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Abstract: Optimization problems are relevant to various areas of human activity. In different cases,
the problems are solved by applying appropriate optimization methods. A range of optimization
problems has resulted in a number of different methods and algorithms for reaching solutions. One of
the problems deals with the decision-making area, which is an optimal option selected from several
options of comparison. Multi-Attribute Decision-Making (MADM) methods are widely applied for
making the optimal solution, selecting a single option or ranking choices from the most to the least
appropriate. This paper is aimed at providing MADM methods as a component of mathematics-based
optimization. The theoretical part of the paper presents evaluation criteria of methods as the objective
functions. To illustrate the idea, some of the most frequently used methods in practice—Simple
Additive Weighting (SAW), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), Complex Proportional Assessment Method (COPRAS), Multi-Objective Optimization by
Ratio Analysis (MOORA) and Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE)—were chosen. These methods use a finite number of explicitly given alternatives.
The research literature does not propose the best or most appropriate MADM method for dealing
with a specific task. Thus, several techniques are frequently applied in parallel to make the right
decision. Each method differs in the data processing, and therefore the results of MADM methods
are obtained on different scales. The practical part of this paper demonstrates how to combine the
results of several applied methods into a single value. This paper proposes a new approach for
evaluating that involves merging the results of all applied MADM methods into a single value,
taking into account the suitability of the methods for the task to be solved. Taken as a basis is the
fact that if a method is more stable to a minor data change, the greater importance (weight) it has
for the merged result. This paper proposes an algorithm for determining the stability of MADM
methods by applying the statistical simulation method using a sequence of random numbers from the
given distribution. This paper shows the different approaches to normalizing the results of MADM
methods. For arranging negative values and making the scales of the results of the methods equal,
Weitendorf’s linear normalization and classical and author-proposed transformation techniques have
been illustrated in this paper.

Keywords: optimization; decision-making; MADM; SAW; COPRAS; TOPSIS; PROMETHEE;
MOORA; normalization; stability

1. Introduction

In a specific activity, a person consciously and intuitively seeks to find the best solutions to emerging
problems or tasks. The action of making the best or most effective use of a situation or resource
is called optimization. The Simple Additive Weighting (SAW), Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS), Complex Proportional Assessment Method (COPRAS),
Multi-Objective Optimization by Ratio Analysis (MOORA) and Preference Ranking Organization
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Method for Enrichment Evaluation (PROMETHEE) methods applied in this paper have been described
in different research papers as Multiple Criteria Decision Making (MCDM) [1–6], Multiple Attribute
Decision Making (MADM) [7–9], Multiple Criteria Decision Analysis (MCDA) [10] or Multi-Attribute
Decision Analysis (MADA) [11], and Multi-Criteria Analysis (MCA) [12,13]. Since this work is focused
on decision-making and the number of alternatives are explicitly given and finite, the name MADM
will be used to define the above-listed methods.

MADM methods are aimed at identifying the most satisfactory of several comparative alternatives
or at ranking options according to their relevance in terms of the evaluated objective [14]. The methods
are used for selecting the most satisfactory alternative/solution provided that there is no such alternative
for which all criteria values are the best.

To solve an optimization problem with classical optimization methods, the function of its objective
is fixed, establishing the set of objects to be optimized or the allowable area to be determined.
The minimum or maximum values of the function are sought depending on the purpose of the
problem being solved. The theoretical part of this work presents MADM methods as a component of
mathematical optimization methods, and evaluation criteria for SAW, TOPSIS, COPRAS, MOORA
and PROMETHEE methods appear as objective functions, which is a new form of presenting and
interpreting methods. To illustrate the idea of this publication, some of the most widely applied
MADM methods have been selected. The presented methodology can be transferred to other methods
as well.

The judging matrix and the vector of criterion weights are the components of most of MADM
methods. The judging matrix covers statistical data or the values of expert evaluation according to
the criteria defining the objective [14]. Since the impact of criteria on the outcome of the problem to
be solved is different, the significance (weights) of criteria is determined [15]. Criterion weights can
be clarified directly or by employing certain weighting methods. The main idea of most of the used
MADM methods is merging criterion values and their weights into a single evaluation characteristic
(i.e., the summarized criterion of the method). Data on MADM methods are static, and their values do
not vary in the problem-solving process.

Most of the assignments solved by people include problems that do not have sufficient numerical
data or problems where the investigated objects are impossible to measure. In such cases, the judgment
matrix is supplemented by the data obtained from the expert evaluation. Particular focus is switched
to selecting experts in a particular field, considering their characteristics related to professional
competence, work experience, scientific degree, research activity and the ability to address specific
issues in the field given. MADM methods operate in numerical values, although the criteria themselves
can be both quantitative and qualitative. The qualitative meanings of criteria, in some cases, facilitate
expert evaluation that can be individual when the expert expresses individual opinions independently
of other experts or shared and accepted in a group of professionals.

