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Abstract: This paper is devoted to studying the existence of solutions to a class of impulsive
fractional differential equations with derivative dependence. The used technical approach is based
on variational methods and iterative methods. In addition, an example is given to demonstrate the
main results.
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1. Introduction and Main Results

In this paper we are interested in the solvability of solutions for the following impulsive fractional
differential equations with derivative dependence

tDα
T(a(t)c

0Dα
t u(t)) + b(t)u(t) = f (t, u(t), c

0Dα
t u(t)), t 6= tj, a.e t ∈ [0, T]

∆(a(t)tDα−1
T (c

0Dα
t u)(tj)) = Ij(u(tj)), j = 1, 2, · · · , l,

u(0) = u(T) = 0,
(1)

where α ∈ ( 1
2 , 1], a ∈ C1([0, T],R) with a0 := ess inf[0,T] a(t) > 0, and tDα

T denotes the
right Riemann–Loiuville fractional derivative of order α; 0 = t0 < t1 < t2 < · · · < tl <

tl+1 = T, the operator ∆ is defined as ∆(tDα−1
T (c

0Dα
t u)(tj)) = tDα−1

T (c
0Dα

t u)(t+j )− tDα−1
T (c

0Dα
t u)(t−j ),

where tDα−1
T (c

0Dα
t u)(t+j ) = limt→t+j

(tDα−1
T (c

0Dα
t u)(t)), tDα−1

T (c
0Dα

t u)(t−j ) = limt→t−j
(tDα−1

T (c
0Dα

t u)(t)),

and tDα−1
T is the right Riemann–Liouville fractional derivative of order 1− α; c

0Dα
t is the left Caputo

fractional derivatives of order α. Suppose that:
(C1) f : [0, T]×R2 → R and Ij(j = 1, 2, · · · , l) : R → R are continuous functions, b ∈ C([0, T])

and there exist positive constants b1, b2 such that 0 < b1 ≤ b(t) ≤ b2.
Fractional calculus is a generalization of the traditional calculus to arbitrary noninteger order.

Fractional differential equations (FDEs) have played an important role in various fields [1,2] such as
electricity, biology, electrical networks, mechanics, chemistry, rheology and probability, etc., With the
help of fractional calculus, the natural phenomena and mathematical model can be more accurately
described. As a consequence there was a rapid development of the theory and application concern with
fractional differential equations. In particular, the solvability, attractivity, and multiplicity of solutions
for FDEs have been greatly discussed. We refer to the monographs of Podlubny [1], Kilbas et al. [2],
Diethelm [3], Zhou [4], the papers [5–19] and the references therein.

More recently, starting with the pioneering work of Jiao and Zhou [20], the variational methods
have been applied to investigate the existence and multiplicity of solutions for fractional differential
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equations, which possess the variational structures in some suitable functional spaces under certain
boundary conditions in many papers, see [21–30] and the references therein. For instance, Sun and
Zhang [21] by establishing a variational structure and applying Mountain Pass theorem and
iterative technique, investigated the solvability of solutions to the following nonlinear fractional
differential equations{

d
dt (p0D−α

t (u′(t)) + qtD−α
1 (u′(t))) + f (t, u(t)) = 0, t ∈ [0, 1],

u(0) = u(1) = 0,

where α ∈ (0, 1], 0 < p = 1− q < 1, f : R → R is a continuous function, 0D−α
t and tD−α

1 denote
left and right Riemann-Loiuville fractional integrals of order α respectively. In case α ∈ ( 1

2 , 1],
Galewski and Molica Bisci in [22] by using variational methods, proved that the following fractional
boundary problems{

d
dt
(

0Dα−1
t (c

0Dα
t u(t))− tDα−1

T (c
t Dα

Tu(t))
)
+ f (t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0

has at least a nontrivial solution under some suitable conditions.
On the other hand, boundary value problems for impulsive differential equations are

intensively discussed. Such problems arising from the real world appear in mathematical models
with sudden and discontinuous changes of their states in biology, population dynamics, physics,
engineering, etc. [31,32]. For their significance, it is very important and interesting to discuss the
solvability of solutions for impulsive differential equations. Recently, the existence and multiplicity of
solutions for impulsive FDEs are treated by using topological methods, critical point theory and the
coincidence degree theory, for example see [33–43] and the references therein. Taking an impulsive
fractional Dirichlet problem as a model, Bonanno et al. [33], and Rodríguez-López and Tersian [34] by
applying variational methods, investigated the existence results of at least one and three solutions for
the following impulsive fractional boundary value problems

tDα
T(

c
0Dα

t u(t)) + a(t)u(t) = λ f (t, u), 0 < t < T, t 6= tj,

∆(tDα−1
T (c

0Dα
t u))(tj) = µIj(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

where λ, µ ∈ (0,+∞).
Motivated by [21,33,44], in this paper we shall deal with the solvability of solutions for the

problem (1) by using the variational methods and iterative methods. The characteristic of problem (1)
is the presence of fractional derivative in the nonlinearity term. To the best of our knowledge, there
is no result concerned with the solvability of solutions for impulsive FDEs, such as problem (1),
by applying the variational methods and iterative methods. We know, contrary to those equations
in [33,34,39,40,42,43,45], the problem (1) is of no the variational structure and it cannot be studied by
directly using the well-developed critical point theory. Furthermore, due to the appearance of left and
right Riemann–Liouville fractional integral and impulsive effect, the calculation of problem (1) will be
more complicated.

