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+i2+···+ir+1=m−l−2

(
r + l

r

)
(

x
2
)l Li1(x)Li2(x) · · · Lir+1(x)

=
2r+1

r!
L(r)

m+r(x),

(47)

where the first and second inner sums on the left-hand side are respectively over all nonnegative integers
i1, i2, · · · ir+1, with i1 + i2 + · · ·+ ir+1 = m− l and i1 + i2 + · · ·+ ir+1 = m− l − 2.

Proof. By differentiating (16) r times, we have

∂r

∂xr F(t, x) = tr(1 + t2)r!(1− xt− t2)−(r+1), (r ≥ 1), (48)

∂r

∂xr F(t, x) =
∞

∑
m=r

L(r)
m (x)tm =

∞

∑
m=0

L(r)
m+r(x)tm+r. (49)

Equating (48) and (49), we obtain(
1

1− xt− t2

)r+1

=
1

r!(1 + t2)

∞

∑
m=0

L(r)
m+r(x)tm. (50)
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On the other hand, from (16) and (50), we note that

∞

∑
l=0

∑
i1+i2+···+ir+1=l

Li1(x)Li2(x) · · · Lir+1(x)tl

=

( ∞

∑
l=0

Ll(x)tl
)r+1

=(2− xt)r+1
(

1
1− xt− t2

)r+1

=(2− xt)r+1(1 + t2)−1 1
r!

∞

∑
m=0

L(r)
m+r(x)tm.

(51)

Thus, from (51), we have

1
r!

∞

∑
m=0

L(r)
m+r(x)tm

= 2−(r+1)(1 + t2)(1− xt
2
)−(r+1)

∞

∑
l=0

∑
i1+i2+···+ir+1=l

Li1(x)Li2(x) · · · Lir+1(x)tl

= 2−(r+1)(1 + t2)
∞

∑
j=0

(
r + j

r

)
(

x
2
)jtj

∞

∑
l=0

∑
i1+i2+···+ir+1=l

Li1(x)Li2(x) · · · Lir+1(x)tl .

(52)

In turn, from (52), we get

2r+1

r!

∞

∑
m=0

L(r)
m+r(x)tm

=

( ∞

∑
j=0

(
r + j

r

)
(

x
2
)jtj +

∞

∑
j=2

(
r + j− 2

r

)
(

x
2
)j−2tj

)

×
∞

∑
l=0

∑
i1+i2+···+ir+1=l

Li1(x)Li2(x) · · · Lir+1(x)tl

=
∞

∑
m=0

m

∑
l=0

(
r + m− l

r

)
(

x
2
)m−l ∑

i1+i2+···+ir+1=l
Li1(x)Li2(x) · · · Lir+1(x)tm

+
∞

∑
m=2

m−2

∑
l=0

(
r + m− l − 2

r

)
(

x
2
)m−l−2 ∑

i1+i2+···+ir+1=l
Li1(x)Li2(x) · · · Lir+1(x)tm

=
∞

∑
m=0

m

∑
l=0

(
r + l

r

)
(

x
2
)l ∑

i1+i2+···+ir+1=m−l
Li1(x)Li2(x) · · · Lir+1(x)tm

+
∞

∑
m=2

m−2

∑
l=0

(
r + l

r

)
(

x
2
)l ∑

i1+i2+···+ir+1=m−l−2
Li1(x)Li2(x) · · · Lir+1(x)tm.

(53)

Comparing the coefficients on both sides of (53), we get the desired result.

From (10), we note that the rth derivative of Ln(x) is given by

L(r)
n (x) = n

[ n−r
2 ]

∑
l=0

1
n− l

(
n− l

l

)
(n− 2l)rxn−2l−r. (54)
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In particular, we have

L(r+k)
m+r (x) = (m + r)

[ m−k
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)r+kxm−k−2l . (55)

With βm,r(x) as in (2), we put

βm,r(x) =
m

∑
k=0

Ck,2Uk(x). (56)

Then, from (b) of Proposition 2, (47), (55), and integration by parts k times, we have

Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
βm,r(x)

dk

dxk (1− x2)k+ 1
2 dx

=
(−1)k2k+1(k + 1)!2r+1

(2k + 1)!πr!