The research literature does not propose the best or most appropriate MADM method for dealing
with a specific problem. This question is relevant, and thus there are many research papers focused
on determining the stability of the method on the basis that any mathematical model or method can
be applied in practice in the case that they remain stable with respect to the applied parameters [16].
A mathematical model is considered to be stable if a small change in the results is consistent with
minor variations in the parameters for the model. Multiple MADM methods are applied in most
complex decision-making tasks to ensure the accuracy of the final result. In the cases when several
MADM methods are used for evaluation, it becomes unclear what results of which method are reliable.
This paper proposes a new approach that helps the expert make the right decision. The core of the
suggested approach is to apply several MADM methods and to determine the suitability/impact of
the employed MADM methods on the problem solved (i.e., to clarify the stability of the method).
The final result consists of the estimates of several methods taking into account the weight of the effect
of each method.
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The paper verifies the stability of multi-criteria methods when slightly changing data in the matrix
of the initial solution (i.e., expert evaluations and weights of the vector, fixing recurrence frequency of
the best alternative to the initial data). Previous papers of the author considered that the higher the
number of imitations, the more accurate the evaluation of the stability of the multi-criteria method
(i.e., the range of the varying result decreased). A sufficient number of recurrences was established
when the result of evaluating MADM stability remained almost unchanged, because 105 times could
be treated as an adequate number of estimations [17].

The practical part of the paper combines the results of several MADM methods into a single
outcome and shows a few ways to normalize results obtained using MADM methods of different scales.

2. Literature Review

Analytical mathematical optimization problems were solved in as early as the 17th century. The first
solution proposed investigating the problem of finding the minimum/maximum and was described by
P. Fermat (XVII). Newton developed the method of fluxions. The technique was rediscovered and
published in the paper “New Method for the Greatest and the Least” by G. W. Leibniz in 1684. Further,
efforts exerted by Euler and Lagrange led to working out solutions to extreme tasks. In 1824, Fourier
created the first algorithm for solving linear arithmetic constraints [18]. This algorithm made further
advances in the field, such as the main duality theorem, the Farkas lemma, the Motzkin transfer theorem
and others [19]. The traditionally employed model of optimization includes linear programming,
sequential quadratic programming, nonlinear programming, and dynamic programming [20]. In 1939,
the first formulation of the linear programming problem and the method for solving this problem were
proposed by Leonid Kantorovich. In 1947, Danzig created the simplex method that was effectively
used to solve linear programming problems [21]. Derivative-based stochastic optimization began with
a seminal paper by Robbins and Monro (1951) that launched the entire field [22]. Richard Bellman
developed the dynamic programming method in the 1950s [23].

Decision-making methods based on optimality were introduced by Pareto in 1896 and applied
to a wide range of problems. The Multi-Objective Evolutionary Algorithm (MOEA) [24] is used to
find the optimal Pareto solutions for specific problems [25]. Keeney and Raiffa [26] and Fishburn [27]
introduced the Multi-Attribute Value Theory (MAVT), the Multi-Attribute Value Analysis (MAVA) and
Multi-Attribute Utility Theory (MAUT) methods. Data envelopment analysis (DEA), introduced by
Charnes et al., is a linear programming method for measuring the efficiency of multiple decision-making
units by analysing the problems of multiple inputs and outputs [28].

Multiple criteria decision-making methods evolved from operations research theory by solving
problems such as the development of computational and mathematical tools to support the subjective
assessment of performance criteria by decision-makers [29]. MADM, as a discipline, has a relatively
short history of approximately 30 years. Its role has increased significantly in different application
areas along with the development of new methods and improved old methods in particular.

A work by Hwang and Yoon presented a plethora of methods for solving MADM problems [7]:
Methods for Cardinal Preference of Attribute over Linear Assignment method [30], Simple Additive
Weighting (SAW) method [31], Hierarchical Additive Weighting method, ELECTRE method,
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [7]. The most
familiar and commonly used is the SAW method reflecting the idea of multi-criteria methods—merging
criterion values and their weights into a single value [32].

Peng and Wang proposed the concept of hesitant uncertain linguistic Z-numbers (HULZNs)
and presented the Multi-Criteria Group Decision-Making (MCGDM) method by integrating power
operators employing the Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [5] model.
Peng and Wang merged the Multi-Objective Optimization by Ratio Analysis plus the Full Multiplicative
From (MULTIMOORA) and power aggregation operators in order to create a comprehensive decision
model for MCGDM problems with Z-numbers [33]. Outranking ELECTRE [34] and PROMETHEE [35]
methods were described in the publication on multiple criteria decision analysis by Belton and Stewart
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in 2001 [10]. Opricovic and Tzeng conducted a comparative analysis of VIKOR and TOPSIS methods
in 2004 [5,36].

New methods have recently emerged that are actively used in different fields of science: Weighted
Aggregated Sum Product Assessment (WASPAS) [37], Complex Proportional Assessment Method
(COPRAS) [38], Multi-Objective Optimization by Ratio Analysis (MOORA) [39], COPRAS grey
(COPRAS-G), fuzzy additive ratio assessment (ARAS-F) [40], ARAS grey (ARAS-G) and MULTIMOORA
(MOORA plus the full multiplicative form) [41,42], KEmeny Median Indicator Ranks Accordance
(KEMIRA) [43], ARAS [44], and newest extensions of the ELECTRE [45] and PROMETHEE [46,47]
methods. The examples of partial aggregation methods include Step-Wise Weight Assessment Ratio
Analysis (SWARA) [48] and factor relationship (FARE).