Throughout the paper, we assume that f (t, u, v) and Ij(j = 1, 2, · · · , l) satisfies the following
conditions:

(C2) lim
u→0

f (t,u,v)
|u| = 0 uniformly for all t ∈ [0, T] and v ∈ R and f (t, u, 0) 6= 0 for t ∈ [0, T]

and u ∈ R.
(C3) There exists a constant ϑ > 2 such that lim

u→+∞
f (t,u,v)
|u|ϑ−1 = 0 uniformly for all t ∈ [0, T] and v ∈ R.

(C4) There are constants µ > 2 and ζ > 0 such that
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0 < µF(t, u, v) ≤ u f (t, u, v), ∀t ∈ [0, T], |u| ≥ ζ, v ∈ R.

(C5) There exists two constants k1, k2 > 0 such that

F(t, u, v) :=
∫ u

0
f (t, s, v)ds ≥ k1|u|µ − k2, ∀t ∈ [0, T], u, v ∈ R.

(I1) There is a positive constant β < µ such that

0 < uIj(u) ≤ β
∫ u(tj)

0
Ij(s)ds, ∀u ∈ R \ {0}, j = 1, 2, · · · , l.

Remark 1. According to assumptions (C2) and (C3), it is easy to obtain that for given ε > 0, there exists a
positive constant k(ε) independent of ω, such that

| f (t, u, v)| ≤ 2ε|u|+ k(ε)ϑ|u|ϑ−1, ∀t ∈ [0, T], u ∈ R.

Due to the fact that problem (1) is not variational, according to the idea be borrowed from [21,44],
we will deal with a family of impulsive fractional boundary value problem without the fractional
derivative of the solution; that is, we consider the following problems:

tDα
T(a(t)c

0Dα
t u(t)) + b(t)u(t) = f (t, u(t), c

0Dα
t ω(t)), t 6= tj, a.e t ∈ [0, T]

∆(tDα−1
T (a(tj)

c
0Dα

t u)(tj)) = Ij(u(tj)), j = 1, 2, · · · , l,
u(0) = u(T) = 0.

(2)

For each ω ∈ Eα
0 , where the space Eα

0 will be introduced in Section 2. Obviously, problem (2) is
of the variational structure and can be solved by applying the variational methods. Hence, for any
ω ∈ Eα

0 , we can deduce a unique solution uω ∈ Eα
0 with some bounds. Furthermore, we can prove that

there exists a solution for problem (1) via iterative methods. Now let us give the preliminary result of
the present paper:

Theorem 1. Let ω ∈ Eα
0 . Suppose that the hypotheses (C1)–(C5) and (I1) are satisfied; then there exist

positive constants A1 and A2 independent of ω such that problem (2) has at least one solution uω satisfying
A1 ≤ ‖uω‖α ≤ A2.

We will established the main results of the paper by an iterative method which depends
on the solvability of problem (2). To obtain the solvability of problem (1), we also need the
following assumptions:

(C6) There exist constants L1, L2 > 0 and ξ > 0 such that the function f satisfies the following
Lipschitz conditions:

| f (t, u2, v2)− f (t, u1, v1)| ≤ L1|u2 − u1|+ L2|v2 − v1|, ∀t ∈ [0, T], u1, u2 ∈ [−ξ, ξ], v1, v2 ∈ R.

(I2) There exist constants ρj > 0, j = 1, 2, · · · , l such that

|Ij(x)− Ij(y)| ≤ ρj|x− y|, ∀x, y ∈ [−ξ, ξ].

Theorem 2. Suppose that the hypotheses of Theorem 1 are satisfied. In addition, if (C6) and (I2) hold with
L∗ < 1, we can obtain the solution uω of problem (2) is unique in Eα

0 , where

L∗ :=
L1T2α

a0[Γ(α + 1)]2
+

T(2α−1)

[Γ(α)]2a0(2α− 1)
·

l

∑
j=1

ρj < 1.
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Theorem 3. Assume conditions (C1)–(C6) and (I1), (I2) hold. Then problem (1) has at least one nontrivial
solution provided

L̃ :=
L2Tα(2α− 1)Γ(α + 1)[Γ(α)]2

a0(2α− 1)[Γ(α)Γ(α + 1)]2 − L1T2α(2α− 1)[Γ(α)]2 − T2α−1[Γ(α + 1)]2 ∑l
j=1 ρj

∈ (0, 1).

The article is organized as follows. In Section 2, we shall give some definitions and lemmas that
will be helpful to discuss our main results. In Section 3, we will prove the solvability of the problem (2)
and the existence of at least one nontrivial solution to the problem (1).