∫ 1

−1
L(r)

m+r(x)
dk

dxk (1− x2)k+ 1
2 dx

=
2k+1(k + 1)!2r+1

(2k + 1)!πr!

∫ 1

−1
L(r+k)

m+r (x)(1− x2)k+ 1
2 dx

=
2k+1(k + 1)!2r+1(m + r)

(2k + 1)!πr!

[ m−k
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)r+k

×
∫ 1

−1
xm−k−2l(1− x2)k+ 1

2 dx.

(57)

We observe from (b) in Proposition 2 that

∫ 1

−1
xm−k−2l(1− x2)

k+
1
2 dx

=


0, if k 6≡ m (mod 2),

(m− k− 2l)!(2k + 2)!π

2m+k−2l+2(
m + k

2
− l + 1)!(

m− k
2
− l)!(k + 1)!

, if k ≡ m (mod 2).

(58)

Now, from (56)–(58), and, after some simplifications, we get

βm,r(x)

=
2r+1−m(m + r)

r! ∑
0≤k≤m

k≡m (mod 2)

[ m−k
2 ]

∑
l=0

(k + 1)4l(m + r− 1− l)!
l!(m+k

2 − l + 1)!(m−k
2 − l)!

Uk(x)

=
2r+1−m(m + r)

r!

[ m
2 ]

∑
j=0

j

∑
l=0

(m− 2j + 1)Um−2j(x)
4l(m + r− 1− l)!

l!(m− j− l + 1)!(j− l)!

=
2r+1−m(m + r)!

r!

[ m
2 ]

∑
j=0

j

∑
l=0

(m− 2j + 1)Um−2j(x)
(m− j + 1)!j!

(−4)l〈−j〉l〈j−m− 1〉l
l!〈1−m− r〉l

=
2r+1−m

r

(
m + r
r− 1

) [ m
2 ]

∑
j=0

(m− 2j + 1)
(

m + 1
j

)
× 2F1(−j, j−m− 1; 1−m− r;−4)Um−2j(x).

(59)

This completes the proof for (9) in Theorem 2.
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Next, we let

βm,r(x) =
m

∑
k=0

Ck,4Wk(x). (60)

Then, from (d) of Proposition 1, (47), (55) and integration by parts k times, we have

Ck,4 =
k!2k+r+1(m + r)

(2k)!πr!

[ m−k
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
× (m + r− 2l)r+k

∫ 1

−1
xm−k−2l(1− x)k+ 1

2 (1 + x)k− 1
2 dx.

(61)

From (d) of Proposition 2, we note that

∫ 1

−1
xm−k−2l(1− x)

k+
1
2 (1 + x)

k−
1
2 dx

=


− (m− k− 2l + 1)!(2k)!π

2m+k−2l+1(
m + k + 1

2
− l)!(

m− k + 1
2

− l)!k!
, if , k 6≡ m (mod 2),

(m− k− 2l)!(2k)!π

2m+k−2l(
m + k

2
− l)!(

m− k
2
− l)!k!

, if k ≡ m (mod 2).

(62)

By (60)–(62), and after some simplifications, we obtain

βm,r(x)

= −2r−m(m + r)
r! ∑

0≤k≤m
k 6≡m (mod 2)

[ m−k
2 ]

∑
l=0

Wk(x)
4l(m + r− 1− l)!(m− k− 2l + 1)

l!(m+k+1
2 − l)!(m−k+1

2 − l)!

+
2r+1−m(m + r)

r! ∑
0≤k≤m

k≡m (mod 2)

[ m−k
2 ]

∑
l=0

Wk(x)
4l(m + r− 1− l)!

l!(m+k
2 − l)!(m−k

2 − l)!

= −2r−m(m + r)
r!

[ m−1
2 ]

∑
j=0

j

∑
l=0

Wm−2j−1(x)
4l(m + r− 1− l)!(2j− 2l + 2)

l!(m− j− l)!(j− l + 1)!

+
2r+1−m(m + r)

r!

[ m
2 ]

∑
j=0

j

∑
l=0

Wm−2j(x)
4l(m + r− 1− l)!

l!(m− j− l)!(j− l)!
.

(63)

After further modifications of (63), we get

βm,r(x)

= −2r+1−m(m + r)!
r!

