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Abstract: In this paper, we propose a separable reversible data hiding method in encrypted image
(RDHEI) based on two-dimensional permutation and exploiting modification direction (EMD).
The content owner uses two-dimensional permutation to encrypt original image through encryption
key, which provides confidentiality for the original image. Then the data hider divides the encrypted
image into a series of non-overlapping blocks and constructs histogram of adjacent encrypted
pixel errors. Secret bits are embedded into a series of peak points of the histogram through EMD.
Direct decryption, data extraction and image recovery can be performed separately by the receiver
according to the availability of encryption key and data-hiding key. Different from some state-of-the-art
RDHEI methods, visual quality of the directly decrypted image can be further improved by the
receiver holding the encryption key. Experimental results demonstrate that the proposed method
outperforms some state-of-the-art methods in embedding capacity and visual quality.

Keywords: reversible data hiding; encrypted image; two-dimensional permutation; exploiting
modification direction (EMD); image recovery

1. Introduction

In the era of big data, data transmission and exchange have become easier than ever before.
However, meanwhile, data security is confronted with more risks [1,2]. Image is a common form of
data and also suffers the same affliction. At present, there are two effective methods to protect image
data, which are image encryption and image data hiding. Image encryption converts a meaningful
original image into an unrecognized one to prevent information leakage [3,4]. Different from image
encryption, image data hiding modifies the pixel values of a cover image imperceptibly to embed
secret data into the cover image so that the transmission of stego-image does not attract attacker’s
interest [5–9].

In general, the cover image will suffer distortion inevitably due to the modifying operation.
However, for some image applications, e.g., military or medical images, the distortion is unacceptable
even if it is very small. For the demand of recovering original image losslessly, reversible data hiding
(RDH) was proposed, which can both recover the original image and extract secret data perfectly. In the
literature, the existing RDH methods are generally classified into four categories: (1) The methods
based on lossless compression [10,11], (2) the methods based on difference expansion (DE) [12,13],
(3) the methods based on histogram shifting (HS) [14,15], and (4) the methods based on prediction-error
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expansion (PEE) [16–18]. Nowadays, PEE-based methods have attracted considerable research interest
due to their large embedding capacity and high fidelity.

Recently, as cloud computing and cloud storage develop rapidly, RDH in encrypted image
(RDHEI) draws more and more interest [19–40]. RDHEI can be applied to the applications of ciphertext
management of multimedia data, copyright protection and privacy protection. There are three users in
RDHEI: the content owner, the data hider and the receiver. The content owner encrypts the original
image according to encryption key and uploads it to the server. Then the data hider embeds some
secret data into the encrypted image according to data-hiding key and cannot access the original image
content without an encryption key. The receiver can obtain the original image, secret data or both
under specific authority. Generally, there are mainly three RDHEI frameworks, namely reserving room
before encryption (RRBE) [19–25], vacating room after encryption (VRAE) [26–32] and vacating room
by encryption (VRBE) [33–40].

RRBE-based methods adopt RDH methods in plaintext domain or high pixel correlation to obtain
embedding room before image encryption. For example, Ma et al. [19] exploited the traditional
RDH method to achieve self-embedding before encryption so as to obtain room for data embedding.
In Reference [20], some pixels are estimated before image encryption and secret data is embedded into
the estimated errors. In Reference [21], small image blocks are compressed by sparse representation to
vacate room. Shiu et al. [22] exploited DE to transform two adjacent pixels into two odd or even pixels,
and then adopted Paillier encryption [41] to encrypt pixels. The homomorphism of Paillier encryption
assists data extraction and image recovery. In Reference [23], the mean values are preserved before
encryption. Due to mean value preservation, data extraction and image recovery can be performed
perfectly. Yu et al. [24] encrypted the pre-processed image generated by prediction and conducted data
hiding with additive homomorphism. Nguyen et al. [25] selected smooth pixels according to a given
threshold and four neighboring pixels before encryption. The middle bit-planes of the selected smooth
pixels of encrypted image are accommodated for secret data. The RRBE-based RDHEI schemes can
achieve good embedding performance, but they require extra pre-processing before image encryption,
which increases computational cost for the content owner.

VRAE based methods use standard Advanced Encryption Standard (AES), Rivest Cipher 4 (RC4)
encryptions to encrypt the original image directly and do not require extra pre-processing before image
encryption. Thus, the VRAE based methods have more widespread application than the RRBE-based
methods. In References [26,27], the original image is encrypted directly by using the stream cipher and
the encrypted image is divided into several blocks. Three least significant bits (LSB) of half of the pixels
in a block are flipped to embed a secret bit. In the receiver side, data extraction and image recovery are
conducted by designing a fluctuation function. Liao and Shu [28] adopted data hiding scheme [26] to
embed a secret bit into a block. To improve the accuracy of extracted data and recovered image, the
locations of different pixels of a block are considered to design an evaluation of block complexity in
their method. Qin and Zhang [29] elaborated a pixel selection strategy so that data hiding is performed
by flipping the LSBs of fewer pixels and the visual quality of decrypted image can be improved. In the
above methods, the receiver is required to perform data extraction and image recovery simultaneously.
It means that, for these VRAE based methods [26–29], if the receiver only holds data-hiding key, he
or she cannot extract secret data. To separate data extraction from image recovery, Zhang [30] first
proposed separable RDHEI method. In this method, the stream cipher is exploited to directly encrypt
the original image and the room for accommodating secret data is vacated by compressing the LSBs of
the encrypted image. Qian et al. [31] adopted distributed source coding to compress the encrypted
image to improve embedding performance. Wu and Sun [32] embedded secret bits into the encrypted
image by using most significant bit (MSB) replacement technique. At the receiver’s side, a prediction
technique is utilized to perform data extraction and image recovery.