Criterion weights are one of the components of MCMD methods and therefore have a strong
impact on the final result [15]. For defining criterion weights, subjective evaluation is the most
frequently applied technique when experts examine the significance of criteria, although objective
and generalized estimates are known [49]. Weights can be set directly or using weighting methods
such as Analytic Hierarchy Process (AHP) [50,51], Fuzzy Analytic Hierarchy Process (FAHP) [52,53],
SWARA [54], Criterion Impact LOSs (CILOS) [55], Integrated Determination of Objective Criteria
Weights (IDOCRIW) [14,56], etc. Recalculation of the weights of criteria under the Bayes theorem is
proposed in the paper [56]. Regardless of the method, the principles of evaluation remain to take the
position that the weight of the most important criterion is the highest. It was agreed that the sum of all
weights should be equal to 1 [1]. Any measurement scale may be used for evaluations.

Based on a study by Sabaei et al., the most common decision management methods used in
Scopus database publications are AHP, ELECTRE, and PROMETHEE [57]. The early 1990s witnessed
the shift of focus toward methods that consider indifference and ensure the transparency of analysis
processes [58]. An analogous study conducted by Mardani et al. aimed at determining the popularity
of decision-making methods. The results showed that hybrid MADM and fuzzy MADM approaches
(27.92%) were used more often than other methods. The most commonly used methods are AHP and
fuzzy AHP [59] (24.87%), ELECTRE, fuzzy ELECTRE [60], MCDA and MCA (12.69%), and TOPSIS,
fuzzy TOPSIS [61], PROMETHEE and fuzzy PROMETHEE [62] (5.08%) [1].

Mardani et al. carried out research and published the obtained material in the paper “Multiple
Criteria Decision-Making Techniques and Their Applications,” (i.e., a literature review for the period
from 2000 to 2014 [2]). Another paper by Mardani et al. reviewed decision-making methods from the
field of energy management for the period 1995–2015 [1].

The concept of sensitivity analysis in decision theory means the effective use and implementation
of quantitative decision models, the purpose of which is to assess the stability of an optimal solution
under changes in parameters, the impact of the lack of controllability of specific parameters and the need
for the precise estimation of parameter values [63]. The first significant works on sensitivity analysis
in the field of decision-making were done by Evans [63], who formulated the concepts of sensitivity
analysis in linear programming to develop a formal approach applicable to classical decision-theoretic
problems [64] and presented two simple computational procedures for sensitivity analysis of additive
multi-attribute value models that yielded variations in attribute weights. Insua [65] developed a
conceptual framework for sensitivity analysis in discrete multi-criteria decision-making, which allowed
simultaneous variations in judgmental data and applied to many paradigms for decision analysis.
Janssen [66] discussed the sensitivity of the rankings of alternatives to the overall uncertainty in scores,
and priorities were analyzed using the Monte Carlo approach. Butler [67] presented a simulation
approach allowing simultaneous changes in the weights and generating results that could be easily
analyzed to provide insights into multi-criteria model recommendations statistically.

Wolters and Mareschal [68] proposed three novel types of sensitivity analysis focused on and
elaborated for the PROMETHEE methods. Masuda [69] studied the sensitivity problems of the AHP
method. In his work, he concentrated on how changes in the entire columns of the decision-making
matrix might affect the values of the composite priorities of alternatives. Triantaphyllou [70] presented
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a methodology for performing a sensitivity analysis of the weights of decision criteria and identifying
the performance values of the alternatives expressed in terms of decision criteria. The estimation of the
effect/impact of uncertainty in the SAW method was performed by Podvezko [71], who determined the
points of varying ranges of criterion weights of the investigated process, evaluated compatibility level
and stability of expert opinions and assessed the effect of uncertainty on ranking comparable objects
employing the imitation method. The impact of varying weights on the final result in the SAW method
was studied by Zavadskas [72] and Memariani [73]. The influence of the elements of the decision
matrix on the final ranking result was analyzed by Alinezhad [74]. The effect of the importance of
criterion weights on the results of the TOPSIS method was studied by Yu [75] and Alinezhada [76].
Misra focused on a comparison of AHP, Decision-Making Trial and Evaluation Laboratory (DEMATEL),
COPRAS, and TOPSIS methods [77]. Podvezko [32] compared SAW, TOPSIS and COPRAS methods.
Moghassem [78] increased and decreased all criterion weights by 5%, 10%, 15%, and 20% in analyzing
the sensitivity of TOPSIS and VIKOR. Hsu conducted the sensitivity analysis of TOPSIS by increasing
and decreasing the top three weights by 10% [79].

3. MADM Methods as a Component of Mathematics-Based Optimization Techniques

To formulate the optimization problem, the paper presents a set of optimized elements and the
measure of goodness of its elements (quality estimates).