2. Preliminaries

In this paper we need the following definitions and properties of the fractional calculus.
Let 0D−γ

t u(t) and tD
−γ
T u(t) be the left and right fractional integrals of order γ as follows

0D−γ
t u(t) = 1

Γ(γ)

∫ t
0 (t− s)γ−1u(s)ds, tD

−γ
T u(t) = 1

Γ(γ)

∫ T
t (t− s)γ−1 f u(s)ds, γ > 0.

Definition 1 (see [2,4]). Let f be a function defined on [a, b]. Then the left and right Riemann–Liouville
fractional derivatives of order γ for function f denoted by aDγ

t f (t) and tD
γ
b f (t), are represented by

aDγ
t f (t) = dn

dtn aDγ−n
t f (t) = 1

Γ(n−γ)
dn

dtn

∫ t
a (t− s)n−γ−1 f (s)ds,

and
tD

γ
b f (t) = (−1)n dn

dtn tD
γ−n
b f (t) = (−1)n

Γ(n−γ)
dn

dtn

∫ b
t (t− s)n−γ−1 f (s)ds,

for every t ∈ [a, b], where n− 1 ≤ γ < n and n ∈ N.

From [2,4], we have

Proposition 1 (See [2,4]). If f ∈ Lp([a, b],RN), g ∈ Lq([a, b],RN) and p ≤ 1, q ≤ 1, 1/p + 1/q ≤ 1 + γ

or p 6= 1, q 6= 1, 1/p + 1/q = 1 + γ. Then∫ b
a [aD−γ

t f (t)]g(t)dt =
∫ b

a [tD
−γ
b g(t)] f (t)dt, γ > 0.

For any fixed t ∈ [0, T] and 1 ≤ p < ∞, let

‖x‖∞ = max
t∈[0,T]

|x(t)|, ‖x‖Lp =
(∫ T

0 |x(s)|
pds
)1/p

. (3)

Definition 2. Let 0 < α ≤ 1. Then the fractional derivative space Eα
0 is defined by the closure of C∞

0 ([0, T],R)
that is

Eα
0 = C∞

0 ([0, T],R)

with respect to the weighted norm

‖u‖α =
(∫ T

0 a(t)|c0Dα
t u(t)|2dt +

∫ T
0 |u(t)|

2dt
)1/2

, ∀u ∈ Eα
0 . (4)

From [20], Eα
0 is a reflexive and a separable Banach space. Furthermore, Eα

0 is the space of functions u ∈
L2([0, T],R) with an α-order Caputo fractional derivative c

0Dα
t u ∈ L2([0, T],R) and u(0) = u(T) = 0.

For u ∈ Eα
0 , we have (see [8,33])

c
0Dα

t u(t) = 0Dα
t u(t), c

t Dα
Tu(t) = tDα

Tu(t).

Lemma 1 (See [24]). Let 0 < α ≤ 1. For any u ∈ Eα
0 , one has
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‖u‖L2 ≤ Tα

Γ(α+1)
√

a0

(∫ T
0 a(t)|c0Dα

t u(t)|2dt
)1/2

, (5)

moreover, if α > 1
2 , then

‖u‖∞ ≤ Tα− 1
2

Γ(α)
√

a0(2α−1)

(∫ T
0 a(t)|c0Dα

t u(t)|2
)1/2

. (6)

Note that if b ∈ C([0, T]) is such that 0 < b1 ≤ b(t) ≤ b2, and by (i) of Lemma 1, we can consider
Eα

0 with the following norm

‖u‖2
b,α =

∫ T
0 (a(t)|c0Dα

t u(t)|2 + b(t)|u(t)|2)dt, ∀u ∈ Eα
0 , (7)

which is equivalent to (4) and we still denote by ‖ · ‖α for short.

Proposition 2 ([4], Proposition 5.6). Assume that 1
2 < α ≤ 1 and the sequence {un} converges weakly to u

in Eα
0 , i.e., un ⇀ u. Then un → u in C([0, T]), that is, ‖un − u‖∞ → 0 as n→ ∞.

Definition 3. A function u ∈ Eα
0 is called a solution of problem (1), if

(i) the limits tDα−1
T (c

0Dα
t u)(t+j ), tDα−1

T (c
0Dα

t u)(t−j ), j = 1, · · · , l, exist and satisfy the following
impulsive condition

∆(tDα−1
T (c

0Dα
t u)(tj)) = tDα−1

T (c
0Dα

t u)(t+j )− tDα−1
T (c

0Dα
t u)(t−j ) = Ij(u(tj)).

(ii) u satisfies the Equation (1) a.e. on [0, T] \ {t1, t2, · · · , tl}, and the boundary condition u(0) = u(T) = 0;

Definition 4. A function u ∈ Eα
0 is said to be a weak solution of problem (1), if

∫ T

0
(a(t)c

0Dα
t u(t)c

0Dα
t x(t) + b(t)u(t)x(t))dt +

l

∑
j=1

Ij(u(tj))x(tj)

−
∫ T

0
f (t, u(t), c

0Dα
t u(t))x(t)dt = 0

for every x ∈ Eα
0 .

