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Abstract: In a real Hilbert space, let the notation VIP indicate a variational inequality problem for
a Lipschitzian, pseudomonotone operator, and let CFPP denote a common fixed-point problem of
an asymptotically nonexpansive mapping and finitely many nonexpansive mappings. This paper
introduces mildly inertial algorithms with linesearch process for finding a common solution of the
VIP and the CFPP by using a subgradient approach. These fully absorb hybrid steepest-descent ideas,
viscosity iteration ideas, and composite Mann-type iterative ideas. With suitable conditions on real
parameters, it is shown that the sequences generated our algorithms converge to a common solution
in norm, which is a unique solution of a hierarchical variational inequality (HVI).

Keywords: inertial subgradient extragradient method; pseudomonotone variational inequality;
asymptotically nonexpansive mapping; sequentially weak continuity

1. Introduction

Let C be a convex and closed nonempty set in a real Hilbert space (H, ‖ · ‖) with inner product
〈·, ·〉. Let Fix(S) indicate the fixed-point set of a non-self operator S : C → H, i.e., Fix(S) = {u ∈
C : u = Su}. One says that a self operator T : C → C is asymptotically nonexpansive if and only if
‖Tnu− Tnv‖ ≤ (1 + θn)‖u− v‖ ∀n ≥ 1, u, v ∈ C, where limn→∞ θn = 0 is a real sequence. In the
case of θn = 0 ∀n ≥ 1, one says that T is nonexpansive. Both the class of nonexpansive operators and
asymptotically nonexpansive operators via various iterative techniques have been studied recently;
see, e.g., the works by the authors of [1–13]. Let A : H → H be a self operator. Consider the classical
variational inequality problem (VIP) of consisting of u∗ ∈ C such that

〈Au∗, v− u∗〉 ≥ 0 ∀v ∈ C. (1)

The set of solutions of problem (1) is indicated by VI(C, A). Recently, many authors studied the VIP via
mean-valued and projection-based methods; see, e.g., the works by the authors of [14–21]. In 1976,
Korpelevich [22] first designed and investigated an extragradient method for a solution of problem (1),
that is, for arbitrarily given u0 ∈ C, {un} is the sequence constructed by{

vn = PC(un − τAun),
un+1 = PC(un − τAvn) ∀n ≥ 0,

(2)
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with τ ∈ (0, 1
L ). If problem (1) has a solution, then he showed the weak convergence of {un}

constructed by (2) to a solution of problem (1). Since then, Korpelevich’s extragradient method and its
variants have been paid great attention to by many scholars, who improved it in various techniques
and approaches; see, e.g., the works by the authors of [23–34].

Let {Ti}N
i=1 be N nonexpansive mappings on H, such that Ω = ∩N

i=1Fix(Ti) 6= ∅. Let F be a
κ-Lipschitzian, η-strongly monotone self-mapping on H, and f be a contractive map with constant
δ ∈ (0, 1). In 2015, Bnouhachem et al. [2] introduced an iterative algorithm for solving a hierarchical
fixed point problem (HFPP) for a finite pool {Ti}N

i=1, i.e., for arbitrarily given x0 ∈ H, the sequence
{xn} is constructed by{

yn = (1− βn)TN,nTN−1,n · · · T1,nxn + βnxn,
xn+1 = γnxn + ((1− γn)I − αnµF)yn + αnρ f (yn), ∀n ≥ 0,

(3)

where Ti,n = (1 − δi,n)I + δi,nTi and δi,n ∈ (0, 1) for integer i ∈ {1, 2, ..., N}. Let the parameters

satisfy 0 < µκ2 < 2η and 0 ≤ ρτ < ν, with ν = µ(η − µκ2

2 ). Also, suppose that the sequences
{αn}, {βn}, {γn} ⊂ (0, 1) satisfy the following requirements.

(i) ∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) {βn} ⊂ [σ, 1) and limn→∞ βn = β < 1;
(iii) lim supn→∞ γn < 1 and lim infn→∞ γn > 0;
(iv) limn→∞ |δi,n−1 − δi,n| = 0 for i = 1, 2, ..., N.

They proved the strong convergence of {xn} to a point x∗ ∈ Ω, which is only a solution to the
HFPP: 〈(µF− ρ f )x∗, y− x∗〉 ≥ 0 ∀y ∈ Ω.

On the other hand, let the mappings A1, A2 : C → H be both inverse-strongly monotone and
the mapping T : C → C be asymptotically nonexpansive one with {θn}. In 2018, by the modified
extragradient method, Cai et al. [35] designed a viscosity implicit method for computing a point in the
common solution set Ω of the VIPs for A1 and A2 and the FPP of T, i.e., for arbitrarily given x1 ∈ C,
the sequence {xn} is constructed by

vn = tnxn + (1− tn)un,
zn = PC(vn − µA2vn),
un = PC(zn − λA1zn),
xn+1 = PC[(I − αnρF)Tnun + αn f (xn)],

(4)

where f : C → C be a δ-contraction with 0 ≤ δ < 1, and {αn}, {tn} are the sequences in (0, 1] satisfying
(i) ∑∞

n=1 αn = ∞, limn→∞ αn = 0 and ∑∞
n=1 |αn+1 − αn| < ∞;

(ii) limn→∞
θn
αn

= 0;
(iii) 0 < ε ≤ tn ≤ 1 and ∑∞

n=1 |tn+1 − tn| < ∞;
(iv) ∑∞

n=1 ‖Tn+1un − Tnun‖ < ∞.
They proved that {xn} converges strongly to a point x∗ ∈ Ω, which is a unique solution to the
VIP: 〈( f − ρF)x∗, y− x∗〉 ≤ 0 ∀y ∈ Ω.

Under the setting of extragradient approaches, we must calculate metric projections twice for every
iteration. Without doubt, if C is a general convex and closed subset, the computation of the projection
onto C might be prohibitively consuming-time. In 2011, motivated by Korpelevich’s extragradient
method, Censor et al. [5] first purposed the subgradient extragradient method, where a projection
onto a half-space is used in place of the second projection onto C:

vn = PC(un − `Aun),
Cn = {u ∈ H : 〈un − `Aun − vn, u− vn〉 ≤ 0},
un+1 = PCn(un − `Avn) ∀n ≥ 0,

(5)
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with ` ∈ (0, 1
L ). In 2014, Kraikaew and Saejung [36] introduced the Halpern subgradient extragradient

method for solving VIP (1) and proved that the sequence generated by the proposed method converges
strongly to a solution of VIP (1).

In 2018, by virtue of the inertial technique, Thong and Hieu [37] first introduced the inertial
subgradient extragradient method and proved weak convergence of the proposed method to a solution
of VIP (1). Very recently, Thong and Hieu [37] introduced two inertial subgradient extragradient
algorithms with the linesearch process to solve the VIP (1) for Lipschitzian, monotone operator A, and
the FPP of quasi-nonexpansive operator S satisfying the demiclosedness in H.

Under mild assumptions, they proved that the sequences defined by the above algorithms
converge to a point in Fix(S) ∩VI(C, A) with the aid of dual spaces. Being motivated by the research
work [2,37,38] and using the subgradient extragradient technique, this paper designs two mildly
inertial algorithms with linesearch process to solve the VIP (1) for Lipschitzian, pseudomonotone
operator, and the CFPP of an asymptotically nonexpansive mapping and finitely many nonexpansive
mappings in H. Our algorithms fully absorb inertial subgradient extragradient approaches with
linesearch process, hybrid steepest-descent algorithms, viscosity iteration techniques, and composite
Mann-type iterative methods. Under suitable conditions, it is shown that the sequences constructed by
our algorithms converge to a common solution of the VIP and CFPP in norm, which is only a solution
of a hierarchical variational inequality (HVI). Finally, we apply our main theorems to deal with the
VIP and CFPP in an illustrating example.