The optimization problem takes the form of

opt
x∈D

f (x), (1)

where f (x) : D→ Y is the objective function or criterion; D is the set or permissible area of the
optimized objects; and opt is the minimum or maximum value of function f (x).

The literature provides a number of different classifications of optimization problems. Typically,
specific decision-making methods are created for each category of problems according to the
characteristics of that particular class. Weights do not vary in SAW, TOPSIS, COPRAS, MOORA and
PROMETHEE methods. Weights are determined using subjective or objective weighting methods.
The number of comparable alternatives is finite in these methods.

MADM methods can be presented as a mathematical optimization problem as follows:

iνopt(r) = arg maxi f ν(r,ω), i = 1, . . . , n, (2)

where ν is the number of the MADM method. The merit of alternatives i = 1, . . . , n is evaluated
according to criteria j = 1, . . . , m, and the values are defined as r =

(
ri j

)
. The influence of criteria on the

evaluation result is different, and therefore the vector ω = (ω j), j = 1, . . . , m, of the weights of criteria
is determined, thus defining the importance of criteria.

3.1. SAW (Simple Additive Weighting) Method (ν = 1)

i1opt(r) = arg maxi

∑m

j=1
(ω j (̃ri j) (3)

where the values of r̃i j are normalized according to the formula:

r̃i j =
ri j∑n

i=1 ri j
. (4)
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When the values of criteria are multi-dimensional, they are transformed. The values of the
maximized criteria are calculated according to the formula:

ri j =
ri j

maxri j
. (5)

Then, the highest value of ri j is equal to 1. The value of minimized criteria ri is correspondingly
calculated according to the formula:

ri j =
minri j

ri j
. (6)

Then, the lowest value of ri j is equal to 1. For standard criteria, the principle of simple linear
scalarization is applied.

3.2. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) Method (ν = 2)

i2opt(r)= arg maxi

√∑m
j=1 (ω j (̃ri j − r̃−j ))

2√∑m
j=1 (ω j (̃ri j − r̃+j ))

2
+

√∑m
j=1 (ω j (̃ri j − r̃−j ))

2
. (7)

The method refers to vector data normalization:

r̃i j =
ri j√∑n
i=1 r2

i j

, (8)

where r̃i j is the normalized value of the jth criterion for the ith alternative.
The vector of the best R+ value and the worst R− value of criteria (ideal alternative) are calculated as

R+ =
{̃
r+1 , r̃+2 , . . . , r̃+m

}
= {(max

i
r̃i j/ j ∈ J1), (min

i
r̃i j/ j ∈ J2)},

R− =
{̃
r−1 , r̃−2 , . . . , r̃−m

}
= {(min

i
r̃i j/ j ∈ J1), (max

i
r̃i j/ j ∈ J2)},

(9)

where J1 is a set of indices of the maximized criteria, J2 is a set of indices of the minimized criteria,
and r̃−j (̃r

+
j ) is the worst (best) value of the jth criterion.

The basic principle of the method is to find an alternative at the shortest overall distance from the
best values of criteria and the maximum distance from the worst values. The method does not require
the rearrangement of the minimized (maximized) criteria to the maximized (minimized) ones.

3.3. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Method (ν = 3)

i3opt(r)= arg maxiFi = arg maxi
(
F+

i − F−i
)
=

= arg maxi(
∑n

g=1 π
(
Ai,Ag

)
−

∑n
g=1 π

(
Ag,Ai

)
) =

= arg maxi(
∑n

g=1
∑m

j=1 ω jph
(
d j

(
Ai,Ag

))
−

∑n
g=1

∑m
j=1 ω jph

(
d j

(
Ag,Ai

))
),

(10)

where i = 1, 2, . . . , n;
∑m

j=1 ω j = 1; d j
(
Ai, Ag

)
= ri j − rgj is the difference of alternatives Ai and Ag of

inequality values ri j and rgj of the jth criterion R j; and ph(d) = ph
(
d j

(
Ai,Ag

))
is the value of the hth

priority function for the selected jth criterion.
The PROMETHEE method uses the basic ideas of other methods like combining the values of

weights and normalized criteria into a single estimate (SAW method) and the pairwise comparison of
criteria (AHP method). Instead of the normalized criteria values, the value of the priority function
ph(d), 0 ≤ ph(d) ≤ 1 is used, and all possible pairs of alternatives for each of the criteria are compared
with each other. A higher value of ph(d) corresponds to a better alternative; if the difference d is lower
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than the established critical value q, then ph(d) = 0. If d is greater than the maximum limit s for the
values of criteria, then ph(d) = 1.

In practice, six (h = 6) functions of priorities ph(d) are applied [3,80].
The priority function of the usual criterion is equal to

p1(d) =
{

0, when d ≤ 0
1, when d > 0.

(11)

The function chart is shown in Figure 1a.
The priority function of the U-shape criterion is equal to

p2(d) =
{

0, when d ≤ q
1, when d > q.

(12)

The function chart is shown in Figure 1b.
The priority function of the V-shape criterion (linear priority) is equal to

p3(d) =


0, when d ≤ 0

d
s , when 0 < d ≤ s

1, when d > s.
(13)

The function chart is shown in Figure 1c.
The priority function of the level criterion is equal to

p4(d) =


0, when d ≤ q

0.5, when q < d ≤ s
1, when d > s.