Associated to the boundary value problem (2) for given ω ∈ Eα
0 we have the functional Φω :

Eα
0 → R defined by

Φω(u) =
1
2

∫ T

0
(a(t)|c0Dα

t u(t)|2 + b(t)|u(t)|2)dt +
l

∑
j=1

∫ u(tj)

0
Ij(s)ds

−
∫ T

0
F(t, u(t), c

0Dα
t ω(t))dt,

(8)

where F(t, u, v) =
∫ u

0 f (t, s, v)ds and f ∈ C([0, T]×R×R,R). Obviously, using the hypothesis (C1)
we deduce that Φω is continuous, differentiable and

< Φ′ω(u), x > =
∫ T

0
(a(t)c

0Dα
t u(t)c

0Dα
t x(t) + b(t)u(t)x(t))dt +

l

∑
j=1

Ij(u(tj))x(tj)

−
∫ T

0
f (t, u(t), c

0Dα
t ω(t))x(t)dt

(9)

for any x ∈ Eα
0 . Moreover, the critical point of Φω is a solution of the problem (2).



Mathematics 2019, 7, 880 6 of 15

Lemma 2 (see [46]). Let E be a real Banach space. If any sequence {un} ⊂ E for which Φ(un) is bounded and
Φ′(un)→ 0 as n→ ∞ possesses a convergent subsequence of {un}. Then we say Φ satisfies Palais-Smale(PS)
condition in E.

Lemma 3 (see [46]). Let E be a real Banach space and Φ ∈ C1(E,R) satisfy the (PS) condition. Suppose that
Φ(0) = 0 and

(i) there exist constants ρ, ξ0 > 0 such that Φ|∂Bρ(0) ≥ ξ0, and
(ii) there exists an e ∈ E\Bρ(0) such that Φ(e) ≤ 0.

Then, Φ possesses a critical value c ≥ ξ0. Moreover, c can be characterized as

c = inf
γ∈Λ

max
s∈[0,1]

Φ(γ(s)),

where Bρ(0) is an open ball in E of radius ρ centered at 0 and Λ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

3. Proof of Theorems 1–3

Proof of Theorem 1. The proof will be divided into four steps. We prove that the energy functional
Φω has the mountain pass geometric structure, that it is satisfies the (PS)-condition and finally that the
obtained solutions have the uniform bounds.

(I) For ω ∈ Eα
0 , we show that there exist positive numbers ρ and ξ0 such that for ‖u‖α = ρ, Φω(u) ≥ ξ0 > 0

uniformly for ω ∈ Eα
0 .

In fact, By (C2), (C3) and Remark 1, we have for any u ∈ Eα
0

|F(t, u, v)| ≤ ε|u|2 + k(ε)|u|ϑ. (10)

Thanks to (I1), one has
l

∑
j=1

∫ u(tj)

0
Ij(s)ds ≥ 0. (11)

Thus for any u ∈ Eα
0 , by (10), (11) and Lemma 1, one has

Φω(u) =
1
2
‖u‖2

α +
l

∑
j=1

∫ u(tj)

0
Ij(s)ds−

∫ T

0
F(t, u(t), c

0Dα
t ω(t))dt

≥ 1
2
‖u‖2

α −
εT2α

a0[Γ(α + 1)]2

∫ T

0
a(t)|c0Dα

t u(t)|2dt

− k(ε)T(α− 1
2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ

(∫ T

0
a(t)|c0Dα

t u(t)|2dt
)ϑ/2

≥
(

1
2
− εT2α

a0[Γ(α + 1)]2

)
‖u‖2

α −
k(ε)T(α− 1

2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ
‖u‖ϑ

α

= ‖u‖2
α

(
1
2
− εT2α

a0[Γ(α + 1)]2
− k(ε)T(α− 1

2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ
‖u‖ϑ−2

α

)
.

(12)

Choosing ε = a0[Γ(α + 1)]2/(4T2α) := ε0, and let ‖u‖α = ρ > 0. We may take ρ sufficiently small
such that

1
4
− k(ε0)T(α− 1

2 )ϑ+1ρϑ−2

[Γ(α)
√

a0(2α− 1)]ϑ
=: ϑ∗ > 0.

Hence Φω(u) ≥ ρ2ϑ∗ := ξ0 > 0. This implies that Φω satisfies assumption (i) of Lemma 3.
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(II) Fix ω ∈ Eα
0 . We show that there exists e ∈ Eα

0 such that ‖e‖α > ρ and Φω(e) < 0, where ρ is given in (I).

Using (I2), we obtain that there is β0 > 0 such that the following inequalities

∫ u(tj)

0
Ij(s)ds ≤ β0|u|β, ∀u ∈ R, j = 1, 2, · · · , l, (13)

hold. In fact, for any x ∈ R \ {0} and set ϕ(t) = I∗(tx) =
∫ tx

0 I(s)ds, then

ϕ′(t) = I(tx)x =
1
t

I(tx)(tx) ≤ β

t

∫ tx

0
I(s)ds =

β

t
ϕ(t),

which implies that ∫ t

1

dϕ

ϕ(s)
≤ β

∫ t

1

ds
s

.