The outline of the article is arranged as follows. In Section 2, some concepts and preliminary
conclusions are recalled for later use. In Section 3, the convergence criteria of the suggested algorithms
are established. In Section 4, our main theorems are used to deal with the VIP and CFPP in an
illustrating example. As our algorithms concern solving VIP (1) with Lipschitzian, pseudomonotone
operator, and the CFPP of an asymptotically nonexpansive mapping and finitely many nonexpansive
mappings, they are more advantageous and more subtle than Algorithms 1 and 2 in [37]. Our theorems
strengthen and generalize the corresponding results announced in Bnouhachem et al. [2], Cai et al. [35],
Kraikaew and Saejung [36], and Thong and Hieu [37,38].

Algorithm 1: of Thong and Hieu [37]

1 Initial Step: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
2 Iteration Steps: Compute xn+1 in what follows,

Step 1. Put un = xn − αn(xn−1 − xn) and calculate yn = PC(un − `n Aun), where `n is chosen to
be the largest ` ∈ {γ, γl, γl2, ...} satisfying µ‖un − yn‖ ≥ `‖Aun − Ayn‖.

Step 2. Calculate zn = PCn(un − `n Ayn) with Cn := {u ∈ H : 〈un − `n Aun − yn, u− yn〉 ≤ 0}.
Step 3. Calculate xn+1 = (1− βn)un + βnSzn. If un = zn = xn+1 then un ∈ Fix(S) ∩VI(C, A).
Put n := n + 1 and return to Step 1.

Algorithm 2: of Thong and Hieu [37]

1 Initial Step: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
2 Iteration Steps: Compute xn+1 in what follows,

Step 1. Put un = xn − αn(xn−1 − xn) and calculate yn = PC(un − `n Aun), where `n is chosen to
be the largest ` ∈ {γ, γl, γl2, ...} satisfying µ‖un − yn‖ ≥ `‖Aun − Ayn‖.

Step 2. Calculate zn = PCn(un − `n Ayn) with Cn := {u ∈ H : 〈un − `n Aun − yn, u− yn〉 ≤ 0}.
Step 3. Calculate xn+1 = (1− βn)xn + βnSzn. If un = zn = xn = xn+1 then

xn ∈ Fix(S) ∩VI(C, A). Put n := n + 1 and return to Step 1.
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2. Preliminaries

Given a sequence {un} in H. We use the notations un → u and un ⇀ u to indicate the strong
convergence of {un} to u and weak convergence of {un} to u, respectively. An operator T : C → H is
said to be

(i) L-Lipschitz continuous (or L-Lipschitzian) iff ∃L > 0 s.t.

‖Tu− Tv‖ ≤ L‖u− v‖ ∀u, v ∈ C;

(ii) monotone iff
〈Tu− Tv, u− v〉 ≥ 0 ∀u, v ∈ C;

(iii) pseudomonotone iff

〈Tu, v− u〉 ≥ 0⇒ 〈Tv, v− u〉 ≥ 0 ∀u, v ∈ C;

(iv) β-strongly monotone if ∃β > 0 s.t.

〈Tu− Tv, u− v〉 ≥ β‖u− v‖2 ∀u, v ∈ C;

(v) sequentially weakly continuous if ∀{un} ⊂ C, the relation holds: un ⇀ u⇒ Tun ⇀ Tu.

It is clear that every monotone mapping is pseudomonotone but the converse is not valid; e.g., take
Tx := a

a+x , x, a ∈ (0,+∞).

For every u ∈ H, we know that there is only a nearest point in C, indicated by PCu, s.t. ‖u− PCu‖ ≤
‖u− v‖ ∀v ∈ C. The operator PC is said to be the metric projection from H to C.

Proposition 1. The following hold in real Hilbert spaces:
(i) 〈u− v, PCu− PCv〉 ≥ ‖PCu− PCv‖2 ∀u, v ∈ H;
(ii) 〈u− PCu, v− PCu〉 ≤ 0 ∀u ∈ H, v ∈ C;
(iii) ‖u− v‖2 − ‖u− PCu‖2 ≥ ‖v− PCu‖2 ∀u ∈ H, v ∈ C;
(iv) ‖u− v‖2 + 2〈u− v, v〉 = ‖u‖2 − ‖v‖2 ∀u, v ∈ H;
(v) ‖λu + (1− λ)v‖2 + λ(1− λ)‖u− v‖2 = λ‖u‖2 + (1− λ)‖v‖2 ∀u, v ∈ H, λ ∈ [0, 1].

An operator S : H → H is called an averaged one if ∃α ∈ (0, 1) s.t. S = (1− α)I + αT, where I
is the identity operator of H and T : H → H is a nonexpansive operator. In this case, S is also called
α-averaged. It is clear that the averaged operator S is also nonexpansive and Fix(S) = Fix(T).

Lemma 1. [2] If the mappings {Ti}N
i=1 defined on H are averaged and have a common fixed point, then

∩N
i=1Fix(Ti) = Fix(T1T2 · · · TN).

The next result immediately follows from the subdifferential inequality of the function ‖ · ‖2/2.

Lemma 2. The following inequality holds,

‖u + v‖2 − ‖u‖2 ≤ 2〈v, u + v〉 ∀u, v ∈ H.

Lemma 3. [39] Assume that the mapping A is pseudomonotone and continuous on C. Given a point u ∈ C.
Then the relation holds: 〈Au, v− u〉 ≥ 0 ∀v ∈ C ⇔ 〈Av, v− u〉 ≥ 0 ∀v ∈ C.
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Lemma 4. [40] Let {tn} be a sequence in [0,+∞) satisfying the condition tn+1 ≤ snbn + (1− sn)tn ∀n ≥ 1,
where {sn} and {bn} lie in R := (−∞, ∞) s.t. (a) {sn} ⊂ [0, 1] and ∑∞

n=1 sn = ∞, and (b) lim supn→∞ bn ≤
0 or ∑∞

n=1 |snbn| < ∞. Then tn → 0 as n→ ∞.

Definition 1. An operator S : C → H is called ζ-strictly pseudocontractive iff ∃ζ ∈ [0, 1) s.t. ‖Su− Sv‖2 −
ζ‖(I − S)u− (I − S)v‖2 ≤ ‖u− v‖2 ∀u, v ∈ C.

Lemma 5. [41] Assume that S : C → H is ζ-strictly pseudocontractive. Define T : C → H by Tu =

µSu + (1− µ)u ∀u ∈ C. If µ ∈ [ζ, 1), T is nonexpansive such that Fix(T) = Fix(S).

Lemma 6. [42] Let ` ∈ (0, 1], S : C → H be nonexpansive, and S` : C → H be defined as S`u :=
Su − `µF(Su) ∀u ∈ C, where F is κ-Lipschitzian and η-strongly monotone self-mapping on H. Then,
S` is a contractive map provided 0 < µ < 2η

κ2 , i.e., ‖S`u − S`v‖ ≤ (1− `τ)‖u − v‖ ∀u, v ∈ C, where
τ = 1−

√
1− µ(2η − µκ2) ∈ (0, 1].

Lemma 7. [43] Assume that the Banach space X admits a weakly continuous duality mapping; the subset
C ⊂ X is nonempty, convex, and closed; and the asymptotically nonexpansive mapping S : C → C has a fixed
point. Then, I− S is demiclosed at zero, i.e., if the sequence {un} ⊂ C satisfies un ⇀ u ∈ C and un− Sun → 0,
then u ∈ Fix(S).

3. Main Results

In this section, we always suppose the following conditions.

• T is an asymptotically nonexpansive operator on H with {θn} and {Ti}N
i=1 are N nonexpansive

operators on H.
• A is L-Lipschitzian, pseudomonotone on H, and sequentially weakly continuous on C, s.t. Ω =

∩N
i=0Fix(Ti) ∩VI(C, A) 6= ∅ with T0 := T.

• f is a contractive map on H with coefficient δ ∈ [0, 1), and F is κ-Lipschitzian, η-strongly monotone
on H.