(14)

The function chart is shown in Figure 1d.
The priority function of the V-shape with indifference criterion is equal to

p5(d) =


0, when d ≤ q

d − q
s − q , when q < d ≤ s

1, when d > s.
(15)

The function chart is shown in Figure 1e.
The priority function of the Gaussian criterion is equal to

p6(d) =

 0, when d ≤ 0
1− exp

(
−

d2

2σ2

)
, when d > 0.

(16)

The function chart is shown in Figure 1f.
As mentioned above, PROMETHEE, similarly to the other multi-criteria decision methods, applies

the idea of the SAW method instead of the normalized values r̃i j of criteria and uses the values of the
functions ph(d) of specifically selected priorities, where the argument d is the difference between the
values of the criterion.
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Figure 1. Function charts of criterion priorities: (a) function chart of the priorities of the usual
criterion; (b) function chart of the priorities of the U-shape criterion; (c) function chart of the priorities
of the V-shape criterion; (d) function chart of the priorities of the level criterion; (e) function chart
of the priorities of the V-shape with indifference criterion; (f) function chart of the priorities of the
Gaussian criterion.

3.4. COPRAS (Complex Proportional Assessment) Method (ν = 4)

i4opt(r)= arg maxi(
∑m

j
ω+ j̃r+i j +

∑n
i=1

∑m
j ω− j̃r−i j∑m

j ω− j̃r−i j
∑n

i=1

(∑m
j ω− j̃r−i j

)−1
) (17)

where ω+ j(ω− j) are the maximized (minimized) weights of criteria; and r̃−i j (̃r+i j) are the normalized
values of the minimized (maximized) criteria for each ith alternative. The values of the estimates of
alternatives are normalized according to Equation (4).

The application of the COPRAS method separately assesses the effect of the minimized and
maximized criteria on the result of the carried out evaluation [38,81].

3.5. MOORA (Multi-Objective Optimization on the Basis of Ratio Analysis) Method (ν = 5)

i5opt(r)= arg maxi(
∑g

j=1
r̃i j −

∑m

j=g+1
r̃i j). (18)

For the value of r̃i j, vector normalization according to Equation (8) is applied. The initial version
of the MOORA method did not take into account the importance of the criteria expressed in weights.
The method calculation principle is the sum of the values of the minimized normalized criteria (from
g + 1 to m) subtracted from the sum of the maximized normalized alternative criteria (from 1 to g).
For developing the MOORA method, Brauers started using the weights of criteria [39]. The improved
MOORA method is applied for calculations.

The presented methods have been selected as some of those most frequently applied in practice.
Similarly, other familiar criteria such as VIKOR, ELECTRE, and others for evaluating the MADM
method can be presented as objective functions.

4. Experimental Application of the Methodology Merging MADM Methods

The application of a few MADM methods may result in ranking the scale of evaluation results
and reported findings, which is not a clear case of what decision should be made. Each method has an
individual theoretical basis and logic, and therefore results in differences.
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This chapter describes the methodology for merging the results of MADM methods and presents
its practical application. The methodology proposes making calculations using several MADM
methods and thus merging their results according to the importance of the method for the problem
solved into a single value. SAW, COPRAS, TOPSIS, PROMETHEE and MOORA methods are used in
the calculations.

To sum up the results of different methods into the single value, normalizing result data beforehand
is required. Linear, classical, vector, logarithmic and other normalization techniques are known. Unlike
other methods, the results received applying PROMETHEE are both positive and negative numbers.
To transform the results of the PROMETHEE method and other MADM techniques to the uniform
scale, PROMETHEE result data must be converted into positive values.

4.1. Methodology for Merging the Results of MADM Methods

The weight, representing the importance of the MADM method, is defined as Ως. The result of
the stability of a separate method is defined as Sς and is expressed in percentage.

The weights of methods are normalized in the following way:

Ως =
Sς∑ν
ς=1 Sς

,
ν∑
ς=1

Ως = 1. (19)

The best alternative is established as

iopt(µ) = argmax
ν∑
ς=1

Ως·µi,ς. (20)

where µi,ς is the normalized result of the ςth MADM method of the ith alternative.
To merge the results of different methods into a single value, normalizing data on the obtained

results is required beforehand. Linear, classical, vector, logarithmic and other normalization techniques
are known. Unlike other methods, the results received applying PROMETHEE are both positive and
negative numbers. To transform the results of the PROMETHEE and other MADM methods to the
uniform scale, first, PROMETHEE result data must be converted into positive values.

For handling negative values and making the scales of the results of other methods equal,
Wietendorf’s [82] linear normalization rearranging data in the range of [0, 1] is suitable:

xtr =
x− xmin

xmax − xmin
, (21)

where xtr is the normalized result of the method and xtr ∈ [0, 1], x is the initial obtained result of the
method, xmin is the lowest value of the results of methods, and xmax is the highest value of the results
of methods.