So we have
ϕ(t) ≤ |t|β

∫ x

0
I(s)ds,

and ∫ x

0
I(s)ds = I∗(x) = I∗(|x| · x

|x| ) ≤ I∗(
x
|x| )|x|

β < β0|x|β,

where β0 := supx∈R\{0} I∗( x
|x| ). This implies (13) is satisfied.

From (C5) and (13), we obtain that for τ > 1 and u∗ ∈ Eα

Φω(τu∗) =
τ2

2
‖u∗‖2

α +
l

∑
j=1

∫ τu∗(tj)

0
Ij(s)ds−

∫ T

0
F(t, τu∗(t), c

0Dα
t ω(t))dt

≤ τ2

2
+ lβ0|τ|β‖u∗‖

β
∞ − k1|τ|µ

∫ T

0
|u∗(t)|µdt− k2T

≤ τ2

2
+ K1|τ|β − K2|τ|µ − k2T,

(14)

where K1, K2 are positive constants independent of ω. Choosing u∗ ∈ Eα
0 with ‖u∗‖α = 1. Since µ > β,

(14) implies that there is large enough τ1 6= 0 such that ‖e‖α > ρ and Φω(e) < 0 if we take e = τ1u∗.
So Φω satisfies assumption (ii) of Lemma 3. The energy functional Φω has the mountain pass
geometric structure.

(III) Fix ω ∈ Eα
0 . We prove that Φω satisfies the Palais-Smale condition on the space Eα

0 .

For any sequence {un}n ⊂ Eα
0 such that {Φω(un)} is a bounded sequence and Φ′ω(un) → 0 as

n→ ∞. Then, there are two positive constants K3, K4 > 0 such that for n sufficiently large

|Φω(un)| ≤ K3, |Φ′ω(un)| ≤ K4.

Thus, it follows from (C4) and (I1) that

(
1
2 −

1
µ

)
‖un‖2

α = Φω(un)− 1
µ Φ′ω(un)un −

l
∑

j=1

(∫ un(tj)

0 Ij(s)ds− 1
µ Ij(un(tj))un(tj)

)
+
∫ T

0

(
F(t, un(t), c

0Dα
t ω(t))− 1

µ f (t, un(t), c
0Dα

t ω(t))un(t)
)

dt

≤ Φω(un)− 1
µ Φ′ω(un)un −

l
∑

j=1

(∫ un(tj)

0 Ij(s)ds− 1
β Ij(un(tj))un(tj)

)
+
∫
{|un |≥ζ}

(
F(t, un(t), c

0Dα
t ω(t))− 1

µ f (t, un(t), c
0Dα

t ω(t))un(t)
)

dt

+
∫
{|un |≤ζ}

(
F(t, un(t), c

0Dα
t ω(t))− 1

µ f (t, un(t), c
0Dα

t ω(t))un(t)
)

dt

≤ K5 +
Tα− 1

2 K4

µΓ(α)
√

a0(2α−1)
‖un‖α,
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where K5 is a positive constant independent of ω and n. Therefore, {un} is bounded in Eα
0 .

Since Eα
0 is a reflexive Banach space. It follows from Lemma 1 and Proposition 2 that {un} is

bounded in C([0, T]), and limn→∞ ‖un − u‖∞ = 0. Hence, we can assume that there exists some u ∈ Eα
0

such that the sequence un ⇀ u in Eα
0 , and un → u in L2(0, T) and

{un} converges uniformly to u on [0, T].

Notice that

(Φ′ω(un)−Φ′ω(um))(un − um) = ‖un − um‖2
α +

l

∑
j=1

[Ij(un(tj))− Ij(um(tj))](un(tj)− um(tj))

−
∫ T

0
[ f (t, un(t), c

0Dα
t ω(t))− f (t, um(t), c

0Dα
t ω(t))]dt. (15)

Since

In,m : = [Ij(un(tj))− Ij(um(tj))](un(tj)− um(tj))

= [(Ij(un(tj))− Ij(u∗))− (Ij(um(tj))− Ij(u∗))](un(tj)− um(tj))

≤ [|Ij(un(tj))− Ij(u∗)|+ |Ij(um(tj))− Ij(u∗)|] · ‖un − um‖∞,

which implies the second term of (15)

[Ij(un(tj))− Ij(um(tj))](un(tj)− um(tj))→ 0

as n, m→ ∞. According to Remark 1, we get

An,m : =
∫ T

0
[ f (t, un(t), c

0Dα
t ω(t))− f (t, um(t), c

0Dα
t ω(t))](un(tj)− u(tj))dt

≤
∫ T

0
[| f (t, un(t), c

0Dα
t ω(t))|+ | f (t, um(t), c

0Dα
t ω(t))|]|un(tj)− um(tj)|dt

≤ k0

∫ T

0

(
2ε|un|+ k(ε)ϑ|un|ϑ−1 + 2ε|um|+ k(ε)ϑ|um|ϑ−1

)
|un(tj)− um(tj)|dt→ 0

as n, m→ ∞. Thus, the third term of (15)∫ T

0
[ f (t, un(t), c

0Dα
t ω(t))− f (t, um(t), c

0Dα
t ω(t))]dt→ 0

as n, m→ ∞. Since

(Φ′ω(un)−Φ′ω(um))(un − um) = Φ′ω(un)(un − um)−Φ′ω(u))(un − um)