• νδ < τ := 1−
√

1− ρ(2η − ρκ2) for ν ≥ 0 and ρ ∈ (0, 2η

κ2 ).
• Ti,n := (1− δi,n)I + δi,nTi and δi,n ∈ (0, 1) for i = 1, 2, ..., N.
• {σn} ⊂ [0, 1] and {αn}, {βn}, {γn} ⊂ (0, 1) such that

(i) supn≥1
σn
αn

< ∞ and limn→∞
θn
αn

= 0;

(ii) ∑∞
n=1 αn = ∞ and limn→∞ αn = 0;

(iii) {βn} ⊂ [σ, 1) and limn→∞ βn = β < 1;

(iv) lim supn→∞ γn < 1, lim infn→∞ γn > 0 and αn + γn ≤ 1 ∀n ≥ 1. For example, take

αn =
1

n + 1
, σn =

1
(n + 1)2 = θn, βn =

n
2(n + 1)

, γn =
n

4(n + 1)
.

Remark 1. For Step 2 in Algorithm 3, the composite mapping TN,nTN−1,n · · · T1,n with Ti,n := (1− δi,n)I +
δi,nTi and δi,n ∈ (0, 1) for i = 1, 2, ..., N, has the following property,

∩N
i=1Fix(Ti) = ∩N

i=1Fix(Ti,n) = Fix(TN,nTN−1,n · · · T1,n) ∀n ≥ 1,

due to Lemmas 1 and 5.
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Algorithm 3: MISEA I

1 Initial Step: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
2 Iteration Steps: Compute xn+1 in what follows.

Step 1. Put un = xn − σn(xn−1 − xn) and calculate yn = PC(un − `n Aun), where `n is chosen to
be the largest ` ∈ {γ, γl, γl2, ...} satisfying

`‖Aun − Ayn‖ ≤ µ‖un − yn‖. (6)

Step 2. Calculate zn = βnxn + (1− βn)TN,nTN−1,n · · · T1,nPCn(un − `n Ayn) with
Cn := {u ∈ H : 〈un − `n Aun − yn, u− yn〉 ≤ 0}.

Step 3. Calculate
xn+1 = αnν f (xn) + γnxn + ((1− γn)I − αnρF)Tnzn. (7)

Update n := n + 1 and return to Step 1.

Lemma 8. The Armijo-like search rule (6) is defined well, and the following holds: min{γ, µl
L } ≤ `n ≤ γ.

Proof. As A is L-Lipschitzian, we get µ
L‖Aun − APC(un − γlm Aun)‖ ≤ µ‖un − PC(un − γlm Aun)‖.

Therefore, (6) is valid for γlm ≤ µ
L . This means that `n is defined well. It is clear that `n ≤ γ. In the

case of `n = γ, the inequality holds. In the case of `n < γ, from (6) it follows that ‖Aun − APC(un −
`n
l Aun)‖ > µ

`n
l
‖un − PC(un − `n

l Aun)‖. Thus, from the L-Lipschitzian property of A, we get `n > µl
L .

Consequently, the inequality holds.

Lemma 9. Let {un}, {yn}, {zn} be the sequences generated by Algorithm 3. Then

‖zn −ω‖2 ≤ βn‖xn −ω‖2 + (1− βn)‖un −ω‖2

− (1− βn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] ∀ω ∈ Ω, n ≥ 1,
(8)

where vn := PCn(un − `n Ayn).

Proof. First, take an arbitrary p ∈ Ω ⊂ C ⊂ Cn. We note that

2‖vn − p‖2 = 2‖PCn(un − `n Ayn)− PCn p‖2 ≤ 2〈vn − p, un − `n Ayn − p〉
= ‖vn − p‖2 + ‖un − p‖2 − ‖vn − un‖2 − 2〈vn − p, `n Ayn〉.

So, it follows that ‖vn − p‖2 ≤ ‖un − p‖2 − ‖vn − un‖2 − 2〈vn − p, `n Ayn〉, which together with (6)
and the pseudomonotonicity of A, deduces that 〈Ayn, yn − p〉 ≥ 0 and

‖vn − p‖2 ≤ ‖un − p‖2 − ‖vn − un‖2 + 2`n(〈Ayn, p− yn〉+ 〈Ayn, yn − vn〉)
≤ ‖un − p‖2 − ‖vn − un‖2 + 2`n〈Ayn, yn − vn〉
= ‖un − p‖2 − ‖vn − yn‖2 − ‖yn − un‖2 + 2〈un − `n Ayn − yn, vn − yn〉.

(9)

As vn = PCn(un − `n Ayn) with Cn := {u ∈ H : 〈un − `n Aun − yn, u − yn〉 ≤ 0}, we have 〈un −
`n Aun − yn, vn − yn〉 ≤ 0, which together with (6), implies that

2〈un − `n Ayn − yn, vn − yn〉 = 2〈un − `n Aun − yn, vn − yn〉+ 2`n〈Aun − Ayn, vn − yn〉
≤ 2µ‖un − yn‖‖vn − yn‖ ≤ µ(‖un − yn‖2 + ‖vn − yn‖2).

Therefore, substituting the last inequality for (9), we obtain

‖vn − p‖2 ≤ ‖un − p‖2 − (1− µ)‖un − yn‖2 − (1− µ)‖vn − yn‖2 ∀p ∈ Ω, (10)
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which together with Algorithm 3 and Fix(TN,nTN−1,n · · · T1,n) = ∩N
i=1Fix(Ti,n) = ∩N

i=1Fix(Ti), due to
Lemmas 1 and 5 implies that for all ω ∈ Ω,

‖zn −ω‖2 ≤ βn‖xn −ω‖2 + (1− βn)‖TN,nTN−1,n · · · T1,nvn −ω‖2

≤ βn‖xn −ω‖2 + (1− βn)‖vn −ω‖2

≤ βn‖xn −ω‖2 + (1− βn)[‖un −ω‖2 − (1− µ)‖un − yn‖2 − (1− µ)‖vn − yn‖2]

= βn‖xn −ω‖2 + (1− βn)‖un −ω‖2 − (1− βn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2].

This completes the proof.

Lemma 10. Let {un}, {xn}, {yn}, and {zn} be bounded vector sequences generated by Algorithm 3. If
Tnxn − Tn+1xn → 0, xn − xn+1 → 0, un − yn → 0, un − zn → 0 and ∃{wnk} ⊂ {un} such that
wnk ⇀ z ∈ H, then z ∈ Ω.

Proof. From Algorithm 3, we get un− xn = σn(xn− xn−1) ∀n ≥ 1, and therefore ‖un− xn‖ = σn‖xn−
xn−1‖ ≤ ‖xn − xn−1‖. Utilizing the assumption xn − xn+1 → 0, we have un − xn → 0. So, it follows
from the assumption un − yn → 0, that ‖xn − yn‖ ≤ ‖xn − un‖+ ‖un − yn‖ → 0 (n→ ∞). Therefore,
according to the assumption un − zn → 0, we get ‖xn − zn‖ ≤ ‖xn − un‖+ ‖un − zn‖ → 0 (n→ ∞).
Furthermore, in terms of Lemma 9 we deduce that for each ω ∈ Ω,

(1− βn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2]

≤ βn‖xn −ω‖2 + (1− βn)‖un −ω‖2 − ‖zn −ω‖2

≤ βn‖xn −ω‖2 + (1− βn)(‖xn −ω‖+ ‖xn − xn−1‖)2 − ‖zn −ω‖2

= βn‖xn −ω‖2 + (1− βn)[‖xn −ω‖2 + ‖xn − xn−1‖(2‖xn −ω‖+ ‖xn − xn−1‖)]− ‖zn −ω‖2

= ‖xn −ω‖2 − ‖zn −ω‖2 + (1− βn)‖xn − xn−1‖(2‖xn −ω‖+ ‖xn − xn−1‖)
≤ (‖xn −ω‖+ ‖zn −ω‖)‖xn − zn‖+ ‖xn − xn−1‖(2‖xn −ω‖+ ‖xn − xn−1‖).

As limn→∞(1− βn) = (1− β) > 0, µ ∈ (0, 1), xn − xn+1 → 0 and xn − zn → 0, from the boundedness
of {xn}, {zn} we get

lim
n→∞

‖un − yn‖ = 0 and lim
n→∞

‖vn − yn‖ = 0.

Thus we obtain that ‖xn − vn‖ ≤ ‖xn − un‖+ ‖un − yn‖+ ‖yn − vn‖ → 0 (n→ ∞).