Since pixel spatial correlation is disorganized by the stream cipher which leads to the maximum
entropy of the image, it is extraordinary difficult to vacate room from the encrypted image by the
stream cipher. Consequently, VRAE based methods achieve low embedding rate. To achieve high
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embedding rate, some researchers have designed VRBE based methods. In these methods, some
specific encryption algorithms provide confidentiality for the image while keeping spatial redundancy
in the encrypted image. Room for data hiding can be vacated from the encrypted image. Because the
encrypted image has spatial redundancy, some RDH methods proposed in the plain domain can be
introduced into RDHEI by VRBE, which can achieve better embedding performance than BBRE and
VRAE. For example, Yin et al. [33] encrypted image by changing pixel locations and embedded secret
data by the HS method. This method exists security loophole in the encrypted image due to only
changing pixel locations. Yi et al. [34] encrypted the original image by two stages involving block
permutation and stream cipher. The data hider embeds secret bits into the permuted blocks by using
PEE after performing stream decipher. Di et al. [35] divided an original image into a series of blocks
and encrypted all the pixels of a block by using the same key. Every encrypted pixel is divided into two
components and the HS is adopted for data hiding in these two components. Xiao et al. [36] divided
original image into blocks sized 2×2 and encrypted all the pixels of each block with same key and
additive homomorphism. The pixel value ordering (PVO) strategy realizes data hiding in each block.
Yu et al. [37] adopted key transmission for image encryption and shifted the histogram of two-layer
encrypted pixel errors to embed secret data reversibly. Tang et al. [38] divided the original image into
several blocks and encrypted all the pixels in a block using the same number so that pixel spatial
correlation in a block is preserved. The encrypted image is compressed to vacate room for data hiding.
In References [39,40], redundant space is transferred from the original image to the encrypted image.
Secret bits are embedded into vacated room by sparse matrix encoding. These two methods achieve
high embedding rate.

In this paper, an RDHEI method based on two-dimensional permutation and EMD is proposed.
It is a VRBE method that keeps pixel spatial correlation so that data hiding can be achieved by EMD to
improve embedding capacity significantly. The rest of the paper is organized as follows. Section 2
presents our separable RDHEI method. Section 3 provides the experimental results and evaluates the
performance of the proposed method. Finally, the paper is concluded in Section 4.

2. Proposed Method

In this section, an effective separable RDHEI method is presented. Figure 1 illustrates the
block diagram of the proposed method. The content owner encrypts the original image by using
two-dimensional permutation, which consists of bit-plane permutation and block permutation
according to the encryption key. The bit-plane permutation is achieved by Arnold transformation.
According to the data-hiding key, the data hider embeds secret bits into the encrypted image by using
EMD to generate a marked encrypted image. After receiving the marked encrypted image, the receiver
can perform different operations according to the availability of encryption key and data-hiding key.
If only data hiding key is available, the receiver can only perform data extraction. If only encryption
key is available, the receiver can directly perform decryption to obtain a directly decrypted image,
which is analogous to a noisy image. It is noted that the quality of the directly decrypted image can be
further improved by using noise removal method [42]. If both keys are available, the receiver extracts
the secret bits and recovers the original image perfectly.
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2.1. Image Encryption

In this stage, the content owner encrypts an original image by using two-dimensional permutation,
which consists of bit-plane permutation and block permutation. Note that bit-plane permutation and
block permutation aim to scramble the original pixel values and the original pixel positions, respectively.

2.1.1. Bit-Plane Permutation

Suppose that I is an 8-bit original image sized H×W and Ii, j denote one pixel value of I, where
0 ≤ Ii,j ≤ 255,1 ≤ I ≤ H, and 1 ≤ j ≤W. Since a pixel consists of 8 bits, the content owner divides Ii, j into
4 Most Significant Bits (MSB) and 4 Least Significant Bits (LSB), and then converts the 4 MSBs and
4 LSBs into two decimal numbers denoted by xi, j and yi, j, respectively. The numbers xi, j and yi, j can
be obtained by  yi, j = Ii, jmod 16

xi, j =
(
Ii, j − yi, j

)
mod 16

(1)

where the “mod” denotes the modulo operation and 0 ≤ xi, j ≤ 15, 0 ≤ yi, j ≤ 15. Then Arnold transform
is employed to scramble xi,j and yi, j as follows. x′i, j

y′i, j

 = (
1 1
1 2

)(
xi, j
yi, j

)
(mod 16) (2)

where x′i, j and y′i, j represent the transformed values of xi,j and yi,j, respectively. Let xk
i, j and yk

i, j be
transformed values of xi, j and yi, j after the Equation (2) is iterated k times. Thus, the permutated pixel
value Ik

i, j can be calculated via

Ik
i, j = 16× xk

i, j + yk
i, j (3)

It is well-known that the Arnold transform has periodicity. Specifically, the original image
will reappear after a certain number of iterations. Additionally, Arnold transform period has been
studied by Reference [43] and the period of Equation (2) is 12 from Reference [43]. Since the period
of Equation (2) is 12, there are 11 permutated images, which have different scrambled effects due to
different iterations. To achieve the best scrambled effect for image encryption, correlation coefficient is
adopted to evaluate correlation between the original image and its bit-plane permutated version with
different k (1 ≤ k ≤11). It is defined as

ρk =
Cov(X, Yk)√
D(X)

√
D(Yk)

(4)
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where X and Yk denote the matrices of the original image and its bit-plane permutated version after
k times iteration, respectively. Cov(X, Yk) represents the covariance between X and Yk. Additionally,
D(X) and D(Yk) represents the variances of X and Yk, respectively. Suppose that |ρn| is the smallest
correlation coefficient among {|ρ1|, |ρ2|,.., |ρ11|} (|·| is the absolute function) and its corresponding index
is n, which is the optimal iteration. Consequently, a bit-plane permutated image is generated after all
the original pixels are conducted by using the Equation (2) with n iterations.

2.1.2. Block Permutation

To further enhance security of image encryption, block permutation is adopted to scramble
the positions of all pixels of the bit-plane permutated image. The block permutation consists of a
coarse-grained and a fine-grained permutation. The coarse-grained permutation is exploited to permute
blocks within the image according to a random key Kc and the fine-grained permutation is exploited to
permute pixels within each block. Specially, the bit-plane permutated image is divided into a series of
non-overlapping blocks sized t × (t+1), and the number of blocks is N = bH/tc × bW/(t+1)c, where b.c
denotes the rounding down operation. Considering key space and encryption security, the value of t
should not be too large. The appropriate value of t may be 4, 8 or 16, thus block sizes are 4 × 5, 8 × 9 or
16 × 17. For fine-grained permutation, we design four kinds of closed Hilbert orders C1, C2, C3, C4 as
shown in Figure 2a–d, respectively.
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(c) Closed Hilbert order C3. (d) Closed Hilbert order C4.