≤ |Φ′ω(un)|‖un − um‖∞ −Φ′ω(um))(un − um)→ 0

as n, m→ ∞.
Consequently,

‖un − um‖α = (Φ′ω(un)−Φ′ω(um))(un − um)− In,m + An,m → 0

as n, m → ∞. That is, {un} is a Cauchy sequence in Eα
0 . This implies that {un} has a convergent

sequence in Eα
0 . Thus Φω satisfies (PS) condition.

Obviously, Φω(0) = 0. Therefore, applying Lemma 3, we deduce that Φω admits a nontrivial
critical points uω in Eα with
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Φ′ω(uω) = 0, cω = Φω(uω) = inf
γ∈Λ

max
s∈[0,1]

Φω(γ(s)) > Φω(0) = 0, (16)

where Λ = {γ ∈ C([0, 1], Eα) : γ(0) = 0, γ(1) = e} and e = τ1u∗ has been given in (II). So problem (2)
has at least one weak solution uω 6= 0 for any ω ∈ Eα.

(IV) Fix ω ∈ Eα
0 . We prove that there exist positive constants A1 and A2 independent of ω such that

A1 ≤ ‖uω‖α ≤ A2.

Since uω is the solution of problem (2), then one has

‖uω‖2
α +

l

∑
j=1

Ij(uω(tj))uω(tj) =
∫ T

0
f (t, uω(t), c

0Dα
t ω(t))uω(t)dt.

By Remark 1, (I1) and Lemma 1, we have

‖uω‖2
α ≤ ‖uω‖2

α +
l

∑
j=1

Ij(uω(tj))uω(tj)

=
∫ T

0
f (t, uω(t), c

0Dα
t ω(t))uω(t)dt

≤ 2ε
∫ T

0
|uω(t)|2dt + k(ε)

∫ T

0
ϑ|uω(t)|ϑdt

≤ 2εT2α

a0[Γ(α + 1)]2

∫ T

0
a(t)|c0Dα

t uω(t)|2dt +
k(ε)ϑT(α− 1

2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ

(∫ T

0
a(t)|c0Dα

t uω(t)|2dt
)ϑ/2

≤ 2εT2α

a0[Γ(α + 1)]2
‖uω‖2

α +
k(ε)ϑT(α− 1

2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ
‖uω‖ϑ/2

α ,

for any ε > 0. So

(
1− 2εT2α

a0[Γ(α + 1)]2

)
‖uω‖2

α ≤
k(ε)ϑT(α− 1

2 )ϑ+1

[Γ(α)
√

a0(2α− 1)]ϑ
‖uω‖ϑ/2

α .

Combined with ϑ > 2, by choosing ε > 0 small enough such that a0[Γ(α + 1)]2 − 2εT2α >,
we obtain

‖uω‖α ≥
(
[Γ(α)

√
a0(2α− 1)]ϑ(a0[Γ(α + 1)]2 − 2εT2α)

a0k(ε)ϑT(α− 1
2 )ϑ+1[Γ(α + 1)]2

)1/(ϑ−2)

:= A1 > 0. (17)

Notice that uω satisfying (16), then taking a special pass γ∗(s) = su∗, we have(µ

2
− 1
)
‖uω‖2

α ≤ µΦω− < Φ′ω(uω), uω > +K6

= µ inf
γ∈Λ

max
s∈[0,1]

Φω(γ
∗(s)) + K6

≤ µ max
s∈[0,1]

Φω(su∗) + K6

≤ µ

(
s2

2
+

l

∑
j=1

∫ su∗(tj)

0
Ij(t)dt− k1|s|µ

∫ T

0
|u∗|µdt + k2T

)
+ K6

≤ µ

(
s2

2
+ lβ0‖u∗‖

β
∞|s|β − k1|s|µ

∫ T

0
|u∗|µdt

)
+ K7,

(18)
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where K6, K7 denote positive constants. Let

h(t) =
t2

2
+ lβ0‖u∗‖

β
∞|t|β − k1|t|µ

∫ T

0
|u∗|µdτ, t ≥ 0. (19)

Since µ > β, then the function h(t) can achieve its maximum at some t0 > 0 and the value
µh(t0) + K7 can be taken as A∗ > 0. Obviously it is independent of ω. Then (18) implies that there
exists A2 :=

√
2A∗/(µ− 2) independent of ω such that ‖uω‖α ≤ A2. Therefore, this completes the

proof of Theorem 1.