Now, according to (7) in Algorithm 3, we have

xn+1 − xn = (1− γn)(Tnzn − xn)− αnρFTnzn + αnν f (xn)

= (1− γn)(Tnzn − Tnxn) + (1− γn)(Tnxn − xn)− αnρFTnzn + αnν f (xn).

So it follows that

(1− γn)‖Tnxn − xn‖ = ‖xn+1 − xn − αnν f (xn)− (1− γn)(Tnzn − Tnxn) + αnρFTnzn‖
≤ ‖xn+1 − xn‖+ αn(‖ν f (xn)‖+ ‖ρFTnzn‖) + (1− γn)‖Tnzn − Tnxn‖
≤ ‖xn+1 − xn‖+ αn(‖ν f (xn)‖+ ‖ρFTnzn‖) + (1 + θn)‖zn − xn‖.

Since lim infn→∞(1−γn) > 0, αn → 0, θn → 0, xn− xn+1 → 0 and xn− zn → 0, from the boundedness
of {xn}, {zn} and the Lipschitz continuity of f , F, T, we infer that

lim
n→∞

‖xn − Tnxn‖ = 0. (11)
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Also, let the mapping W : H → H be defined as Wx := βx + (1− β)TN,nTN−1,n · · · T1,nx, where
β ∈ [σ, 1). By Lemma 5 we know that W is nonexpansive self-mapping on H and Fix(W) = ∩N

i=1Fix(Ti).
We observe that

‖Wxn − xn‖ ≤ ‖Wxn − zn‖+ ‖zn − xn‖
= ‖(β− βn)(xn − TN,nTN−1,n · · · T1,nxn) + (1− βn)(TN,nTN−1,n · · · T1,nxn − Tn

NTn
N−1 · · · Tn

1 vn)‖
+ ‖zn − xn‖
≤ |β− βn|‖xn − TN,nTN−1,n · · · T1,nxn‖+ (1− βn)‖TN,nTN−1,n · · · T1,nxn − Tn

NTn
N−1 · · · Tn

1 vn‖
+ ‖zn − xn‖
≤ |β− βn|‖xn − TN,nTN−1,n · · · T1,nxn‖+ ‖xn − vn‖+ ‖zn − xn‖.

Since {xn} is bounded and the composite TN,nTN−1,n · · · T1,n is nonexpansive, from limn→∞ βn =

β, xn − vn → 0 and xn − zn → 0 we deduce that

lim
n→∞

‖xn −Wxn‖ = 0. (12)

Noticing yn = PC(un − `n Aun), we get 〈un − `n Aun − yn, x− yn〉 ≤ 0 ∀x ∈ C, and hence

1
`n
〈un − yn, x− yn〉+ 〈Aun, yn − un〉 ≤ 〈Aun, x− un〉 ∀x ∈ C. (13)

Then, by the boundedness of {unk} and Lipschitzian property of A, we know that {Aunk} is bounded.
Also, from un − yn → 0, we have that {ynk} is bounded as well. Observe that `n ≥ min{γ, µl

L }. So,
from (13), it follows that lim infk→∞〈Aunk , x− unk 〉 ≥ 0 ∀x ∈ C. Moreover, note that 〈Ayn, x− yn〉 =
〈Ayn−Aun, x−un〉+ 〈Aun, x−un〉+ 〈Ayn, un− yn〉. Since un− yn → 0, from L-Lipschitzian property
of A we get Aun − Ayn → 0, which together with (13) arrives at lim infk→∞〈Aynk , x− ynk 〉 ≥ 0 ∀x ∈ C.
We below claim that xn − Txn → 0. Indeed, observe that

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tnxn‖+ ‖Tnxn − xn‖
≤ (1 + θ1)‖xn − Tnxn‖+ ‖Tn+1xn − Tnxn‖+ ‖Tnxn − xn‖
= (2 + θ1)‖xn − Tnxn‖+ ‖Tn+1xn − Tnxn‖.

Therefore, from (11) and the assumption Tnxn − Tn+1xn → 0, we get

lim
n→∞

‖xn − Txn‖ = 0. (14)

We now select a sequence {εk} ⊂ (0, 1) s.t. εk ↓ 0 as k → ∞. For every k ≥ 1, we indicate by mk the
smallest natural number s.t.

〈Aynj , x− ynj〉+ εk ≥ 0 ∀j ≥ mk. (15)

As {εk} is decreasing, {mk} obviously is increasing. Considering that {ymk} ⊂ C ensures Aymk 6=
0 ∀k ≥ 1, we put νmk =

Aymk
‖Aymk ‖

2 , we have 〈Aymk , νmk 〉 = 1 ∀k ≥ 1. Therefore, from (15), we have

〈Aymk , x+ εkνmk − ymk 〉 ≥ 0 ∀k ≥ 1. Also, from the pseudomonotonicity of A we get 〈A(x+ εkνmk ), x+
εkνmk − ymk 〉 ≥ 0 ∀k ≥ 1. This means that

〈Ax, x− ymk 〉 ≥ 〈Ax− A(x + εkνmk ), x + εkνmk − ymk 〉 − εk〈Ax, νmk 〉 ∀k ≥ 1. (16)

We show that limk→∞ εkνmk = 0. In fact, from unk ⇀ z and un − yn → 0, we get ynk ⇀ z. Hence,
{yn} ⊂ C ensures z ∈ C. Also, since A is sequentially weakly continuous, we infer that Aynk ⇀ Az.
So, we get Az 6= 0 (otherwise, z is a solution). Utilizing the sequentially weak lower semicontinuity
of the norm ‖ · ‖, we have 0 < ‖Az‖ ≤ lim infk→∞ ‖Aynk‖. Since {ymk} ⊂ {ynk} and εk ↓ 0 as k→ ∞,
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we deduce that 0 ≤ lim supk→∞ ‖εkνmk‖ = lim supk→∞
εk

‖Aymk ‖
≤ lim supk→∞ εk

lim infk→∞ ‖Aynk ‖
= 0. Thus we have

εkµmk → 0.
Finally, we claim z ∈ Ω. In fact, from un − xn → 0 and unk ⇀ z, we have xnk ⇀ z. By (14) we get

xnk − Txnk → 0. Because Lemma 7 ensures the demiclosedness of I − T at zero, we have z ∈ Fix(T).
Moreover, using un − xn → 0 and unk ⇀ z, we have xnk ⇀ z. Using (12) we get xnk −Wxnk → 0.
Using Lemma 7 we deduce that I −W has the demiclosedness at zero. So, we have (I −W)z = 0, i.e.,
z ∈ Fix(W) = ∩N

i=1Fix(Ti). In addition, taking k → ∞, we conclude that the right hand side of (16)
tends to zero according to the Lipschitzian property of A, the boundedness of {ymk}, {νmk} and the
limit limk→∞ εkνmk = 0. Consequently, we get 〈Ay, y− z〉 = lim infk→∞〈Ay, y− ymk 〉 ≥ 0 ∀y ∈ C. By
Lemma 3 we have z ∈ VI(C, A). So, z ∈ ∩N

i=0Fix(Ti) ∩VI(C, A) = Ω.

Remark 2. It is clear that the boundedness assumption of the generated sequences in Lemma 10 can be disposed
with when T is the identity.

Theorem 1. Assume that the sequence {xn} constructed by Algorithm 3 satisfies Tnxn − Tn+1xn → 0. Then

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − TN,nTN−1,n · · · T1,nxn → 0

where x∗ ∈ Ω is only a solution to the HVI: 〈(ν f − ρF)x∗, ω− x∗〉 ≤ 0 ∀ω ∈ Ω.

Proof. We first note that lim supn→∞ γn < 1 and lim infn→∞ γn > 0. Then, we may suppose that
{γn} ⊂ [a, b] ⊂ (0, 1). We show that PΩ(ν f + I − ρF) is a contractive map. In fact, using Lemma 6
we get

‖PΩ(ν f + I − ρF)u− PΩ(ν f + I − ρF)v‖ ≤ ν‖ f (u)− f (v)‖+ ‖(I − ρF)u− (I − ρF)v‖
≤ νδ‖u− v‖+ (1− τ)‖u− v‖ = [1− (τ − νδ)]‖u− v‖ ∀u, v ∈ H.