Let Bi (1 ≤ I ≤ N) be a block after coarse-grained permutation and bi,x,ybe one pixel of Bi, where x
and y denote the coordinates of bi,x,y (1 ≤ x ≤ t, 1 ≤ y≤ t+1) in Bi. As Figure 2 illustrated, there are four
kinds of closed Hilbert orders for Bi, thus we select a kind of closed Hilbert order for Bi by the logistic
chaotic map which is defined as follows

ci+1 = rci(1-ci), 0≤r≤4, ci∈(0,1) (5)

where r is a control parameter, and the logistic map is in the chaotic state when 3.569945972 < r <4.
In our paper, r is set as 3.689945977 and the initial value c0 is regarded as key. The Equation (5) is
calculated calculate 2N times repeatedly to generated a chaotic sequence {c1, c2, . . . , c2N }. Since 0 < ci
<1, a binary sequence {bc1c, bc2c, . . . , bc2Nc } can be obtained. This binary sequence is transformed into
a sequence of digits in 4-ary notational system, denoted by {q1, q2, . . . , qN}. Then we select a kind of
closed Hilbert order for Bi from Figure 2 according to qi, where 0 ≤ qi ≤3 and 1 ≤ I ≤N. Note that if qi =

0, C1 is selected for Bi. If qi = 1, C2 is selected for Bi. If qi = 2, C3 is selected for Bi. If qi = 3, C4 is selected
for Bi. After selecting a closed Hilbert order, a step size fi is generated for Bi according to a random
key Kf, where 0 ≤ fi ≤ t × (t+1). Then all the pixels of Bi are put forward fi step beginning with bi,1,1
according to the selected closed Hilbert order, which realizes fine-grained permutation. Suppose that
the image blocks after block permutation are

{
B′1, B′2, . . . , B′N

}
. Consequently, the final encrypted image

Ie can be constructed by
{
B′1, B′2, . . . , B′N

}
. The encryption keys consist of iteration number n, Kc, c0 and

Kf. Figure 3 shows the final encrypted version with two-dimensional permutation.
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2.2. Data Hiding in Encrypted Image

The data hider embeds secret bits into Ie according to pixel spatial correlation within blocks of
the encrypted image. Firstly, Ie is divided into N non-overlapping blocks sized t × (t+1) by the data
hider, denoted by

{
B′1, B′2, . . . , B′N

}
. Note that bit-plane permutation and block permutation are able

to preserve spatial correlation and relative position between two adjacent original pixels with the
block, the data hider can calculate adjacent encrypted pixel errors to construct an error histogram
which is used for data hiding with EMD. Similar with most reversible data hiding, some auxiliary
information is also generated in the proposed method, which is described in the Section 2.2.1 in
detail. The data hider divides

{
B′1, B′2, . . . , B′N

}
into two parts

{
B′1, B′2, . . . , B′r

}
and

{
B′r+1, B′2, . . . , B′N

}
.

The LSBs of
{
B′1, B′2, . . . , B′r

}
is extracted to obtain a binary sequence SLSB and replaced by the auxiliary

information. Then SLSB and secret bits are concatenated to form the embedded data to be embedded
into

{
B′r+1, B′2, . . . , B′N

}
.

2.2.1. Error Histogram Generation

In this part, an error histogram is generated by calculating adjacent encrypted pixel errors of each
block. We take B′i (r+1 ≤ I ≤ N) as an example to describe the error histogram generation. The data
hider randomly selects a pixel b′i,x,y from B′i according to a random key Kh. Then the data hider scans
B′i beginning with b′i,x,y in a selected closed Hilbert order determined by the sharing key c0 to generate
a pixel sequence denoted by Pi={pi,1, pi,2, . . . , pi, m}, m = t × (t+1). Then the adjacent pixel errors of Pi
are calculated by.

ei, j =

{
pi, j, j = 1
pi, j−1 − pi, j, 2 ≤ j ≤ m

(6)

where −255 ≤ ei, j ≤ 255. By the same way, the adjacent pixel errors of
{
B′r+1, B′2, . . . , B′N

}
are calculated

and are concatenated to generate an error sequence denoted by E = {e1,e2, . . . ,ed}, where d = m × (N−1).
Note that ei,1 (r+1 ≤ I ≤ N) is excluded for concatenating and data hiding. Consequently, the histogram
of E is generated. Figure 4 shows the error histogram of the encrypted Lena.

Mathematics 2019, 7, x FOR PEER REVIEW 6 of 18 

 

 
Figure 3. Final encrypted image. 

2.2. Data Hiding in Encrypted Image 

The data hider embeds secret bits into Ie according to pixel spatial correlation within blocks of 
the encrypted image. Firstly, Ie is divided into N non-overlapping blocks sized t × (t+1) by the data 
hider, denoted by {𝐁ଵᇱ , 𝐁ଶᇱ , … , 𝐁ேᇱ }. Note that bit-plane permutation and block permutation are able 
to preserve spatial correlation and relative position between two adjacent original pixels with the 
block, the data hider can calculate adjacent encrypted pixel errors to construct an error histogram 
which is used for data hiding with EMD. Similar with most reversible data hiding, some auxiliary 
information is also generated in the proposed method, which is described in the Section 2.2.1 in 
detail. The data hider divides {𝐁ଵᇱ , 𝐁ଶᇱ , … , 𝐁ேᇱ } into two parts {𝐁ଵᇱ , 𝐁ଶᇱ , … , 𝐁௥ᇱ } and {𝐁௥ାଵᇱ , 𝐁ଶᇱ , … , 𝐁ேᇱ }. 
The LSBs of {𝐁ଵᇱ , 𝐁ଶᇱ , … , 𝐁௥ᇱ } is extracted to obtain a binary sequence SLSB and replaced by the 
auxiliary information. Then SLSB and secret bits are concatenated to form the embedded data to be 
embedded into{𝐁௥ାଵᇱ , 𝐁ଶᇱ , … , 𝐁ேᇱ }. 