Another method for making data on MADM results equal in order to employ classical
normalization [83] is as follows:

µ̃iζ =
µi,ζ∑n

i=1 µi,ζ
. (22)

Thus, the results of the PROMETHEE method are transformed into positive numbers beforehand.
The transformed value of the evaluation result takes the form of F̃i, i = 1, . . . , n. The results of Fi
obtained applying the PROMETHEE method are sorted in ascending order. The lowest result of the
transformed method is equal to F̃1 = 1. Other transformed values are calculated as follows:

F̃i+1 = F̃i + Fi+1 − Fi, i = 1, . . . , n− 1. (23)
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4.2. Algorithm for Defining MADM Stability

Any mathematical model or method can be applied in practice provided it is stable in terms of the
applied parameters. The stability of MADM is verified by employing the statistical simulation method
using a sequence of random numbers from the given distribution.

The algorithm for evaluating the stability of the MADM method is presented in Figure 2.
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Figure 2. The algorithm for evaluating the stability of the Multi-Attribute Decision-Making
(MADM) method.

MADM method ν determines the best alternative i of the initial data and fixes the number of this
alternative Iopt. Verifying the stability of multi-criteria methods brings slight changes in vector data in
the initial judging matrix (i.e., expert evaluations ri j and weights w j). The calculation is made with the
newly received values newri j and neww j using the MADM method, thus determining the number of the
best alternative newIopt. The counter sk captures the amount of newIopt recurrence with the initial Iopt.
As mentioned in the introduction, a sufficient number of cycles to evaluate the stability of the method
to the nearest 0.1 was selected with Y = 105.

The stability coefficient that fixes the frequency of the recurrence of the best initial alternative is
calculated by changing preliminary data. The method is more important for the result of the problem
when the stability coefficient is higher.
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When no information on the distribution of parameters for MADM methods is available, the
uniform distribution is used for generating random values of xς from the range [X, X]:

xς = X + q̃ς·
(
X −X

)
, (24)

where q̃ς ε [0, 1].
The random values of alternate estimates and criterion weights are generated by slightly changing

initial data ri j and wi by 10% when q̃ς ∈ [0, 1]:

newri j = min ri j + q̃ς·
(
max ri j −minri j

)
,

newwi = min wi + q̃ς·(max wi −min wi).
(25)

The variation limits [min ri j, max ri j] of alternative estimates ri j are determined as

max ri j = ri j + 0.1·ri j,
min ri j = ri j − 0.1·ri j.

(26)

Accordingly, the variation limits [min wi, max wi] of criterion weights wi are equal to

max wi = wi + 0.1·wi,
min wi = wi − 0.1·wi.

(27)

By applying the algorithm for verifying the stability of the MADM method (Figure 2), the stability
of all multi-criteria decision-making methods described in this paper is checked. The higher the
frequency of the reoccurrence of the best alternative, the more stable the method. The proposed
method considers the uncertainty of data on expert evaluation and therefore decreases the level of the
subjectivity of the conducted evaluation. The evaluation carried out by applying multiple MADM
methods allows selecting the result of the most stable method or merging the results of several methods
into a single value.

4.3. Experimental Application of Merging the Results of MADM Methods

To illustrate the application of the method described in the paper, an example in which the
estimates of alternatives differ slightly from each other has been chosen. The experts assessed the
quality of the course units taught according to six criteria [17]. The descriptions of criteria, as well as
the estimates of weights and course units, are given in Table 1. The mean of alternative estimates (i.e.,
course units), is in the range of [9.03, 9.34].

Table 1. Data on assessing course units.

w Number of the Criterion Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

0.27 max 1-clearly produced lecture
material 9.00 9.00 10.00 8.75 9.20

0.11 max 2-arrangement of studies 9.00 9.50 8.00 10.00 7.75
0.33 max 3-competent teaching staff 9.75 9.40 9.25 9.75 10.00

0.17 max 4-relevance and practical
benefits of the material 9.25 8.75 9.00 7.00 8.75

0.05 max 5-variety of techniques for
presenting material 9.25 10.00 9.50 10.00 9.50

0.07 max 6-knowledge testing
assignments 9.25 9.40 9.60 9.75 9.00

Mean of estimates 9.25 9.34 9.27 9.21 9.03
Ranking 3 1 2 4 5
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Regarding the initial data (Table 1), the calculation has been conducted by applying the SAW
(Equation (3)), TOPSIS (Equation (7)), MOORA (Equation (18)), COPRAS (Equation (17)) and
PROMETHEE (Equation (10)) methods. Since all criteria are maximized in the problem solved
(Table 1), the calculation of the SAW and COPRAS methods coincides [34]. Thus, only the SAW method
will be mentioned below in the paper. The calculations of the PROMETHEE method used the function
chart of the priority of the V-shape with indifference criterion (Equation (15)) with parameters q {0.25;
1.75; 0.3; 0.25; 0.2} and s {1.2; 2; 0.6; 1.5; 0.75}. The parameters q and s were not changed, testing the
stability of the PROMETHEE method.