This means that PΩ(ν f + I − ρF) has only a fixed point x∗ ∈ H, i.e., x∗ = PΩ(ν f + I − ρF)x∗.
Accordingly, there is only a solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) to the VIP

〈(ν f − ρF)x∗, ω− x∗〉 ≤ 0 ∀ω ∈ Ω. (17)

It is now easy to see that the necessity of the theorem is valid. Indeed, if xn → x∗ ∈ Ω = ∩N
i=0Fix(Ti) ∩

VI(C, A), then T1x∗ = x∗, ..., TN x∗ = x∗, which together with ∩N
i=1Fix(Ti) = ∩N

i=1Fix(Ti,n) =

Fix(Tn
NTn

N−1 · · · Tn
1 ) (due to Lemmas 1 and 5), imply that ‖xn − xn+1‖ ≤ ‖xn − x∗‖+ ‖xn+1 − x∗‖ →

0 (n→ ∞), and

‖xn − Tn
NTn

N−1 · · · Tn
1 xn‖ ≤ ‖xn − x∗‖+ ‖Tn

NTn
N−1 · · · Tn

1 xn − x∗‖
≤ ‖xn − x∗‖+ ‖xn − x∗‖ = 2‖xn − x∗‖ → 0 (n→ ∞).

We below claim the sufficiency of the theorem. For this purpose, we suppose limn→∞(‖xn − xn+1‖+
‖xn − TN,nTN−1,n · · · T1,nxn‖) = 0 and prove the sufficiency by the following steps.

Step 1. We claim the boundedness of {xn}. In fact, noticing limn→∞
θn
αn

= 0, we know that θn ≤
αn(τ−νδ)

2 ∀n ≥ n0 for some n0 ≥ 1. Therefore, we have that for all n ≥ n0,

αnνδ + γn + (1− γn − αnτ)(1 + θn) ≤ 1− αn(τ − νδ) + θn ≤ 1− αn(τ − νδ)

2
.
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Let p be an arbitrary point in Ω = ∩N
i=0Fix(Ti)∩VI(C, A). Then Tp = p, Ti p = p, i = 1, ..., N, and (10)

is true, that is,

‖vn − p‖2 + (1− µ)‖un − yn‖2 + (1− µ)‖vn − yn‖2 ≤ ‖un − p‖2. (18)

Thus, we obtain
‖vn − p‖ ≤ ‖un − p‖ ∀n ≥ 1. (19)

From the definition of un, we have

‖un − p‖ ≤ ‖xn − p‖+ σn‖xn − xn−1‖ = ‖xn − p‖+ αn ·
σn

αn
‖xn − xn−1‖. (20)

From supn≥1
σn
αn

< ∞ and supn≥1 ‖xn − xn−1‖ < ∞, we infer that supn≥1
σn
αn
‖xn − xn−1‖ < ∞, which

immediately yields that ∃M1 > 0 s.t.

σn

αn
‖xn − xn−1‖ ≤ M1 ∀n ≥ 1. (21)

Using (19)–(21), we obtain

‖vn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖+ αn M1 ∀n ≥ 1. (22)

Accordingly, by Algorithm 3, Lemma 6 and (22) we conclude that for all n ≥ n0,

‖zn − p‖ = ‖(1− βn)(TN,nTN−1,n · · · T1,nvn − p) + βn(xn − p)‖
≤ (1− βn)‖TN,nTN−1,n · · · T1,nvn − p‖+ βn‖xn − p‖
≤ (1− βn)(‖xn − p‖+ αn M1) + βn‖xn − p‖ ≤ ‖xn − p‖+ αn M1,

(23)

and therefore

‖xn+1 − p‖ = ‖γn(xn − p) + αn(ν f (xn)− ρFp) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p‖
≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖+ γn‖xn − p‖
+ ‖((1− γn)I − αnρF)Tnzn − ((1− γn)I − αnρF)p‖

= αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖+ γn‖xn − p‖
+ (1− γn)‖(I − αn

1−γn
ρF)Tnzn − (I − αn

1−γn
ρF)p‖

≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖+ γn‖xn − p‖
+ (1− γn)(1− αn

1−γn
τ)(1 + θn)‖zn − p‖

≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖
+ γn‖xn − p‖+ (1− γn − αnτ)(1 + θn)(‖xn − p‖+ αn M1)

= [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖
+ (1− γn − αnτ)(1 + θn)αn M1 + αn‖(ν f − ρF)p‖
≤ [1− αn(τ−νδ)

2 ]‖xn − p‖+ αn(τ−νδ)
2 · 2(M1+‖(ν f−ρF)p‖)

τ−νδ

≤ max{ 2(M1+‖(ν f−ρF)p‖)
τ−νδ , ‖xn − p‖}.

By induction, we conclude that ‖xn − p‖ ≤ max{ 2(M1+‖(ρF−ν f )p‖)
τ−νδ , ‖xn0 − p‖} ∀n ≥ n0. Therefore, we

get the boundedness of vector sequence {xn}.

Step 2. We claim that ∃M4 > 0 s.t. ∀n ≥ n0,

(1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] ≤ ‖xn − p‖2− ‖xn+1− p‖2 + αn M4.
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In fact, using Lemma 6, Lemma 9, and the convexity of ‖ · ‖2, from αn + γn ≤ 1, we obtain that for all
n ≥ n0,

‖xn+1 − p‖2 = ‖αnν( f (xn)− f (p)) + γn(xn − p) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p + αn(ν f − ρF)p‖2

≤ ‖αnν( f (xn)− f (p)) + γn(xn − p) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p‖2 + 2αn〈(ν f − ρF)p, xn+1 − p〉
= ‖αnν( f (xn)− f (p)) + γn(xn − p) + (1− γn)[(I − αn

1−γn
ρF)Tnzn

− (I − αn
1−γn

ρF)p]‖2 + 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ [αnνδ‖xn − p‖+ γn‖xn − p‖+ (1− γn)(1− αn

1−γn
τ)(1 + θn)‖zn − p‖]2

+ 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ αnνδ‖xn − p‖2 + γn‖xn − p‖2 + (1− γn − αnτ)(1 + θn)‖zn − p‖2

+ 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ αnνδ‖xn − p‖2 + γn‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[βn‖xn − p‖2

+ (1− βn)‖un − p‖2 − (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2,

(24)

where supn≥1 2‖(ν f − ρF)p‖‖xn+1 − p‖ ≤ M2 for some M2 > 0. Also, from (22), we get

‖un − p‖2 ≤ ‖xn − p‖2 + αn(2M1‖xn − p‖+ αn M2
1) ≤ ‖xn − p‖2 + αn M3, (25)

where supn≥1{2M1‖xn − p‖ + αn M2
1} ≤ M3 for some M3 > 0. Note that αnνδ + γn + (1 − γn −

αnτ)(1 + θn) ≤ 1− αn(τ−νδ)
2 for all n ≥ n0. Substituting (25) for (24), we deduce that for all n ≥ n0,

‖xn+1 − p‖2

≤ αnνδ‖xn − p‖2 + γn‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[βn‖xn − p‖2

+ (1− βn)(‖xn − p‖2 + αn M3)− (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2

≤ [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖2

+ (1− γn − αnτ)(1 + θn)[αn M3 − (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2

≤ (1− αn(τ−νδ)
2 )‖xn − p‖2 − (1− γn − αnτ)(1− βn)(1 + θn)(1− µ)×

× [‖un − yn‖2 + ‖vn − yn‖2] + αn M2 + αn M3

≤ ‖xn − p‖2 − (1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] + αn M4,

where M4 := M2 + M3. This immediately implies that for all n ≥ n0,

(1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4.
(26)

Step 3. We claim that ∃M > 0 s.t. ∀n ≥ n0,

‖xn+1 − p‖2 ≤ [1− αn(τ−νδ)
2 ]‖xn − p‖2 + αn(τ−νδ)

2 [ 4
τ−νδ 〈(ν f − ρF)p, xn+1 − p〉

+ σn
αn
· 2M

τ−νδ‖xn − xn−1‖].