2.2.1. Error Histogram Generation 

In this part, an error histogram is generated by calculating adjacent encrypted pixel errors of 
each block. We take 𝐁௜ᇱ (r+1 ≤ I ≤ N) as an example to describe the error histogram generation. The 
data hider randomly selects a pixel 𝑏௜,௫,௬ᇱ  from 𝐁௜ᇱ according to a random key Kh. Then the data 
hider scans 𝐁௜ᇱ beginning with 𝑏௜,௫,௬ᇱ  in a selected closed Hilbert order determined by the sharing 
key c0 to generate a pixel sequence denoted by Pi={pi,1, pi,2,…, pi, m}, m = t × (t+1). Then the adjacent 
pixel errors of Pi are calculated by. 𝑒௜,௝ = ൜𝑝௜,௝,                  𝑗 = 1                𝑝௜,௝ିଵ − 𝑝௜,௝, 2 ≤ 𝑗 ≤ 𝑚         (6) 

where −255 ≤ ei, j ≤ 255. By the same way, the adjacent pixel errors of  {𝐁௥ାଵᇱ , 𝐁ଶᇱ , … , 𝐁ேᇱ } are 
calculated and are concatenated to generate an error sequence denoted by E = {e1,e2,…,ed}, where d = 
m × (N−1). Note that ei,1 (r+1 ≤ I ≤ N) is excluded for concatenating and data hiding. Consequently, 
the histogram of E is generated. Figure 4 shows the error histogram of the encrypted Lena.  

 
Figure 4. Error histogram of the encrypted Lena. 

It can be observed that there are a wide variety of peak bins and zero bins in the histogram 
from Figure 4. Assume that the histogram bins and their numbers are denoted by {b-255,…,b0,…,b255} 

-300 -200 -100 0 100 200 300
0

0.5

1

1.5

2

2.5

3
x 104

Figure 4. Error histogram of the encrypted Lena.



Mathematics 2019, 7, 976 7 of 19

It can be observed that there are a wide variety of peak bins and zero bins in the histogram from
Figure 4. Assume that the histogram bins and their numbers are denoted by {b-255, . . . ,b0, . . . ,b255} and
{n-255, . . . ,n0, . . . ,n255}, respectively. For convenient observation, we magnify some parts of Figure 4
to exhibit the bins and their numbers as shown in Figure 5. It is observed from Figure 5a that b0 is a
peak bin, while b-1 and b1 are two zeros bin adjacent with bin b0. The b-2 and b2 are two peak bins,
while b-3 and b3 are two zero bins which are adjacent with bin b-2 and b2, respectively. Similarly, it is
observed from Figure 5b that b-36 is a peak bin, while b-37 and b-35 are two zeros bin adjacent with bin
b-36. The b-38 is a peak bin, while b-39 is a zero bin which is adjacent with bin b-38. The other bins of
Figure 4 have same properties. It is concluded that there is one zero bin between two peak bins at least
and there is one zero bin adjacent with one peak bin in the error histogram in most cases. Peak bins
and zero bins occur alternatively. Consequently, these peak bins are accommodated for data hiding.
According to the property of the histogram, secret bits can be embedded into the encrypted image via
EMD without histogram shifting.
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2.2.2. Data Hiding with EMD

For clarity, we construct a histogram—as shown in Figure 6—the property of which is analogous
with that of Figure 5 to illustrate our data hiding. In this histogram, the bins b2, b4, b6, b8 are four
peak bins which are expanded for data hiding, while the bins b1, b3, b5, b7, b9 are five zero bins which
are vacated room for reversible data hiding. Since every peak bin can be expanded rightward and
leftward, there are a series of expanding schemes for these peak bins. Due to page limitation, we only
give two expanding schemes E1 and E2 as shown in Figures 6a and 6b, respectively. In Figure 6a, the
peak bins b4 and b8 can be both expanded rightward and leftward for data hiding and the bin b2 can be
only expanded leftward. The peak bin b6 is unchanged to avoid ambiguity. In Figure 6b, the peak bin
b8 can be both expanded rightward and leftward for data hiding and the peak bins b2, b4, b6 are only
expanded leftward for data hiding. No matter which scheme, the zero bins are marked by a location
map for avoiding ambiguity.
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Based on the above analysis, every peak bin has two directions or only one direction to be
expanded. Consequently, secret bits can be embedded into the peak bins using EMD which uses
directional modification of data hiding. In the EMD method, a group of n pixels has different possible
directions to embed secret bits according to designed extraction function. Then, data hiding can be
performed as follows.

For E = {e1,e2, . . . ,ed}, let the bin bk be a candidate peak bin for data hiding. We extract all the
errors the values of which are equal with bk from E to embed secret bits. All these errors are permuted
into a series of error-pairs according to a random Kd. Suppose that ei and ej are a pair of errors and
their marked errors are ei

′

and ej
′

, respectively. Since there are three expanding cases for embedding
bin bk which are only expanding leftward, only expanding rightward and expanding both leftward
and rightward, there are three corresponding embedding methods as follows.
1. Only expanding leftward

If bk is only expanded leftward, it means the errors whose values are equal with bk can be decreased
by 1 or unchanged during data hiding. For a pair (ei, ej), ei = ej = bk, we embed two secret bits into (ei,
ej). Two secret bits are transformed into a secret digit s (0 ≤ s ≤ 3). In this case, the extraction function
f 1 is defined as

f 1(a,b)=(a+2×b) mod 4 (7)

If ei
′

and ej
′

satisfy the conditions s=f 1(ei
′

, ej
′

) and

 bk − 1 ≤ e′i ≤ bk
bk − 1 ≤ e′j ≤ bk

, s can be embedded by

f 1(a,b). Consequently, (ei
′

, ej
′

) can be obtained as follows.
1O If s = f 1(ei

′

, ej
′

), ei
′

= bk and ej
′

= bk; 2O If s = f 1(ei
′

–1, ej
′

), ei
′

= bk–1 and ej
′

= bk;
3O If s = f 1(ei

′

, ej
′

–1), ei
′

= bk and ej
′

= bk–1; 4O If s = f 1(ei
′

–1, ej
′

–1), ei
′

= bk–1 and ej
′

= bk–1;
By the same way, other secret bits can be embedded into other pairs.