The final ranked results are presented in Figure 3. The best alternative is ranked 1, whereas the
worst-rated alternative takes 5. Calculations revealed that the results of the methods differ: SAW
method results {0.2022; 0.2001; 0.2020; 0.1958; 0.1999}, TOPSIS {0.6029; 0.5272; 0.6004; 0.3640; 0.5413;
3}, MOORA {4.2080; 4.1196; 4.2103; 3.9963; 4.1316}, PROMETHEE {0.2127; −0.3252; 0.0889; −0.2309;
0.2544} [84]. Therefore, it is not possible to unambiguously identify the best course unit from the
results obtained.
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Figure 3. The results obtained using MADM methods. SAW: Simple Additive Weighting; TOPSIS:
Technique for Order of Preference by Similarity to Ideal Solution; MOORA: Multi-Objective Optimization
by Ratio Analysis; PROMETHEE: Preference Ranking Organization Method for Enrichment Evaluation.

According to the algorithm described above, the stability of the following methods has been
determined: SAW 30.7%, TOPSIS 30.9%, MOORA 29.3% and PROMETHEE 26.8%.

The stability of all methods is low due to the similarity of the initial data. Even small variations in
the initial data have changed ranking of the best alternative. Having applied Equation (19), the weights
of methods are calculated: ΩSAW = 0.2608, ΩTOPSIS = 0.2625, ΩMOORA = 0.249, ΩPROMETHEE = 0.2277
(Figure 4). The weights of the methods are slightly different, and the most stable is the TOPSIS method.
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Figure 4. A comparison of stability determined by applying MADM methods.

In order to merge the results of all methods, their estimates need to be unified. Thus, the MADM
results are normalized in the range of [0, 1] (Table 2). Wietendorf’s [82] linear normalization is suitable
for the results of different scales as well as for the negative values of the PROMETHEE method.

Table 2. Normalized MADM result in the range of [0, 1].

Methods Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

SAW 1 0.66563 0.9609 0 0.6375
TOPSIS 1 0.68297 0.9895 0 0.7424

MOORA 0.98925 0.57617 1 0 0.6322
PROMETHEE 0.92816 0 0.7145 0.1626 1

Equation (20) is applied in summing up the estimates of the normalized methods considering
their weights. The numerical results are presented in Figure 5. A comparison of the obtained results
(Figure 5) with data provided in Table 1 shows changes in the findings. The weights of criteria had a
significant impact on the result. Compared to the ranked results employing all methods, the merged
MADM result matched with that determined by applying the TOPSIS method. The latter method had
a higher weight (i.e., importance), in the problem solved.
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Table 2 shows that Wietendorf’s (Equation (21)) linear normalization has a disadvantage (i.e., zero
estimates of alternatives). The weight of the method does not affect the worst-rated alternative as its
result is normalized to the zero value.

When the results of two worst-rated alternative methods slightly differ from each other using
different normalization, the result may change. Thus, no similar problems are encountered in finding
the best alternative.

Another calculation method (i.e., technique for making values equal), involves classical
normalization (Equation (22)) and pre-arranging the results of the PROMETHEE method using
Equation (23). The transformed positive results of the PROMETHEE method are 1.5379, 1, 1.4141,
1.0943, and 1.5795. Table 3 shows the re-estimation of the methods using classical normalization [84].
The results of the MADM methods merged using Equation (20) are shown in Figure 6.

Table 3. Transformed MADM results applying classical normalization.

Methods Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

SAW 0.2022 0.2001 0.2020 0.1958 0.1999
TOPSIS 0.2287 0.2000 0.2278 0.1381 0.2054

MOORA 0.2036 0.1993 0.2037 0.1934 0.1999
PROMETHEE 0.2321 0.1509 0.2134 0.1652 0.2384
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Figure 6. Merging the results of MADM methods following classical normalization.

The numerical results of the initial data (Table 1) and the merged results following classical
(Figure 6) and linear (Figure 5) normalization are shown in Figure 7.
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Figure 7. The results of evaluating alternatives, means of numerical values.

Before comparing the obtained information, the results were normalized so that the sum of all
estimates of alternatives should be equal to one. The chart shows that the means of the estimates of the
initial data differ slightly from each other. The merged results demonstrate that linear normalization
leads to significant variations in the outcomes, which is clearly expressed in the evaluation of the fourth
alternative. Differences in the results obtained following classical normalization are not significantly
expressed in the chart.

The results expressed in ranks are shown in Figures 8 and 9. These charts indicate the mean ranks
of the initial data, the ranks of the results of the merged MADM methods (following linear and classical
normalization) and the means of the ranks of the results obtained by employing MADM methods.
The best alternative is ranked 1, whereas the worst-rated alternative takes 5.
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The results of the initial data differ from those achieved by evaluating the outcomes of the first
and second alternatives. The merged results coincided following linear and classical normalization.
The mean values of the results of MADM methods mainly coincided with the merged results of MADM
methods. Since the values of the weights of MADM methods Ω are similar to each other (Figure 4),
they did not have a significant effect on the final result. The average results of MADM ranks of the first
and third alternatives may lead to different interpretations due to their estimates being equal to 1.5 and
2. The combined results have unequivocally identified the best alternative as Alt. 1.