In fact, we get

‖un − p‖2 ≤ (‖xn − p‖+ σn‖xn − xn−1‖)2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖M, (27)

with supn≥1{2‖xn − p‖+ σn‖xn − xn−1‖} ≤ M for some M > 0. Note that αnνδ + γn + (1− γn −
αnτ)(1 + θn) ≤ 1− αn(τ−νδ)

2 for all n ≥ n0. Thus, combining (24) and (27), we have that for all n ≥ n0,
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‖xn+1 − p‖2 ≤ αnνδ‖xn − p‖2 + γn‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[‖xn − p‖2

+ σn‖xn − xn−1‖M] + 2αn〈(ν f − ρF)p, xn+1 − p〉
= [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖2

+ (1− γn − αnτ)(1 + θn)σn‖xn − xn−1‖M + 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ [1− αn(τ−νδ)

2 ]‖xn − p‖2 + αn(τ−νδ)
2 [ 4〈(ν f−ρF)p,xn+1−p〉

τ−νδ + σn
αn
· ‖xn−xn−1‖2M

τ−νδ ].

(28)

Step 4. We claim that xn → x∗ ∈ Ω, which is only a solution to the VIP (17). In fact, setting p = x∗, we
obtain from (28) that

‖xn+1 − x∗‖2 ≤ [1− αn(τ−νδ)
2 ]‖xn − x∗‖2 + αn(τ−νδ)

2 [ 4
τ−νδ 〈(ν f − ρF)x∗, xn+1 − x∗〉

+ σn
αn
· 2M

τ−νδ‖xn − xn−1‖].
(29)

According to Lemma 4, it is sufficient to prove that lim supn→∞〈(ν f − ρF)x∗, xn+1 − x∗〉 ≤ 0. As
xn − xn+1 → 0, αn → 0, βn → β < 1 and θn → 0, from (26) and {γn} ⊂ [a, b] ⊂ (0, 1), we have

lim sup
n→∞

(1− b− αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2]

≤ lim sup
n→∞

(1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2]

≤ lim sup
n→∞

(‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖ = 0.

This immediately implies that

lim
n→∞

‖un − yn‖ = 0 and lim
n→∞

‖vn − yn‖ = 0. (30)

In addition, it is clear that ‖un − xn‖ = σn‖xn − xn−1‖ ≤ ‖xn − xn−1‖ → 0 (n → ∞), and hence
‖xn− yn‖ ≤ ‖xn− un‖+ ‖un− yn‖ → 0 (n→ ∞). So it follows from (30) that ‖xn− vn‖ ≤ ‖xn− yn‖+
‖yn − vn‖ → 0 (n → ∞). Thus, from Algorithm 3 and the assumption xn − Tn

NTn
N−1 · · · Tn

1 xn → 0,
we obtain

‖zn − xn‖ = (1− βn)‖TN,nTN−1,n · · · T1,nvn − xn‖ ≤ ‖TN,nTN−1,n · · · T1,nvn − xn‖
≤ ‖TN,nTN−1,n · · · T1,nvn − TN,nTN−1,n · · · T1,nxn‖+ ‖TN,nTN−1,n · · · T1,nxn − xn‖
≤ ‖vn − xn‖+ ‖TN,nTN−1,n · · · T1,nxn − xn‖ → 0 (n→ ∞).

(31)

As xn − yn → 0, xn − zn → 0 and un − xn → 0, we deduce that as n→ ∞,

‖un − yn‖ ≤ ‖un − xn‖+ ‖xn − yn‖ → 0 and ‖un − zn‖ ≤ ‖un − xn‖+ ‖xn − zn‖ → 0. (32)

On the other hand, from the boundedness of {xn}, it follows that ∃{xnk} ⊂ {xn} s.t.

lim sup
n→∞

〈(ν f − ρF)x∗, xn − x∗〉 = lim
k→∞
〈(ν f − ρF)x∗, xnk − x∗〉. (33)

Utilizing the reflexivity of H and the boundedness of {xn}, one may suppose that xnk ⇀ x̃. Therefore,
one gets from (33),

lim sup
n→∞

〈(ν f − ρF)x∗, xn − x∗〉 = 〈(ν f − ρF)x∗, x̃− x∗〉. (34)

It is easy to see from un − xn → 0 and xnk ⇀ x̃ that wnk ⇀ x̃. Since Tnxn − Tn+1xn → 0, xn − xn+1 →
0, un − yn → 0, un − zn → 0 and wnk ⇀ x̃, from Lemma 10 we get x̃ ∈ Ω. Therefore, from (17) and
(34), we infer that

lim sup
n→∞

〈(ν f − ρF)x∗, xn − x∗〉 = 〈(ν f − ρF)x∗, x̃− x∗〉 ≤ 0,



Mathematics 2019, 7, 881 13 of 19

which together with xn − xn+1 → 0, implies that

lim sup
n→∞

〈(ν f − ρF)x∗, xn+1 − x∗〉

= lim sup
n→∞

[〈(ν f − ρF)x∗, xn+1 − xn〉+ 〈(ν f − ρF)x∗, xn − x∗〉]

= 〈(ν f − ρF)x∗, x̃− x∗〉 ≤ 0.

(35)

Observe that { αn(τ−νδ)
2 } ⊂ [0, 1], ∑∞

n=1
αn(τ−νδ)

2 = ∞, and

lim sup
n→∞

[
4

τ − νδ
〈(ν f − ρF)x∗, xn+1 − x∗〉+ σn

αn
· 2M

τ − νδ
‖xn − xn−1‖] ≤ 0. (36)

Consequently, by Lemma 4 we obtain from (29) that ‖xn − x∗‖ → 0 as n→ ∞.
Next, we introduce another mildly inertial subgradient extragradient algorithm with

line-search process.

It is remarkable that Lemmas 8 and 9 remain true for Algorithm 4.

Algorithm 4: MISEA II

1 Initial Step: Given x0, x1 ∈ H arbitrary. Let γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
2 Iteration Steps: Compute xn+1 in what follows:

Step 1. Put un = xn − σn(xn−1 − xn) and calculate yn = PC(un − `n Aun), where `n is chosen to
be the largest ` ∈ {γ, γl, γl2, ...} satisfying

`‖Aun − Ayn‖ ≤ µ‖un − yn‖. (37)

Step 2. Calculate zn = βnxn + (1− βn)TN,nTN−1,n · · · T1,nPCn(un − `n Ayn) with
Cn := {u ∈ H : 〈un − `n Aun − yn, u− yn〉 ≤ 0}.

Step 3. Calculate
xn+1 = γnun + ((1− γn)I − αnρF)Tnzn + αnν f (xn). (38)

Update n := n + 1 and return to Step 1.

Theorem 2. Assume that the sequence {xn} constructed by Algorithm 4 satisfies Tnxn − Tn+1xn → 0. Then,

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − TN,nTN−1,n · · · T1,nxn → 0

where x∗ ∈ Ω is only a solution to the HVI: 〈(ν f − ρF)x∗, ω− x∗〉 ≤ 0 ∀ω ∈ Ω.

Proof. Using the similar inference to that in the proof of Theorem 1, we obtain that there is only a
solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) to the HVI (17), and that the necessity of the theorem is true.
We claim the sufficiency of the theorem below. For this purpose, we suppose limn→∞(‖xn −

xn+1‖+ ‖xn − TN,nTN−1,n · · · T1,nxn‖) = 0 and prove the sufficiency by the following steps.