2. Only expanding rightward
If bk is only expanded rightward, it means the errors whose values are equal with bk can be

increased by 1 or unchanged during data hiding. For a pair of errors (ei, ej), ei = ej = bk, we embed
two secret bits into (ei, ej). Two secret bits are transformed into a secret digit s(0 ≤ s ≤ 3). In this case,
Equation (7) is exploited as the extraction function. If ei

′

and ej
′

satisfy the conditions s = f 1(ei
′

, ej
′

) and bk ≤ e′i ≤ bk + 1
bk ≤ e′j ≤ bk + 1 , s can be embedded by f 1(a,b). Consequently, (ei

′

,ej
′

) can be obtained as follows.

1O If s = f 1(ei
′

, ej
′

), ei
′

= bk and ej
′

= bk; 2O If s = f 1(ei
′

+1, ej
′

), ei
′

= bk+1 and ej
′

= bk;
3O If s = f 1(ei

′

, ej
′

+1), ei
′

= bk and ej
′

= bk+1; 4O If s = f 1(ei
′

+1, ej
′

+1), ei
′

= bk+1 and ej
′

= bk+1;
By the same way, other secret bits can be embedded into other pairs.

3. Expanding both leftward and rightward
If bk can be both expanded leftward and rightward, it means the errors whose values are equal

with bk can be increased by 1, decreased by 1 or unchanged during data hiding. For a pair (ei, ej),
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ei=ej=bk, we embed three secret bits into (ei, ej). Three secret bits are transformed into a secret digit s
(0≤s≤7). According to the algorithm [7], the extraction function f 2 is defined as

f 2(a,b)=(a+3×b) mod 8 (8)

If ei
′

and ej
′

satisfy the conditions s=f 2(ei
′

, ej
′

) and

 bk − 1 ≤ e′i ≤ bk + 1
bk − 1 ≤ e′j ≤ bk + 1 , s can be embedded by

f 2(a,b). Consequently, (ei
′

,ej
′

) can be obtained as follows.
1O If s= f 2(ei

′

, ej
′

), ei
′

= bk and ej
′

= bk; 2O If s= f 2(ei
′

+1, ej
′

), ei
′

= bk+1 and ej
′

= bk;
3O If s= f 2(ei

′

–1, ej
′

), ei
′

= bk–1 and ej
′

= bk; 4O If s= f 2(ei
′

, ej
′

+1), ei
′

= bk and ej
′

= bk+1;
5O If s= f 1(ei

′

, ej
′

–1), ei
′

= bk and ej
′

= bk–1; 6O If s= f 1(ei
′

+1, ej
′

+1), ei
′

= bk+1 and ej
′

= bk+1;
7O If s= f 1(ei

′

+1, ej
′

–1), ei
′

= bk+1 and ej
′

= bk–1; 8O If s= f 1(ei
′

–1, ej
′

+1), ei
′

= bk–1 and ej
′

= bk+1;
By the same way, secret data can be embedded into other pairs.
Overall, if bk is only expanded leftward or rightward, two secret bits can be embedded into

a pair of errors. Otherwise, three secret bits can be embedded into a pair of errors. Consequently,
we prefer to select the peak peaks with more numbers to be both expanded leftward and rightward for
obtaining more embedding capacity as follows. The bin numbers {n-255, . . . ,n0, . . . ,n255} are sorted in
stable descending order to obtain {nσ(1), nσ(2), . . . , nσ(511)} and their corresponding bins are {bσ(1), bσ(2),
. . . , bσ(511)}, where σ(i) ∈ {−255,−254, . . . ,254,255} and σ:{1,2, . . . ,511}→ {1,2, . . . ,511} is the unique
one-to-one mapping such that: nσ(1) ≥ nσ(2) ≥ . . . ≥ nσ(511). In order to achieve high payload, the bins
with more numbers among {bσ(1), bσ(2), . . . , bσ(511)} are selected to be both expanded leftward and
rightward in priority. Let the embedding capacity be lEC. First an empty set S is initiated and the
expanded bins are stored in S which can be obtained by the following details. A counter c is used for
calculating the payload and its initial value is 0. Beginning with i = 1, it is clear that the bin the bin bσ(1)

can be both expanded leftward and rightward and bσ(1) is appended with S. c = c+3×nσ(1)/2 and i = i+1.
If i > 1, the expanding rules of bσ(i) are determined by | bσ(i) − bσ(j) | and can be classified into three
cases, where j = 1,2, . . . i-1.

1) If (∀j)| bσ(i)–bσ(j) | > 2, the bin bσ(i) can be both expanded leftward and rightward and bσ(i) is
appended with S. Additionally, c = c +3×nσ(i)/2.

2) If (∃j) | bσ(i)–bσ(j) | = 2 and (∀k) | bσ(i)–bσ(k) | > 2, where k = 1,2, . . . i and k , j. The bin bσ(i) can be
expanded leftward or rightward. If bσ(i) > bσ(j), the bin bσ(i) can be expanded rightward. Otherwise,
the bin bσ(i) can be expanded leftward. bσ(i) is appended with S and c = c+nσ(i).