Table 3 shows that the sum of the estimates for each alternative is equal to 1, which facilitates
comparing them. A comparison of the ranked results provided in Figures 5 and 6 demonstrates that
the employed methods of the linear and classical normalization of MADM results have determined all
alternatives equally. For comparing the mean values of the initial estimates with the findings obtained
using MADM methods, the ranking results have changed due to the effect of criterion weights.

5. Discussion and Conclusions

The paper has considered MADM methods as an integral part of the mathematical optimization
theory. To illustrate the idea, some of the most applicable methods, SAW, TOPSIS, MOORA,
PROMETHEE and COPRAS, have been preferred, and their evaluation criteria have been presented
as objective functions, although this paper’s methodology is not limited to the use of only these
methods. Other MADM methods such as VIKOR, ELECTRE, Evaluation Based on Distance from
Average Solution (EDAS), etc. can be similarly introduced as objective functions. The forthcoming
papers of the author will focus on exploring more extensively the limitations to constraints on the
variables of the above-listed and new MADM methods and will concentrate on the properties of the
objective functions and their limitations.

The MADM methods introduced in this paper are employed for selecting the best alternative
evaluated according to the established criteria. The purpose of classical optimization is analogous
to MADM methods presented in the paper, which means finding an optimal solution from several
or many possible options. The use of MADM makes sense in comparing alternatives that do not
contain any dominant alternatives when considering all evaluation criteria. The data used in the
presented MADM methods are not changed by searching for the optimal solution from all available
ones. The decision matrix and the vector of criterion weights are static data, and the number of optional
alternatives is finite.
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Merging the results of the MADM methods in accordance with their importance showed their
possibilities in evaluation. There is a large number of MADM methods, and therefore the literature
does not provide unambiguous recommendations for the most appropriate one. Therefore, multiple
MADM methods are frequently applied in practice. A methodology for merging the results of MADM
methods was presented in this paper, based on summing up the normalized MADM results into a
single value and considering the methods’ stability.

The findings have demonstrated that weights have a significant influence on the result. In order
to analyze the influence of the weights of criteria and methods on the obtained result, a problem
example was presented in the practical part of the paper, and the averages of evaluating alternatives
had little difference between them. Criterion weights have been found to significantly alter the primary
outcomes. The established stability of the applied methods did not differ significantly: ΩSAW = 0.2608,
ΩTOPSIS = 0.2625, ΩMOORA = 0.249, ΩPROMETHEE = 0.2277. Nevertheless, the influence of the weights
of the methods on the result is noticeable. The ranked result obtained employing the TOPSIS method
coincided with the ranked composite result, since the TOPSIS method had a greater influence of
weight than the rest of the techniques had. The average results of MADM ranks of the first and
third alternatives may lead to different interpretations due to their estimates being equal to 1.5 and 2.
The combined results have unequivocally identified the best alternative.

Wietendorf’s linear normalization is appropriate for rearranging the results of different scales
as well as for the negative values of the PROMETHEE method. However, linear normalization has
a disadvantage. Applying Wietendorf’s linear normalization, the estimate of the worst alternative
is converted into zero, and thus the weight of the influence of the method for determining the
worst alternative has no effect on the combined result. The result data managed by applying
classical normalization are convenient to be compared because the sum of all results is equal to one.
In the case of classical normalization, the negative results of the methods require additional data
transformation. The author of this paper proposes a method of transforming negative numbers. Hence,
the normalization method had no influence on the final combined result in this task.

The article provides a method for verifying the stability of the MADM method, which ensures the
validity of the evaluated result. The technique for validating the stability of the MADM method has a
wide range of practical usability in different decision-making problems where evaluation is performed
by employing several MADM methods. The proposed method considers the uncertainty of data on
expert evaluation and therefore decreases the level of the subjectivity of the conducted evaluation.
Further papers will focus more intensely on analyzing the sensitivity of fuzzy AHP methods by
fluctuating the data and on investigating several algorithms of FAHP methods.
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quality assurance in contractor contracts by multi-attribute decision-making methods. Econ. Res. Ekon. Istraž.
2017, 30, 1152–1180. [CrossRef]

50. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
51. Saaty, T.L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria

and for decision-making. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M.,
Figueira, J., Eds.; Springer: Berlin, Germany, 2005; pp. 345–408. [CrossRef]

52. Kurilov, J.; Vinogradova, I. Improved fuzzy AHP methodology for evaluating quality of distance learning
courses. Int. J. Eng. Educ. 2016, 32, 1618–1624. [CrossRef]

53. Kurilovas, E.; Vinogradova, I.; Kubilinskiene, S. New MCEQLS fuzzy AHP methodology for evaluating
learning repositories: A tool for technological development of economy. Technol. Econ. Dev. Econ. 2016, 22,
142–155. [CrossRef]

54. Hashemkhani, Z.; Saparauskas, J. New application of SWARA method in prioritizing sustainability assessment
indicators of energy system. Inz. Ekon. Eng. Econ. 2013, 24, 408–414. [CrossRef]
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