Step 1. We claim the boundedness of {xn}. In fact, using the similar reasoning to that in Step 1 for
the proof of Theorem 1, we know that inequalities (18)–(23) hold. Taking into account limn→∞

θn
αn

= 0,

we know that θn ≤ αn(τ−νδ)
2 ∀n ≥ n0 for some n0 ≥ 1. Hence we deduce that for all n ≥ n0,

αnνδ + γn + (1− γn − αnτ)(1 + θn) ≤ 1− αn(τ − νδ) + θn ≤ 1− αn(τ − νδ)

2
.
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Also, from Algorithm 4, Lemma 6, and (22) and (23) we obtain

‖xn+1 − p‖ = ‖γn(un − p) + αn(ν f (xn)− ρFp) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p‖
≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖+ γn‖un − p‖
+ (1− γn)‖(I − αn

1−γn
ρF)Tnzn − (I − αn

1−γn
ρF)p‖

≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖+ γn‖un − p‖
+ (1− γn)(1− αn

1−γn
τ)(1 + θn)‖zn − p‖

≤ αnνδ‖xn − p‖+ αn‖(ν f − ρF)p‖
+ γn(‖xn − p‖+ αn M1) + (1− γn − αnτ)(1 + θn)(‖xn − p‖+ αn M1)

= [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖
+ [γn + (1− γn − αnτ)(1 + θn)]αn M1 + αn‖(ν f − ρF)p‖
≤ [1− αn(τ−νδ)

2 ]‖xn − p‖+ αn(τ−νδ)
2 · 2(M1+‖(ν f−ρF)p‖)

τ−νδ

≤ max{ 2(M1+‖(ν f−ρF)p‖)
τ−νδ , ‖xn − p‖}.

By induction, we conclude that ‖xn − p‖ ≤ max{ 2(M1+‖(ρF−ν f )p‖)
τ−νδ , ‖xn0 − p‖} ∀n ≥ n0. Therefore, we

obtain the boundedness of vector sequence {xn}.

Step 2. One claims ∃M4 > 0 s.t. ∀n ≥ n0,

(1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] ≤ ‖xn − p‖2− ‖xn+1− p‖2 + αn M4.

In fact, using Lemma 6, Lemma 9, and the convexity of ‖ · ‖2, from αn + γn ≤ 1, we obtain that for all
n ≥ n0,

‖xn+1 − p‖2 = ‖γn(un − p) + αnν( f (xn)− f (p)) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p + αn(ν f − ρF)p‖2

≤ ‖αnν( f (xn)− f (p)) + γn(un − p) + ((1− γn)I − αnρF)Tnzn

− ((1− γn)I − αnρF)p‖2 + 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ [αnνδ‖xn − p‖+ γn‖un − p‖+ (1− γn − αnτ)(1 + θn)‖zn − p‖]2
+ 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ αnνδ‖xn − p‖2 + γn‖un − p‖2 + (1− γn − αnτ)(1 + θn)‖zn − p‖2

+ 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ αnνδ‖xn − p‖2 + γn‖un − p‖2 + (1− γn − αnτ)(1 + θn)[βn‖xn − p‖2

+ (1− βn)‖un − p‖2 − (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2,

(39)

where supn≥1 2‖(ν f − ρF)p‖‖xn+1 − p‖ ≤ M2 for some M2 > 0. Also, from (22) we have

‖un − p‖2 ≤ ‖xn − p‖2 + αn M3, (40)

where supn≥1{2M1‖xn − p‖ + αn M2
1} ≤ M3 for some M3 > 0. Note that αnνδ + γn + (1 − γn −

αnτ)(1 + θn) ≤ 1− αn(τ−νδ)
2 for all n ≥ n0. Substituting (40) for (39), we deduce that for all n ≥ n0,

‖xn+1 − p‖2

≤ γn(‖xn − p‖2 + αn M3) + αnνδ‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[‖xn − p‖2

+ αn M3 − (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2

= [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖2 + γnαn M3

+ (1− γn − αnτ)(1 + θn)[αn M3 − (1− βn)(1− µ)(‖un − yn‖2 + ‖vn − yn‖2)] + αn M2

≤ (1− αn(τ−νδ)
2 )‖xn − p‖2 − (1− γn − αnτ)(1− βn)(1 + θn)(1− µ)×

× [‖un − yn‖2 + ‖vn − yn‖2] + αn M2 + αn M3

≤ ‖xn − p‖2 − (1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] + αn M4,
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where M4 := M2 + M3. This immediately implies that for all n ≥ n0,

(1− γn − αnτ)(1− βn)(1 + θn)(1− µ)[‖un − yn‖2 + ‖vn − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1− p‖2 + αn M4.
(41)

Step 3. One claims that ∃M > 0 s.t. ∀n ≥ n0,

‖xn+1 − p‖2 ≤ [1− αn(τ−νδ)
2 ]‖xn − p‖2 + αn(τ−νδ)

2 [ 4
τ−νδ 〈(ν f − ρF)p, xn+1 − p〉

+ σn
αn
· 2M

τ−νδ‖xn − xn−1‖].

In fact, we get
‖un − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖M, (42)

where supn≥1{2‖xn − p‖+ σn‖xn − xn−1‖} ≤ M for some M > 0. Observe that αnνδ + γn + (1−
γn − αnτ)(1 + θn) ≤ 1− αn(τ−νδ)

2 for all n ≥ n0. Thus, combining (39) and (42), we have that for all
n ≥ n0,

‖xn+1 − p‖2

≤ γn(‖xn − p‖2 + σn‖xn − xn−1‖M) + αnνδ‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[βn‖xn − p‖2

+ (1− βn)(‖xn − p‖2 + σn‖xn − xn−1‖M)] + 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ γn(‖xn − p‖2 + σn‖xn − xn−1‖M) + αnνδ‖xn − p‖2 + (1− γn − αnτ)(1 + θn)[‖xn − p‖2

+ σn‖xn − xn−1‖M] + 2αn〈(ν f − ρF)p, xn+1 − p〉
= [αnνδ + γn + (1− γn − αnτ)(1 + θn)]‖xn − p‖2 + γnσn‖xn − xn−1‖M
+ (1− γn − αnτ)(1 + θn)σn‖xn − xn−1‖M + 2αn〈(ν f − ρF)p, xn+1 − p〉
≤ [1− αn(τ−νδ)

2 ]‖xn − p‖2 + σn‖xn − xn−1‖M + 2αn〈(ν f − ρF)p, xn+1 − p〉
= [1− αn(τ−νδ)

2 ]‖xn − p‖2 + αn(τ−νδ)
2 [ 4〈(ν f−ρF)p,xn+1−p〉

τ−νδ + σn
αn
· ‖xn−xn−1‖2M

τ−νδ ].
(43)

Step 4. One claims that xn → x∗ ∈ Ω, which is only a solution to the VIP (17). In fact, using the
similar inference to that in Step 4 for the proof of Theorem 1, one derives the desired conclusion.

Example 1. We can get an example of T satisfying the condition assumed in Theorems 1 and 2. As a matter of
fact, we put H = R, whose inner product and induced norm are defined by 〈a, b〉 = ab and ‖ · ‖ = | · | indicate,
respectively. Let T : H → H be defined as Tx := sin( 7

8 x) ∀x ∈ H. Then T is a contraction with constant 7
8 ,

and hence a nonexpansive mapping. Thus, T is an asymptotically nonexpansive mapping. As

‖Tnx− Tny‖ ≤ 7
8
‖Tn−1x− Tn−1y‖ ≤ · · · ≤ (

7
8
)n‖x− y‖ ∀x, y ∈ H,

we know that for any sequence {xn} ⊂ H,

‖Tn+1xn − Tnxn‖ ≤ (
7
8
)n−1‖T2xn − Txn‖ = (

7
8
)n−1‖ sin(

7
8

Txn)− sin(
7
8

xn)‖ ≤ 2(
7
8
)n−1 → 0

as n→ ∞. That is, Tnxn − Tn+1xn → 0 (n→ ∞).

Remark 3. Compared with the corresponding results in Bnouhachem et al. [2], Cai et al. [35], Kraikaew and
Saejung [36], and Thong and Hieu [37,38], our results improve and extend them in what follows.

(i) The problem of obtaining a point of VI(C, A) in the work by the authors of [36] is extendable to the
development of our problem of obtaining a point of ∩N

i=0Fix(Ti) ∩VI(C, A), where T0 := T is asymptotically
nonexpansive and {Ti}N

i=1 is a pool of nonexpansive maps. The Halpern subgradient method for solving the VIP
in the work by the authors of [36] is extendable to the development of our mildly inertial subgradient algorithms
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with linesearch process for solving the VIP and CFPP.