3) If bσ(i) does not satisfy the above condition, bσ(i) is skipped.
Repeat the above process until c ≥ lEC. We take Figure 6a as an example to illustrate the generation

of S. It is clear that {n8, n4, n2, n6} and {n3, n5, n1, n7, n9} are the peak bins and zero bins, respectively.
The sorted bin numbers are {n8, n4, n2, n6, n3, n5, n1, n7, n9} and the corresponding bins are {b8, b4, b2,
b6, b3, b5, b1, b7, b9}. According to the above expanding rules, the first peak bin b8 can be both expanded
leftward and rightward and b8 is appended with S. For the second peak bin b4, it is clear that b8 − b4 >

2, thus b4 can be both expanded leftward and rightward and b4 is appended with S. For the third peak
bin b2, there is a bin b4 which satisfies b4 − b2 = 2. Thus, b2 can be only expanded leftward and b2 is
appended with S. For the fourth bin b6, there are b4 and b8 which satisfy the condition b8 − b6 = 2 and
b4 − b6 = −2. Thus, b6 remains unchanged. Consequently, S consists of b8, b4, b2. After obtaining S,
secret bits are embedded into the errors of E by expanding the bins from the set S in order according to
the embedding method and suppose that the marked error sequence is E

′

={e1
′

,e2
′

, . . . ,ed
′

}. Then these
marked errors can be mapped to the marked errors in each block. Consequently, the marked pixels in{
B′′r+1, B′′2 , . . . , B′′N

}
are generated by

p′i, j =

 pi, j, j = 1
pi, j−1 − e′i, j, 2 ≤ j ≤ m (9)
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where r+1 ≤ i ≤ N. In order to blind extraction, some auxiliary information is required to be embedded
into the encrypted and it is described as follows. The overflow/underflow problem may occur since
the pixel value 0 or 255 may be modified to −1 or 256, respectively. To address this problem, we utilize
a location map LM with the same size of the encrypted image to mark those pixels with value 0 or 255.
For each encrypted pixel, if its value is 0 or 255, it is marked with 1 in LM and skipped for data hiding.
Otherwise, it is marked with 0 in LM. Meanwhile, the pixels with the zero bins are also marked with 1
in LM. To reduce the size of LM, LM is losslessly compressed and its compressed version is denoted
as Lclm and the size of Lclm is lclm. Since the peak bins vary from −255 to 255, each peak bin can be
represented 9 bits and the first bit is a sign bit. The bins are almost evenly divided into the peak bins
and zero bins as shown in Figure 6, thus the maximum size Ls of S is 9 × 255. Since most pixels of
encrypted image are used for data hiding and three bits are embedded into two pixels, 3/2 × log2HW
bits are enough to represent the embedding capacity lEC. In summary, the auxiliary information
consists of three sections:

* The compressed location map Lclm (lclm bits)
* The expanded bin set S (Ls bits)
* The embedding capacity lEC (3/2 × log2HW bits)

The auxiliary information is embedded into the LSBs of
{
B′1, B′2, . . . , B′r

}
by using LSB replacement

technique to generate the marked blocks
{
B′′1 , B′′2 , . . . , B′′r

}
. Finally, a marked encrypted image Iw can

be obtained by
{
B′′1 , B′′2 , . . . , B′′N

}
.

2.3. Data Extraction and Image Recovery

With a marked encrypted image Iw, the receiver can perform different operations involving data
extraction, image decryption and image recovery according to the availability of the encryption key
and the data-hiding key.

If only encryption key is available for the receiver, he can directly decrypt Iw to obtain a noise-like
image which can be filtered to generate an image with remarkable quality. Specifically, the receiver
divides Iw into a series of non-overlapping blocks with t × (t+1) size. Since each original pixel is
encrypted by iterating n times using Equation 2, the marked encrypted pixels can be decrypted by
iterating 12-n times using Equation 2 to generate the directly decrypted pixels. After directly decrypting
pixels, inverse coarse-grained permutation and fine-grained permutation are performed to recover
the positions of those pixels. Consequently, a directly decrypted image is generated. Note that the
encrypted pixels may increase by 1, decrease by 1 or keep unchanged during data hiding. Those marked
encrypted pixels which keep unchanged can be decrypted to obtain corresponding original pixels
without errors. While, the decrypted pixels by decrypting those marked, encrypted pixels directly
which increase by 1 or decrease by 1 may be far away from the corresponding original pixels. We take
an original pixel value 95 as an example for illustrating decryption. The original pixel value 95 is
iterated 7 times using Arnold transform to generate the encrypted pixel value 75. Note that 75 may be
modified as 74, 75 or 76 after data embedding. In direct decryption process, the marked pixel value 74,
75 or 76 is decrypted by iterating 5 times using Equation 2 to obtain 230, 95 or 200, respectively. It is
clear that 95 is a desired decryption value, while 230 and 200 can be regarded as the noises which will
bring large distortion for image. That is to say, our directly decrypted image may contain noises. Let the
numbers of expanded bins with one direction in S be

{
n1

1, n1
2, . . . , n1

u

}
and the numbers of expanded

bins with two directions be
{
n2

1, n2
2, . . . , n2

v

}
. The number of noises in the directly decrypted image is

estimated as

Q ≈
1
2

u∑
i=1

n1
i +

5
8

v∑
i=1

n2
i (10)
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where 1
2

u∑
i=1

n1
i and 5

8

v∑
i=1

n2
i are the noise estimations of expanded bins with one direction and two

directions respectively according to our data hiding method. Our noise mode can be regarded as
uniform impulse noise and can be detected with high detection rate [44]. For a directly decrypted
image, different from the previous methods, we adopt an outstanding filter method [42] to improve
visual quality of the directly decrypted image significantly.

If only data-hiding key is available for the receiver, he can extract the error-free secret bits
from Iw and recover the encrypted image losslessly. The receiver also divides Iw into a series of
non-overlapping blocks

{
B′′1 , B′′2 , . . . , B′′N

}
and retrieves the auxiliary information from the LSBs of the

blocks
{
B′′1 , B′′2 , . . . , B′′r

}
to obtain the compressed location map Lclm, the expanded bin set S and the

embedding capacity lEC. Lclm is decompressed to generate LM. We also take B′′i (r+1 ≤ i≤N) as an
example to describe the marked error generation and data extraction. The receiver scans B′′i beginning
with b′′i,x,y in a selected closed Hilbert order determining by the sharing key c0 to generate a pixel

sequence denoted by P′i =
{
p′i,1, p′i,2, . . . , p′i,m

}
. If p′i, j is marked with 1 in LM, p′i, j is skipped for data

extraction and the original pixel can be recovered as pi, j = p′i, j. Otherwise p′i, j is used for data extraction.