[ m−1
2 ]

∑
j=0

Wm−2j−1(x)
(m− j)!j!

j

∑
l=0

(−4)l〈−j〉l〈j−m〉l
l!〈1−m− r〉l

+
2r+1−m(m + r)!

r!

[ m
2 ]

∑
j=0

Wm−2j(x)
(m− j)!j!

j

∑
l=0

(−4)l〈−j〉l〈j−m〉l
l!〈1−m− r〉l
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= −2r+1−m
(

m + r
r

) [ m−1
2 ]

∑
j=0

(
m
j

)
Wm−2j−1(x)2F1(−j, j−m; 1−m− r;−4)

+ 2r+1−m
(

m + r
r

) [ m
2 ]

∑
j=0

(
m
j

)
Wm−2j(x)2F1(−j, j−m; 1−m− r;−4)

= 2r+1−m
(

m + r
r

) m

∑
j=0

(−1)j
(

m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r;−4)Wm−j(x).

(64)

This finishes up the proof for (11) in Theorem 2.

4. Further Remarks

It is well known that the Lucas polynomials Ln(x) and the Chebyshev polynomials of the first
kind Tn(x) are related by

Ln(x) = 2i−nTn(
ix
2
). (65)

Then, it is immediate to see from (1), (2) and (65) that the following identity holds:

2r+1i−mαm,r(
ix
2
) = βm,r(x). (66)

Now, the following theorem follows from Theorem 1, Theorem 2, and (66).

Theorem 3. Let m, r be integers with m ≥ 2, r ≥ 1. Then, the following identities hold true:

i−m2r+1
(

m + r
r

) [ m
2 ]

∑
j=0

(
m
j

)
Em−2j2F1(−j, j−m; 1−m− r; 1)Tm−2j(

ix
2
)

= i−m2r+1 (m + r)!
(m + 1)!

[ m
2 ]

∑
j=0

(
m + 1

j

)
(m− 2j + 1)

× 2F1(−j, j−m− 1; 1−m− r; 1)Um−2j(
ix
2
)

= i−m2r+1
(

m + r
r

) m

∑
j=0

(
m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r; 1)Vm−j(

ix
2
)

= i−m2r+1
(

m + r
r

) m

∑
j=0

(−1)j
(

m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r; 1)Wm−j(

ix
2
)

= 2r+1−m
(

m + r
r

) [ m
2 ]

∑
j=0

(
m
j

)
Em−2j2F1(−j, j−m; 1−m− r;−4)Tm−2j(x)

=
2r+1−m

r

(
m + r
r− 1

) [ m
2 ]

∑
j=0

(m− 2j + 1)
(

m + 1
j

)
× 2F1(−j, j−m− 1; 1−m− r;−4)Um−2j(x)

= 2r+1−m
(

m + r
r

) m

∑
j=0

(
m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r;−4)Vm−j(x)

= 2r+1−m
(

m + r
r

) m

∑
j=0

(−1)j
(

m
[ j

2 ]

)
2F1(−[

j
2
], [

j
2
]−m; 1−m− r;−4)Wm−j(x).

(67)
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5. Conclusions

In the present paper, we considered the sums of finite products of Chebyshev polynomials αm,r(x)
of the first kind in (1) and those of Lucas polynomials βm,r(x) in (2), and expressed each of them as
linear combinations of Tn(x), Un(x), and Vn(x), and Wn(x), to find that all the coefficients involve
terminating hypergeometric functions 2F1. Here, we remark that Lemmas 1 and 2 have been crucial
to our discussion, which say that αm,r(x) and βm,r(x) are respectively equal to 1

2r−1r! T(r)
m+r(x) and

2r+1

r! L(r)
m+r(x) by using the generating functions in (16) and (17). Then, our results were obtained by

using those Lemmas 1 and 2, Propositions 1 and 2, and integration by parts. Consequently, by using a
well known relation between Chebyshev polynomials of the first kind and Lucas polynomials and
combining Theorems 1 and 2, we were able to discover the amusing identities in (67) among all kinds
of Chebyshev polynomials. It is certainly possible to express such sums of finite products in terms of
other orthogonal polynomials, which is one of our ongoing projects. More generally, along the same
line as the present paper, we are planning to study various sums of finite products of certain special
polynomials and want to discover many applications of them.
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