Proof of Theorem 2. It follows from Theorem 1 that there exists at least one weak solution uω of
problem (2). Next, fix ω ∈ Eα

0 we show that the solution of problem (2) is unique. In fact, if there are
two different solutions u1 and u2 satisfying the first equation in problem (2) a.e.t ∈ [0, T]. Then

∫ T

0
[a(t)c

0Dα
t u2(t)c

0Dα
t (u2 − u1) + b(t)u2(t)(u2 − u1)]dt

=
∫ T

0
f (t, u2(t), c

0Dα
t ω(t))(u2 − u1)dt−

l

∑
j=1

Ij(u2(tj))(u2(tj)− u1(tj)),

and ∫ T

0
[a(t)c

0Dα
t u1(t)c

0Dα
t (u2 − u1) + b(t)u1(t)(u2 − u1)]dt

=
∫ T

0
f (t, u1(t), c

0Dα
t ω(t))(u2 − u1)dt−

l

∑
j=1

Ij(u1(tj))(u2(tj)− u1(tj)).

Combining with the condition (C6), (I2) and Lemma 1, we have

‖u2 − u1‖2
α ≤

∫ T

0
| f (t, u2(t), c

0Dα
t ω(t))− f (t, u1(t), c

0Dα
t ω(t))||u2 − u1|dt

+
l

∑
j=1
|Ij(u2(tj))− Ij(u1(tj))||u2(tj)− u1(tj)|

≤ L1

∫ T

0
|u2 − u1|2dt +

l

∑
j=1

ρj|u2(tj)− u1(tj)|2

≤
(

L1T2α

a0[Γ(α + 1)]2
+

T(2α−1)

[Γ(α)]2a0(2α− 1)
·

l

∑
j=1

ρj

)
‖u2 − u1‖2

α

= L∗‖u2 − u1‖2
α.

Since 0 < L∗ < 1, we can deduce that ‖u2 − u1‖α = 0 and u1 = u2. This ends the proof of
Theorem 2.

Proof of Theorem 3. According to Theorem 1, We can construct a iterative sequence {un} ∈ Eα
0 as

solutions of the following problem
tDα

T(a(t)c
0Dα

t un(t)) + b(t)un(t) = f (t, un(t), c
0Dα

t un−1(t)), t 6= tj, a.e t ∈ [0, T]
∆(tDα−1

T (a(tj)
c
0Dα

t un)(tj)) = Ij(un(tj)), j = 1, 2, · · · , l,
un(0) = un(T) = 0.

(20)

Obtained by the Mountain Pass theorem, starting with an arbitrary u0 ∈ Eα
0 .

According to (IV) of Theorem 1, we have ‖un‖α ≤ A2. It follows from (6) that

‖un‖∞ ≤ Tα− 1
2 A2

Γ(α)
√

a0(2α−1)
:= ξ.
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So by (9), Φ′un(un+1)(un+1 − un) = 0, Φ′un−1
(un)(un+1 − un) = 0, we have∫ T

0 [a(t)c
0Dα

t un(t)c
0Dα

t (un+1 − un) + b(t)un(t)(un+1 − un)]dt

+
l

∑
j=1

Ij(un(tj))(un+1(tj)− un(tj)) =
∫ T

0 f (t, un, c
0Dα

t un−1)(un+1 − un)dt,

and ∫ T
0 [a(t)c

0Dα
t un+1(t)c

0Dα
t (un+1 − un) + b(t)un+1(t)(un+1 − un)]dt

+
l

∑
j=1

Ij(un+1(tj))(un+1(tj)− un(tj)) =
∫ T

0 f (t, un+1, c
0Dα

t un)(un+1 − un)dt.

Hence, by (C6), (I2), and the Hölder inequality, we get

‖un+1 − un‖2
α =

∫ T

0
[ f (t, un+1, c

0Dα
t un)− f (t, un, c

0Dα
t un−1)](un+1 − un)dt

+
l

∑
j=1

[Ij(un+1(tj))− Ij(un(tj))](un+1(tj)− un(tj))

≤ L1

∫ T

0
|un+1 − un|2dt + L2

∫ T

0
|c0Dα

t (un − un−1)||un+1 − un|dt

+
l

∑
j=1

ρj|un+1(tj)− un(tj)|2

≤
(

L1T2α

a0[Γ(α + 1)]2
+

T2α−1

a0(2α− 1)[Γ(α)]2
·

l

∑
j=1

ρj

)
‖un+1 − un‖2

α

+
L2Tα

a0Γ(α + 1)
‖un − un−1‖α · ‖un+1 − un‖α,

which implies that
‖un+1 − un‖α ≤ L̃‖un − un−1‖α,

where

L̃ =
L2Tα(2α− 1)Γ(α + 1)[Γ(α)]2

a0(2α− 1)[Γ(α)Γ(α + 1)]2 − L1T2α(2α− 1)[Γ(α)]2 − T2α−1[Γ(α + 1)]2 ∑l
j=1 ρj

.

According to the condition of Theorem 3, L̃ ∈ (0, 1). The we know that {un} is a Cauchy sequence
in Eα

0 . Therefore the sequence {un} strongly converges in Eα
0 to some u ∈ Eα

0 , Theorem 1 guarantees
u 6= 0.