The marked errors in
{
B′′r+1, B′′r+2, . . . , B′′N

}
are generated by

e′i, j =

 pi, j, j = 1
pi, j−1 − p′i, j, 2 ≤ j ≤ m (11)

Then the expanded bins are selected from S to assist data extraction. The expanding method
for the bin S(k) can be decided by the expanding rules, where 1 ≤ k ≤ u+v. If the bin S(k) can be only
expanded leftward or expanded rightward and e′i, j =

{
S(k), S(k) − 1

}
or e′i, j =

{
S(k), S(k) + 1

}
, the original

error can be recovered as ei,j = S(k). If the bin S(k) can be both expanded leftward and expanded

rightward and e′i, j =
{
S(k), S(k) − 1, S(k) + 1

}
, the original error can be recovered as ei,j = S(k). Then the

original encrypted pixel can be recovered as

pi, j = pi, j-1- ei, j (12)

Thus, the encrypted pixels in
{
B′r+1, B′r+2, . . . , B′N

}
can be recovered losslessly. The marked error

sequence E
′

={e1
′

,e2
′

, . . . ,ed
′

} for the
{
B′r+1, B′r+2, . . . , B′N

}
can be obtained using Equations (11–12). For a

pair of extracted marked errors in this sequence, if the corresponding bin can be only expanded leftward
or expanded rightward, a secret digit can be extracted by Equation (7). Otherwise, a secret digit can be
extracted by Equation (8). After data extraction, the embedded data is split into SLSB and the secret
bits. The LSBs of

{
B′′1 , B′′2 , . . . , B′′r

}
is replaced by SLSB to recover

{
B′1, B′2, . . . , B′r

}
. Consequently, the

encrypted image can be recovered by
{
B′1, B′2, . . . , B′N

}
.

If the data-hiding key and the encryption key are both available for the receiver, he or she extracts
secret data from the marked encrypted image and recovers the encrypted image losslessly according to
the data-hiding key. Then, with the encryption key, he or she is able to decrypt the encrypted image to
obtain the original image.

3. Experimental Results

In this section, six 512 × 512 standard images as shown in Figure 7 are used to validate our
encryption and embedding performances. The encryption performance is evaluated by key space
and the statistical security. Additionally, the superiority of the directly decrypted image quality and
embedding capacity are illustrated. Section 3.1 analyzes our image encryption performance and we
set t=8 for illustrating it. Section 3.2 provides comparison results with other methods to evaluate our
embedding performance.
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3.1. Encryption Performance

The encryption security is decided by the size of key space. Generally, the larger the size of key
space is, the more security the algorithm has. Our encryption key consists of iteration time n, Kp, c0 and
Kf, where Kp and Kf are two random keys and their precisions are both 64. It is obvious that the key
space of iteration time is 11 in our paper. In coarse-grained permutation, the image blocks are permuted
by the key Kp with 64 bits storage and the number of possible scenarios for block permutation is N!.
If the block number N > 21, N! > 264 and the key space is 264. Otherwise, the key space is N!. Thus,
the valid key space is min (264, N!) for coarse-grained permutation. Since c0 is a floating number with
64 bits storage, the key space of c0 is 264. In fine-grained permutation, there are four closed Hilbert
orders for a block and the number of possible scenarios of closed Hilbert orders is 4N, thus the valid
key space is min (264, 2N). Furthermore, all the pixels of one block are put forward fi step decided by Kf,
the number of selected step sizes is (t × (t+1))N, the valid key space is min (264, (t × (t+1))N). Overall,
the whole key space of the proposed encryption method is 11 × (264, N!) ×min (264, 4N) ×min (264,
(t × (t+1))N). For Lena in Figure 2, if t = 8, the number of blocks is N = 3584, the key space is 11 × 264

×

264
× 264 = 11 × 2192, which is able to resist brute-force attacks [4].

Histogram analysis for our encryption method is presented. An image histogram illustrates the
distribution of the pixel values. The histograms of the original images and their encrypted versions are
exhibited in Figures 8 and 9, respectively. It is observed that the histogram of each encrypted version is
entirely different from the histogram of corresponding original image. Consequently, our encryption
method can withstand statistical attacks.
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We use correlation coefficient and peak signal-to-noise ratio (PSNR) between the original image
and the encrypted image to evaluate the quality of the encrypted image. Correlation coefficient is
defined as Equation (4) and PNSR is defined as follows.

PSNR = 10× log10

(
2552

MSE

)
(13)

Where MSE represents the mean square error between the original image and its encrypted
version. The evaluated results are shown in Table 1. Low PSNR demonstrates that no content of the
original image can be retrieved from its encrypted version. The correlation coefficients are all closed to
0, which clearly demonstrate that the encrypted images are rarely correlated with the original images



Mathematics 2019, 7, 976 14 of 19

and no information leakage from the encrypted images in case of statistical attacks. Overall, these
analyses demonstrate that the proposed encryption securely protects the content of the original image.

Table 1. Correlation coefficient, PSNR values between original and encrypted images using
proposed scheme.

Image PSNR Correlation Coefficient

Lena 9.2405 −0.0039835
Boats 9.1853 −0.0068682

Peppers 8.4256 −0.003959
Airplane 7.9554 −0.000215
Barbara 9.1159 0.00063109
Baboon 9.5364 0.0013209

3.2. Embedding Performance Comparisons

The embedding performance of the proposed method is demonstrated by comparing it with
some state of art RDHEI methods [19,25,30,34–37], where Ma’s method [19], Nguyen’s method [25] are
based on RRBE framework and Zhang’s method [30] is based on VRAE framework. Yi’s method [34],
Di’s method [35], Xiao’s method [36] and Yu’s method [37] are based on VRBE framework. The compared
methods [19,25] use standard stream cipher to encrypt image after preprocess and the compared
method [30] exploits standard stream cipher to directly encrypt image. The compared method [36]
adopts standard homomorphic encryption to encrypt image. The other compared methods [34,35,37]
designed specific encryption to encrypted image. Comparisons are performed from two aspects
including the highest embedding capacity and the visual quality of directly decrypted image. If only
the encryption key is available for the receiver, our method is able to improve the visual quality
of directly decrypted image by filtering, while the other methods cannot. In aspect of comparison
for the visual quality of directly decrypted image, we take our improved directly decrypted image
for comparison.