(ii) The problem of obtaining a point of VI(C, A) in the work by the authors of [37] is extendable to the
development of our problem of finding a point of ∩N

i=0Fix(Ti) ∩ VI(C, A), where T0 := T is asymptotically
nonexpansive and {Ti}N

i=1 is a pool of nonexpansive maps. The inertial subgradient method with weak
convergence for solving the VIP in the work by the authors of [37] is extendable to the development of our mildly
inertial subgradient algorithms with linesearch process (which are convergent in norm) for solving the VIP and
CFPP.

(iii) The problem of obtaining a point of VI(C, A) ∩ Fix(T) (where A is monotone and T is quasi-nonexpansive)
in the work by the authors of [38] is extendable to the development of our problem of obtaining a point of
∩N

i=0Fix(Ti) ∩VI(C, A), where T0 := T is asymptotically nonexpansive and {Ti}N
i=1 is a pool of nonexpansive

maps. The inertial subgradient extragradient method with linesearch (which is weakly convergent) for solving
the VIP and FPP in the work by the authors of [38] is extendable to the development of our mildly inertial
subgradient algorithms with linesearch process (which are convergent in norm) for solving the VIP and CFPP. It
is worth mentioning that the inertial subgradient method with linesearch process in the work by the authors of
[38] combines the inertial subgradient approaches [37] with the Mann method.

(iv) The problem of obtaining a point in the common fixed-point set ∩N
i=1Fix(Ti) of N nonexpansive mappings

{Ti}N
i=1 in the work by the authors of [2], is extendable to the development of our problem of obtaining a

point of ∩N
i=0Fix(Ti) ∩ VI(C, A), where T0 := T is asymptotically nonexpansive and {Ti}N

i=1 is a pool of
nonexpansive maps. The iterative algorithm for hierarchical FPPs for finitely many nonexpansive mappings
in the work by the authors of [2] (i.e., iterative scheme (3) in this paper), is extendable to the development of
our mildly inertial subgradient algorithms with linesearch process for solving the VIP and CFPP. Meantime,
the restrictions lim supn→∞ γn < 1, lim infn→∞ γn > 0 and limn→∞ |δi

n−1 − δi,n| = 0 for i = 1, ..., N
imposed on (3), are dropped, where 0 < lim infn→∞ γn < lim supn→∞ γn < 1 is weakened to the condition
0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

(v) The problem of obtaining a point in the common solution set Ω of the VIPs for two inverse-strongly
monotone mappings and the FPP of an asymptotically nonexpansive mapping in the work by the authors
of [35], is extendable to the development of our problem of obtaining a point of ∩N

i=0Fix(Ti) ∩ VI(C, A)

where T0 := T is asymptotically nonexpansive and {Ti}N
i=1 is a pool of nonexpansive maps. The viscosity

implicit rule involving a modified extragradient method in the work by the authors of [35] (i.e., iterative
scheme (4) in this paper), is extendable to the development of our mildly inertial subgradient algorithms
with linesearch process for solving the VIP and CFPP. Moreover, the conditions ∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 ‖Tn+1yn − Tnyn‖ < ∞ imposed on (4), are deleted where ∑∞
n=1 ‖Tn+1yn − Tnyn‖ < ∞ is weakened to

the assumption ‖Tn+1xn − Tnxn‖ → 0 (n→ ∞).

4. Applications

In this section, our main theorems are used to deal with the VIP and CFPP in an illustrating
example. The initial point x0 = x1 is randomly chosen in R. Take ν f (x) = F(x) = 1

2 x, γ = l = µ =
1
2 , σn = αn = 1

n+1 , βn = 1
3 , γn = 1

2 , ν = 3
4 , f = 2

3 I and ρ = 2. Then, we know that αn +γn ≤ 1 ∀n ≥ 1,
νδ = κ = η = 1

2 , and

τ = 1−
√

1− ρ(2η − ρκ2) = 1−
√

1− 2(2 · 1
2
− 2(

1
2
)2) = 1 ∈ (0, 1].

We first provide an example of a Lipschitzian, pseudomonotone operator A, asymptotically
nonexpansive operator T, and nonexpansive operator T1 with Ω = Fix(T) ∩ Fix(T1) ∩VI(C, A) 6= ∅.
Let C = [−1, 3] and H = R with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |.
Let A, T, T1, Tn

1 : H → H be defined as Ax := 1
1+| sin x| −

1
1+|x| , Tx := 4

5 sin x, Tx := sin x and
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Tn
1 x := 3

8 x + 5
8 sin x ∀x ∈ H, n ≥ 1. Then it is clear that T1 is a nonexpansive mapping on H. Moreover,

from Lemma 5 we know that Fix(Tn
1 ) = Fix(T1) = {0} ∀n ≥ 1. Now, we first show that A is

Lipschitzian, pseudomonotone operator with L = 2. In fact, for all x, y ∈ H we get

‖Ax− Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ +

1
1+‖y‖ |

≤ | 1
1+‖ sin x‖ −

1
1+‖ sin y‖ |+ |

1
1+‖x‖ −

1
1+‖y‖ |

= | ‖ sin y‖−‖ sin x‖
(1+‖ sin x‖)(1+‖ sin y‖) |+ |

‖y‖−‖x‖
(1+‖x‖)(1+‖y‖) |

≤ ‖ sin x− sin y‖+ ‖x− y‖
≤ 2‖x− y‖.

This means that A is Lipschitzian with L = 2. We below claim that A is pseudomonotone. For any
given x, y ∈ H, it is clear that the relation holds:

〈Ax, y− x〉 = (
1

1 + | sin x| −
1

1 + |x| )(y− x) ≥ 0⇒ 〈Ay, y− x〉 = (
1

1 + | sin y| −
1

1 + |y| )(y− x) ≥ 0.

Furthermore, it is easy to see that T is asymptotically nonexpansive with θn = ( 4
5 )

n ∀n ≥ 1, such that
‖Tn+1xn − Tnxn‖ → 0 as n→ ∞. Indeed, we observe that

‖Tnx− Tny‖ ≤ 4
5
‖Tn−1x− Tn−1y‖ ≤ · · · ≤ (

4
5
)n‖x− y‖ ≤ (1 + θn)‖x− y‖,

and

‖Tn+1xn − Tnxn‖ ≤ (
4
5
)n−1‖T2xn − Txn‖ = (

4
5
)n−1‖4

5
sin(Txn)−

4
5

sin xn‖ ≤ 2(
4
5
)n → 0 (n→ ∞).

It is clear that Fix(T) = {0} and

lim
n→∞

θn

αn
= lim

n→∞

(4/5)n

1/(n + 1)
= 0.

Therefore, Ω = Fix(T) ∩ Fix(T1) ∩VI(C, A) = {0} 6= ∅. In this case, Algorithm 3 can be rewritten as
follows, 

un = xn +
1

n+1 (xn − xn−1),
yn = PC(un − `n Aun),
zn = 1

3 xn +
2
3 Tn

1 PCn(un − `n Ayn),
xn+1 = 1

n+1 ·
1
2 xn +

1
2 xn + ( n

n+1 −
1
2 )T

nzn ∀n ≥ 1,

(44)

where for every n ≥ 1, Cn and `n are picked up as in Algorithm 3. Then, by Theorem 1, we know that
{xn} converges to 0 ∈ Ω = Fix(T) ∩ Fix(T1) ∩VI(C, A) if and only if |xn − xn+1|+ |xn − Tn

1 xn| → 0
as n→ ∞.

On the other hand, Algorithm 4 can be rewritten as follows,
un = xn +

1
n+1 (xn − xn−1),

yn = PC(un − `n Aun),
zn = 1

3 xn +
2
3 Tn

1 PCn(un − `n Ayn),
xn+1 = 1

n+1 ·
1
2 xn +

1
2 un + ( n

n+1 −
1
2 )T

nzn ∀n ≥ 1,

(45)

where for every n ≥ 1, Cn and `n are picked up as in Algorithm 4. Then, by Theorem 2, we know that
{xn} converges to 0 ∈ Ω = Fix(T) ∩ Fix(T1) ∩VI(C, A) if and only if |xn − xn+1|+ |xn − Tn

1 xn| → 0
as n→ ∞.
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