By (C6), we have, for any x(t) ∈ Eα
0 ,

∫ T

0
| f (t, un(t), c

0Dα
t un−1(t))− f (t, u(t), c

0Dα
t u(t))|x(t)dt

≤ L1

∫ T

0
|un(t)− u(t)|x(t)dt + L2

∫ T

0
|c0Dα

t (un−1(t)− u(t))|x(t)dt

≤
(

L1T2α

a0[Γ(α + 1)]2
‖un − u‖α +

L2Tα

a0Γ(α + 1)
‖un−1 − u‖α

)
‖x‖α → 0

as n→ +∞, which implies that u is the solution of problem (1). Hence, we obtain a nontrivial solution
of problem (1). This completes the proof.

Finally, in this paper, we present an explicit example to illustrate our main result.
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Example 1. Let α = 0.75, T = 1, t1 ∈ (0, 1), a(t) = 1/48, and b(t) = (2− t)/48. Consider the following
fractional boundary value problem:

tD0.75
1 (a(t)c

0D0.75
t u(t)) + b(t)u(t) = 1

20 (1 + sin2(c
0D0.75

t u(t)))u5(t), a.e. t ∈ [0, 1], t 6= t1,
∆(tD−0.25

1 (c
0D0.75

t u))(t1) =
1

100 u3(t1),
u(0) = u(1) = 0.

(21)

Compared with problem (1), f (t, u, v) = 1
20 (1 + sin2 v)u5, a0 = 1

48 , and I1(u(t1)) =
1

100 u3. By taking
ϑ > 6, µ = 6 and k1 = 1

120 , k2 = 1
1000 , β = 4 and all ζ > 0. Then by simple computation, it is easy to show

that the function f satisfies the assumptions (C1)-(C5) and the function I1 satisfies the hypotheses (I1).

For the conditions (C6) and (I2), for all t ∈ [0, 1], u1, u2 ∈ [−ξ, ξ], v1, v2 ∈ R, it follows that

| f (t, u2, v2)− f (t, u1, v1)| ≤
1

20
|u5

2(1 + sin2(v2))− u5
1(1 + sin2(v2))|

+
1
20
|u5

1(1 + sin2(v2))− u5
1(1 + sin2(v1))|

≤ 1
20
|1 + sin2(v2)||u5

2 − u5
1|+

1
20
|u5

1|| sin2(v2)− sin2(v1)|

≤ 1
2

ξ5|u2 − u1|+
1

10
ξ5|v2 − v1|,

and
|I1(u2(t1))− I1(u1(t1))| ≤

3
100

ξ2|u2 − u1|.

Thus, we can choose L1 = 1
2 ξ5, L2 = 1

10 ξ5 and ρ1 = 3
100 ξ2, where ξ =

√
2A2/Γ(0.75). In this case,

it suffices to verify that

L̃ =
L2Γ(1.75)[Γ(0.75)]2

[Γ(0.75)Γ(1.75)]2/16− L1[Γ(0.75)]2 − 2[Γ(1.75)]2ρ1

=
ξ5Γ(1.75)[Γ(0.75)]2

10[Γ(0.75)Γ(1.75)]2/16− 5ξ5[Γ(0.75)]2 − 0.6[Γ(1.75)]2ξ2 ∈ (0, 1).

From (19), we estimate the value of A∗ = µh(t0) + K7, where K7 is dependent of ζ. Since

∫ 1

0
|c0D0.75

t (t2 − t)|2dt =
1

[Γ(1.25)]2
· (2

3
− 96

175
).

Then we may choose u∗(t) = 4
√

60/(1 + 20c0)(t2 − t), where c0 = 1
[Γ(1.25)]2 (2/3− 96/175) such

that u∗(t) ∈ E0.75
0 with ‖u∗‖0.75 = 1. By direct computation via Mathematica, we have t0 ≈ 0.3547 ∈

(0, 1), and
A∗ = µh(t0) + K7 ≈ 0.2522 + K7.

According to the arbitrariness of K7 and ζ, we may take enough small K7, ζ > 0, such that
A∗ = 0.3. Then A2 =

√
2A∗/(µ− 2) ≈ 0.3873, ξ ≈ 1.1540A2 ≈ 0.4469; we obtain

L̃ =
ξ5Γ(1.75)[Γ(0.75)]2

10[Γ(0.75)Γ(1.75)]2/16− 5ξ5[Γ(0.75)]2 − 0.6[Γ(1.75)]2ξ2 ≈ 0.0597 ∈ (0, 1).

Then all conditions in Theorem 1 are satisfied. Consequently the problem (21) admits at least one
nontrivial solution.
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4. Conclusions

In this work, we studied a class of impulsive fractional boundary value problems with nonlinear
derivative dependence. Due to the fact that the studied problem (1) is of no the variational structure
and it cannot be studied by directly using the well-developed critical point theory. First, we considered
a family of impulsive fractional boundary value problem without the fractional derivative of the
solution. Second, we give sufficient conditions of the existence of at least one nontrivial solution for
problems (1). The used technical approach is based on variational methods and iterative methods.
In future work, it is worth investigating multiplicity of solutions for the problem (1), and the existence
of solutions to impulsive fractional differential equations involving p-Laplacian.
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