In our paper, the block sizes have three cases, 4 × 5, 8 × 9, 16 × 17, Table 2 shows the pure
embedding capacity of each image except the auxiliary information under different block sizes. It is
observed that when block size is 16×17, the pure highest embedding capacity for each image can be
obtained. This is because that one pixel of each encrypted block is excluded for data hiding. The smaller
the block size is, the more pixels are excluded for data hiding. Consequently, the optimal size is 16×17
for embedding capacity. Moreover, the pure embedding capacity of an image is decided by the image
content. The images with fewer textures (Lena, Boats et al.) will generate more peak bins and less zero
bins which are recorded by the location map. The fewer the auxiliary information is, the higher the pure
embedding capacity will be. The images with more textures (Baboon et al.) will generate more zero
bins and more auxiliary information decreases the pure embedding capacity. Thus, the images with
fewer textures achieve higher pure embedding capacities than the images with more textures (Baboon).

To demonstrate the embedding capacity advantage of the proposed method, we compare our
highest embedding capacity with those of six methods and comparison results are shown in Table 3.
It demonstrates that the embedding capacity of the proposed method is highest and the embedding
capacity of Zhang [30] is lowest among the compared methods. In Reference [30], an original image
is encrypted directly by standard stream cipher which disorganizes spatial pixel correlation. Thus,
the method [30] achieves lowest embedding capacity. For all test images excluding Baboon, the highest
pure embedding capacity of the proposed method exceeds 1 bpp. For example, for Lena, the maximum
EC is 1.2711 bpp. However, the highest embedding capacities of the other compared methods are all
less than 1 bpp. The embedding capacity of Ma [19] is similar with that of Yi [34]. The methods of
Di [35] and Xiao [36] are both based on block encryption and all pixels in a block are encrypted with
same key. In Xiao’s method [36], PVO is adopted to calculate prediction errors and secret bits can be
only embedded into the maximum value and the minimum value of a block. Thus, their embedding
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capacity is limited. Di et al. calculated the pixel errors between one pixel and other pixels in a block,
secret bits can be embedded by prediction-error histogram shifting (PEHS). Since most pixels of one
block can accommodate secret bits, they achieve more EC than Xiao et al.

Table 2. Pure embedding capacity under different block sizes (bpp).

Image 4×5 8×9 16×17

Lena 1.2078 1.2406 1.2711
Boats 1.2032 1.2359 1.2625

Peppers 1.1754 1.2097 1.2397
Airplane 1.185 1.2214 1.253
Barbara 0.9723 1.009 1.0407
Baboon 0.7685 0.7534 0.8149

Table 3. Highest embedding capacity comparisons among different methods (bpp).

Methods Ma [19] Nguyen [25] Zhang [30] Yi [34] Di [35] Xiao [36] Yu [37] Proposed

Lena 0.5 0.1570 0.033 0.5 0.8412 0.2368 0.5343 1.2711
Boats 0.5 0.1040 0.041 0.5 0.7515 0.1451 0.5875 1.2625

Peppers 0.5 0.1580 0.022 0.4 0.7250 0.2125 0.4587 1.2397
Airplane 0.4 0.2790 0.040 0.5 1.0349 0.2649 0.6914 1.2530
Barbara 0.5 0.1310 0.020 0.5 0.7268 0.1362 0.4990 1.0407
Baboon 0.5 0.0340 0.010 0.4 0.651 0.1012 0.2314 0.8149

From the aspect of comparison for directly decrypted image, the capacity-distortion curves
are adopted for embedding performance comparison, as shown in Figure 10. The distortion of
directly decrypted image is evaluated by PNSR. It is observed from Figure 10 that the embedding
performance of the method [30] underperforms the other methods due to the limitation of VRAE
framework. The embedding performance of the proposed method outperforms those of the compared
methods [19,25,35–37] for Boat, Peppers and Barbara when embedding capacity exceeds 0.1 bpp.
Moreover, with embedding capacity increases, our method achieves more advantage due to remarkable
image recovery efficiency. For Airplane, our capacity-distortion performance outperforms the other
compared methods except for Yi et al. [34]. However, the embedding capacity of Yi et al. is limited
under 0.5 bpp. For Lena, if embedding capacity is 0.1 bpp, the PSNR of Xiao [36] is higher than ours.
When EC exceeds 0.2 bpp, our embedding performance outperforms those of all the compared methods.
For Baboon, our embedding performance underperforms some compared methods [19,25,34,36],
especial for low embedding capacity. However, when embedding capacity exceeds 0.3 bpp, our
method achieves more advantage. Although RRBE-based methods [19,25] can achieve a relatively
good performance, the content owner need to conduct an extra preprocess before encryption to
vacate room for secret bits. In fact, the content owner may not want to perform this extra preprocess
during encryption and/or may not know that secret bits will be embedded into the encrypted image.
Furthermore, vacating room from the plain image is effortless than the encrypted image due to the
high correlation within pixels of the plain image and the low correlation within pixels of the encrypted
image. The proposed method is based on VRBE and the superiority of improved directly decrypted
image in our paper is ascribed to remarkable filtering method [42]. In short, Figure 10 demonstrates
that the proposed method is better than the compared methods in embedding performance in most
cases especially for large embedding capacity.
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4. Conclusions

In this paper, a separable RDHEI method based on two-dimensional permutation and EMD has
been proposed. We first design an image encryption method which consists of block permutation
and bit-plane permutation. It provides confidentiality for image while keeping pixel correlation in
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the encrypted image. Then an error histogram with peak bins and zero bins occurring alternatively
is constructed to accommodate for secret bits. Due to the property of the histogram, different EMD
methods are adopted for hiding data without HS in order to improve embedding capacity significantly.
Different from the previous methods, our method can significantly improve the quality of the directly
decrypted image by using this remarkable filtering method. Experimental and comparison results
show that the proposed method is better than the several compared methods in terms of the embedding
rate and quality of the directly decrypted image.
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